
Page 1

From Models to Code
Marc-Philippe Huget

LISTIC-Polytech’Annecy Chambéry
University of Savoie

(Marc-Philippe.Huget@univ-savoie.fr)

Page 2

Who am I?

•  Associate Professor in Computer Science,
mainly in Software Engineering

•  Research interests:
– Multiagent systems
– Agent oriented software engineering (AOSE)

•  Modeling (Agent UML among others)
•  Methodology

– Model-driven Engineering
– Big data

Page 3

Where do I work?

LISTIC laboratory
–  Image processing
–  Information fusion and processing
– Fuzzy functions
– Ontology
– Software engineering
– Performance analysis

Page 4

Annecy

Photo montagne

Annecy, little Venice

Page 5

Talk outline

•  Introduction towards model-driven
development

•  What is a model?
•  Model-Driven Architecture (MDA)
•  Model-Driven Engineering (MDE)
•  Domain-Specific Languages (DSL)

Page 6

Model

Model-driven Architecture
(MDA)

Model-driven Engineering
(MDE)

Model to Model
(M2M)

Model to Text
(M2T)

Domain-specific Language
(DSL)

Model-driven Development
(MDD)

Page 7

Model-Driven Development

(or: Why I'd like writing programs that write programs
rather than writing programs…) (J.-M. Jezequel)

Page 8

Introduction towards
Model-Driven Development

Page 9

1950s

•  Computers and programs appear
•  Programs are no longer military ones
•  Programs are written with machine code:

100110011…
•  Machine code is part of first generation languages
•  But second generation languages appear such as

Assembler to reduce complexity to develop
programs

•  And some third generation languages such as
FORTRAN (1954)

Page 10

1960s

•  The term « Software Engineering » is
coined at the NATO Conference in 1969

Page 11

1970s

•  Third generation languages such as C
(Ritchie, 1972)

Page 12

1980s

•  From procedural languages to object
programming, C++ (1983)

Page 13

1990s

•  Classes are packed into packages and
components : component-based
programming

Page 14

2000s

Page 15

Complexity is
everywhere

Lines of Code
– Windows NT 3.1: 5M LOC
– Windows 2000: >29M LOC
– Mac OS X 10.4: 89M LOC
– Firefox: 1M LOC

Page 16

Complexity is
everywhere (cont’d)

Page 17

Complexity is
everywhere (cont’d)

Page 18

The death march of
specifications

J2EE Date of release
1.0 1999
1.1
1.2 2000
1.3 2001
1.4 2003
5 2006
6 2010

Page 19

Too many platforms

•  Technological platforms
–  .NET
– Java (SE, EE, ME)

•  Hardware platforms
– Xbox 360
– PS3
– Wii

•  Etc.

Page 20

The Military Medical Information
Systems Example

•  No common NATO Electronic Health Record
–  Nations’ own responsibility

•  “Push” from national EHR to NATO: No semantics or syntax standard
agreed upon

–  Periodic reports about medical status
•  Delayed and aggregated: Not good enough for many purposes

•  26 NATO member nations
–  26 different Electronic Health Records (at least: one nation may have

more than one system)
–  26 different technological “platforms”?
–  26 different “standards”?
–  Maturity of systems varies

•  Multinational Integrated Medical Unit (MIMU)
–  Many nations in one medical treatment facility
–  Should (must?) share information

Page 21

Snapshot CIM
Models

PIM
Models

PSM (Java)
Models

System Java
Code

PSM (.Net)
Models

System .Net
Code

NATO MC326/AJP4.10
STANAGS and CIV STD

Standard Mapping
Rules and Patterns

26 different
platforms

Page 22

If you were still not convinced…

From the Standish group, in 2003, on 13522
IT projects

•  34% respect the deadline and cost
•  51% respect the deadline but increase the

cost
•  16% are stopped before ending

Page 23

It is time to change the
way to develop software

Page 24

Model-Driven Development

Page 25

Philosophy behind
model-driven development

•  Gains abstraction: adopt an eagle’s eye
view of software rather than a mole’s one

•  Gets separation of concerns between
business stuff and technological one

•  Modifies the leitmotive « Write once, runs
everywhere » to « Model once, generate
anywhere »

Page 26

What is a model?

Page 27

Page 28

Why modeling?

Modeling, in the broadest sense, is the cost-effective
use of something in place of something else for
some cognitive purpose. It allows us to use
something that is simpler, safer or cheaper than
reality instead of reality for some purpose.

A model represents reality for the given purpose; the

model is an abstraction of reality in the sense that it
cannot represent all aspects of reality. This allows us
to deal with the world in a simplified manner, avoiding
the complexity, danger and irreversibility of reality.

Jeff Rothenberg

Page 29

One real « car »: several models
depending on the point of view…
Hundreds of thousands data…

Page 30

Ferrari F60

Different points of view for modelling:
•  If you are Scuderia addict:

– Drivers
– Nb of victories
– Etc.

•  If you are an engineer:
– Nb of horsepower
– Maximum speed
– Etc.

Simplified view of system
and with only worthwhile data

Page 31

What is a model?

[OMG MDA Guide 1.0.1]
A model of a system is a description or

specification of that system and its
environment for some certain purpose. A
model is often presented as a combination
of drawings and text. The text may be in a
modeling language or in a natural language.

Page 32

Tower

One model, two instantiations

Page 33

Model

•  A model is a description, a partial specification of
a system:
–  Abstraction of a real entity with only interesting

features for a given context and a given aim
–  Subjective view of a system

•  The aim of a model is:
–  Ease the understanding of a system
–  Simulate a system under use

•  Outstanding examples:
–  Economical models
–  Social models

Page 34

Page 35

Model-Driven Architecture
(MDA)

Page 36

Model-Driven Architecture
(MDA)

•  Proposed by the Object Management Group
(OMG) consortium

•  Part of a collection of standards
– UML
– SysML
– XMI
– MOF
– SPEM
– CWM

•  Uses extensively UML models

Page 37

Model-driven Architecture
(MDA)

•  Separation of business functions from
technological implementation
– Represent common concepts in a model

independent of computation and technological
platforms

•  CIM: Computation Independent Model
•  PIM: Platform Independent Model

– Use the PIM model transformation to create new
platform specific models

•  PSM: Platform Specific Model

– Generate executable code (applications) from the
PSM

Page 38

Page 39

Several models

•  CIM (Computation Independent Model):
this is the business model, frequently
realized during requirements engineering

•  PIM (Platform Independent Model): this is
the instance of the application

•  PSM (Platform Specific Model): this is the
instance of the application for a specific
platform (either technical or conceptual)

Page 40

The Four Modeling Layers of the OMG

Page 41

Layer M0: instances

At the M0 layer, there is the running system
in which the actual (« real ») instances
exist.

This is where you do the « new » in object-
oriented programs

But to define these instances, we need a

form: the M1 layer

Page 42

Layer M1: the Model of the
System

The M1 layer contains models, for example,
a UML model of a software system. In the
M1 model, for instance, the concept of
Customer is defined with the properties of
name, street and city

The M1 elements define what M0 instances
look like

But defining models for instances requires to
know how to model models…

Page 43

Layer M2: The Model of the
Model

Classes, operations, attributes and
associations defined at the M1 layer need
to be modeled.

The M2 layer defines how elements at the
M1 layer should be defined: what is a
class, what is an attribute, etc.

Page 44

Layer M3: the Model of M2

•  M0 defines the data for your application
•  That are based on classes defined in M1
•  That are based on elements that explained

how to write classes/concepts: M2
•  Finally, we need to explain how to write

these elements: the M3 layer

Page 45

Layer M3 (cont’d)

And a M4 layer ?
And a M5 layer ?
And so on ?

Hopefully not, M3 is a reflexive layer, it is

used to describe itself

Page 46

M3 Meta-metamodels

Two meta-metamodels exist to describe
metamodels:

•  OMG’s Meta-Object Facility (MOF)
•  Eclipse Modeling Framework (ecore)

(discussed in MDE part)

Page 47

Meta-Object Facility

•  Proposed by OMG as support of Model-
Driven Architecture

•  Comes into two flavours:
– Essential MOF (EMOF)
– Complete MOF (CMOF)

•  Designers do not have to pay too much
attention about MOF intricacies: tools
directly represent classes, attributes and
operations

Page 48 EMOF Classes

Page 49 EMOF Data Types

Page 50
EMOF Packages

Page 51

Essential MOF

•  Sufficient to represent simple metamodels
•  Complex metamodels with reflection

require CMOF

Page 52

XMI

Page 53

Page 54

XMI

•  XML Metadata Interchange (XMI)
•  Part of OMG specifications
•  Responsible to save MOF (and Ecore)

objects as an XML file: the M2, M1 and M0
layers

•  Used to exchange models between UML
tools

Page 55

XMI (cont’d)

<?xml version="1.0" encoding="ISO-8859-1"?>
<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns="Families">
 <Family lastName="March">
 <father firstName="Jim"/>
 <mother firstName="Cindy"/>
 <sons firstName="Brandon"/>
 <daughters>
 <firstName>Brenda</firstName>
 </daughters>
 </Family>
 <Family lastName="Sailor">
 <father firstName="Peter"/>
 <mother firstName="Jackie"/>
 <sons firstName="David"/>
 <sons firstName="Dylan"/>
 <daughters firstName="Kelly"/>
 </Family>
 <Book>
 <title> "Easy ATL" </title>
 </Book>
</xmi:XMI>

M0 layer example

Page 56

XMI (cont’d)
<?xml version="1.0" encoding="ISO-8859-1"?>
<xmi:XMI xmi:version="2.0"
 xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore">
 <ecore:EPackage name="Families">
 <eClassifiers xsi:type="ecore:EClass" name="Family">
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="lastName" ordered="false"
 unique="false" lowerBound="1" eType="#/1/String"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="father" ordered="false"
 lowerBound="1" eType="#/0/Member" containment="true" eOpposite="#/0/Member/

familyFather"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="mother" ordered="false"
 lowerBound="1" eType="#/0/Member" containment="true" eOpposite="#/0/Member/

familyMother"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="sons" ordered="false"
 upperBound="-1" eType="#/0/Member" containment="true" eOpposite="#/0/Member/familySon"/

>
 <eStructuralFeatures xsi:type="ecore:EReference" name="daughters" ordered="false"
 upperBound="-1" eType="#/0/Member" containment="true" eOpposite="#/0/Member/

familyDaughter"/>
 </eClassifiers>
</xmi:XMI>

Page 57

XMI (cont’d)

 <eClassifiers xsi:type="ecore:EClass" name="Member">
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="firstName" ordered="false"
 unique="false" lowerBound="1" eType="#/1/String"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="familyFather"

ordered="false"
 eType="#/0/Family" eOpposite="#/0/Family/father"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="familyMother"

ordered="false"
 eType="#/0/Family" eOpposite="#/0/Family/mother"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="familySon"

ordered="false"
 eType="#/0/Family" eOpposite="#/0/Family/sons"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="familyDaughter"

ordered="false"
 eType="#/0/Family" eOpposite="#/0/Family/daughters"/>
 </eClassifiers>
 </ecore:EPackage>

Page 58

XMI (cont’d)

•  Hopefully for you, you do not have to read
XMI...

Page 59

Tools for MDA

•  UML-based tools: Code generation is
available and for some of them, it is possible
to modify the templates
– Poseidon (Gentleware AG), Omondo, Rational

Rose (IBM), etc.
•  Specific MDA tools:

– Commercial:
•  Mia Software (Mia Software), MetaEdit+ (Metacase)

– Open Source:
•  Acceleo, OpenArchitectureWare (retired), Kermeta

(even if it is a MDE tool)

Page 60

MDA in practice

Page 61

Acceleo

Available at: http://www.acceleo.org

Model-to-Text tool
(M2T)

Page 62

Installation

1.  Download All-in-one Eclipse Modeling
Tools (
http://www.eclipse.org/downloads/
packages/eclipse-modeling-tools-
includes-incubating-components/
galileosr1)

2.  Unzip the archive to a directory
3.  Execute Eclipse
4.  Check in File>New you have Eclipse

Modeling Framework and UML 2.1
Diagrams

Page 63

Installation (cont’d)

1.  Go to Help>Install new software
2.  Click on Button Add and this new site:

http://www.acceleo.org/update
3.  Then select the Acceleo site in the combo

Work with
4.  Check the Acceleo proposal below as

shown on Figure

Page 64

Page 65 After clicking Next button

Page 66 Accept the license agreements and Finish

Page 67

Eclipse is updating the platform with Acceleo features

Page 68 Acceleo is now ready for use

Page 69

Acceleo in use

•  Change perspective to the Acceleo one
(the second in the list of Acceleo
perspective)

•  Development following two steps:
1.  Create the metamodel as UML class

diagram
2.  Create the script
3.  Generate the target model

Page 70

Metamodel creation

•  File>New>Acceleo>Generator project

Page 71

Metamodel creation

•  Name your project, here PhoneDirectory
•  Then, create your metamodel via UML 2

plugin

Page 72

Page 73

Page 74

Page 75

Complete the dialog window as follows

Page 76

Rename the file as follows

Page 77

Page 78

Define the model as follows

Page 79
We need to modify the dependencies so as to consider UML diagrams
when generating code

Page 80

Page 81

Page 82

Create an empty generator

Page 83
This template will be filled further

Page 84

We need to associate the model to the template

Page 85

The interface is bugged and we need to click on src to see the template…

Page 86

If template is correctly selected, a marker appears on classes (and elements
that will be considered for generation)

Page 87

Modifies the template as follows

Page 88

File generation

The last stage is generating files, right click
on generator project>Acceleo>Generate
files

Page 89

Here we are…

Page 90

Acceleo

Advantages
•  Easy to use interface
•  Models are manipulated

as UML class diagrams
•  Scripting ease file

generation

Drawbacks
•  This is not a 100%

compliant tool:
–  No distinction between

models and instances
–  Inability to change the

metamodel
–  No transformation rules

•  Documentation is difficult
to find

But it works and this is all we need…
When requirements are low…

Page 91

Labs on Acceleo (MDA)

•  Install Acceleo on your machine
•  Optional (just to get your feet wet)

– Do the example given in previous slides
•  Prepare a metamodel corresponding to a

University (students, lectures, rooms,
teaching staff)

•  Create scripts to generate files
•  Generate files

Page 92

Model-Driven Engineering
(MDE)

Page 93

Introduction

•  MDA proves its usefulness when
generating code directly (this is what we
saw with Acceleo)

•  MDA is a reality in UML commercial and
open source tools: we can define modules
and generate code for a specific platform

•  MDA is unfortunately too narrow and
dedicated to UML

Page 94

Model-Driven Engineering

•  MDE extends MDA so as not to restrict to
UML metamodel and MOF meta-
metamodel

•  MDE keeps the philosophy of MDA but
enlarges it:
– No predefined meta-metamodel
– Metamodel can be defined
– The four modeling layers of OMG really exist
– Transformation rules are used

Page 95

Model-driven Engineering
(cont’d)

What you will consider in MDE:
•  MOF or Ecore
•  Eclipse Modeling Framework
•  M2M via ATL
•  M2T via template engine

Page 96

Ecore

•  Proposed in the context of Eclipse
Modeling Framework (EMF)

•  Another meta-metamodel
•  Strong similarity with MOF except:

– Simpler
– No association between classes, associations

are defined as attributes within classes

Page 97

Ecore

Page 98

Ecore

•  Every concept is prefixed with an ‘E’
•  We find the usual notions of UML class

diagrams:
– Packages with EPackage
– Classes with EClass
– Attributes with EAttribute
– Operations with EOperation
– Associations with EReference

Page 99

Ecore

•  EFactory and EObject are used for the M0
layer: instances

Page 100

Ecore example

Page 101

Page 102

MDE Process

1.  Create the source metamodel via Eclipse
EMF

2.  Generate an editor to create the source
model (instance)

3.  Create the source model
4.  Create the target metamodel
5.  Create the transformation rules
6.  Apply the transformation rules and get the

target model (instance)

We will use this approach in Kermeta

Page 103

The Y development cycle

Y
Business concepts,
Entities -> CIM, PIM

Platform
metamodel

PSM

Code

Page 104

MDE Process in
several flavors

•  Pure MDE Process:
– Source and target metamodels with Ecore or

MOF
– Transformation rules with ATL
– Source and target models as an XMI file
Only three modeling layers in this case (M3,

M2, M0)

Tool: Kermeta

Page 105

MDE Process in
several flavors (cont’d)

•  Extreme Purity:
–  Source and target metamodels with Ecore or

MOF
–  Source and target models with Ecore or MOF
–  Source and target instances with XMI
–  Transformation rules with ATL
The four modeling layers in this approach

Tool: EMF

Page 106

MDE Process in
several flavors (cont’d)

•  Flexible attitude:
– Source and target metamodels with Ecore or

MOF
– Source and target models with Ecore or MOF
– Source and target instances with XMI
– Transformation rules with Java

Tool: Dynamic EMF + Velocity + Java

Page 107

Tools for MDE

•  Kermeta (http://www.kermeta.org)
•  OpenArchitectureWare: retired (

http://openarchitectureware.org)
•  OpenEmbedd (http://openembedd.inria.fr)
•  TopCased (http://www.topcased.org)

Page 108

OpenArchitectureWare

•  Tools proposed around OAW are now part
of Eclipse Modeling tools

•  Retired, tools are now used in Eclipse
EMF

Page 109

OpenEmbedd

•  MDE platform for real-time and embedded
systems

•  Based on Eclipse and Eclipse modeling
tools

•  Strong industrial tool with academic
partners specialist in Model-Driven
Engineering

The different tools used in OpenEmbedd are the ones in
Kermeta and EMF

Page 110

TopCased

•  MDE platform for critical systems
•  Strong support from industry
•  Based on Eclipse (Eclipse RCP, Eclipse

Modeling tools)
•  Specific tools from partners: model

checking, analysis, etc.

The different tools used in OpenEmbedd are the ones in
Kermeta and EMF

Page 111

Page 112

MDE in practice

Page 113

Kermeta

•  MDE platform
•  Based on Eclipse
•  Kermeta = Metamodeling + Behavior

Page 114

Installation

•  Download All-in-one Eclipse Modeling
Tools (
http://www.eclipse.org/downloads/
packages/eclipse-modeling-tools-includes-
incubating-components/galileosr1)

•  Unzip the archive to a directory
•  Execute Eclipse
•  Check in File>New you have Eclipse

Modeling Framework and UML 2.1
Diagrams

Page 115

Installation (cont’d)

•  Go to Help>Install new software
•  Click on Button Add and this new site:

http://www.kermeta.org/update
•  Then select the Kermeta site in the combo

Work with
•  Check the Kermeta proposal below as

shown on Figure

Page 116

Page 117

Page 118

Page 119

Page 120

Page 121

Change the perspective to the Kermeta one

Page 122

Creating the source metamodel

Two possibilities:
– From a file using the Kermeta notation (KM3)
– From an Ecore file

Or you could be more exotic with annotated
Java files, UML class diagrams, or
Rational Rose models

Page 123

Creating from a Kermeta file
Create an empty project from

File>New>Kermeta>New Kermeta Project

Page 124

Page 125

Page 126

Translate this Kermeta file into an Ecore file
It is preferable to use an Ecore for our specific needs

Page 127

Create from an Ecore file

Page 128

Page 129

Page 130

Page 131

Page 132

Page 133

Page 134

Generate the editor for the
model

•  Right click on families.ecore in Project
Explorer>New>EMF Generator Model

Page 135

Page 136

Page 137

Page 138

Give the name of your Ecore
and click on load to see the Next button
enabled

Page 139

Page 140

Right-click on the package
and click on Generate all

The generator model is equivalent to the
Ecore file but is prepared to build an editor

Page 141

After generation, you can find some new projects
in your workspace. A plugin (editor + wizard) is
created for your metamodel

Page 142

Run a new Eclipse from the one you are, and File>New>Project

Page 143

On the project, right click New>Other

Page 144

Page 145

Page 146

Page 147

Page 148

Page 149

Create the target metamodel

Page 150

Create the Ecore model persons

Page 151

Create the metamodel as follows

Generate the generator model
from this metamodel

Then generate all

Page 152

Create the transformation rules

•  File>New>Other>ATL>ATL Project

Be sure to use an ATL
project if you don’t want
to lose time finding the asm file

Page 153

Page 154

Page 155

Page 156

Page 157

Page 158

Page 159

Families2Persons.atl

-- @path Families=/Families2Persons/Families.ecore
-- @path Persons=/Families2Persons/Persons.ecore

module Families2Persons;
create OUT : Persons from IN : Families;

helper context Families!Member def: familyName : String =

 if not self.familyFather.oclIsUndefined() then
 self.familyFather.lastName
 else
 if not self.familyMother.oclIsUndefined() then
 self.familyMother.lastName
 else
 if not self.familySon.oclIsUndefined() then
 self.familySon.lastName
 else
 self.familyDaughter.lastName
 endif
 endif
 endif;

Page 160

Families2Persons.atl

helper context Families!Member def: isFemale() : Boolean =
 if not self.familyMother.oclIsUndefined() then
 true
 else
 if not self.familyDaughter.oclIsUndefined() then
 true
 else
 false
 endif
 endif;

rule Member2Male {
 from
 s : Families!Member (not s.isFemale())
 to
 t : Persons!Male (
 fullName <- s.firstName + ' ' + s.familyName
)

}

Page 161

Families2Persons.atl

rule Member2Female {
 from
 s : Families!Member (s.isFemale())
 to
 t : Persons!Female (
 fullName <- s.firstName + ' ' + s.familyName
)

}

Page 162

Last step!

Families2Persons.asm is the assembler version
of the ATL file for use on the ATL virtual machine

Page 163

Right-click on the ATL file

Page 164

Page 165

Page 166

If you are lucky, you should see this

Another bug: errors are not in Error log tab
but in Console tab...

Page 167

Kermeta

Advantages
•  MDE tool with

metamodeling, modeling
and transformation

Drawbacks
•  Not easy to understand

the Kermeta notation and
OCL

•  Developing from
metamodels to code is
long and painful task

Page 168

Labs on Kermeta (MDE)

•  Install Kermeta
•  Realize all the steps for a domain (Books-

> Publications, your domain)
– Source metamodel
– Source model
– Target metamodel
– Transformation rules

Page 169

Domain-specific Languages
(DSL)

Page 170

Domain-specific Languages
(DSL)

A domain-specific language (DSL) is a

programming or executable specification
language that offers, through appropriate
notations and abstractions, expressive
power focused on, and usually restricted
to, a particular problem domain.

Page 171

Domain-specific Languages
(cont’d)

•  MDA and MDE provide editors to create
metamodels and models, ideal for users
not fluent with computers

•  Developers prefer some programming
approaches

•  Ease reuse by copy and paste

Page 172

Domain-specific Languages
(cont’d)

•  You already know some DSL...

Page 173

Domain-specific Languages
(cont’d)

•  Microsoft Excel macro commands
•  Visual Basic for Applications
•  *nix commands
•  Matlab
•  SQL

Page 174

Domain-specific Languages
(cont’d)

Several alternatives to realize DSLs:
•  The old (geek?) school: use a lexer (lex,

flex) and a parser (yacc, bison) to create a
DSL, use Emacs to use the DSL

•  The fashion way: use a dynamic language
(Smalltalk, Ruby)

•  The model-driven way: use Xtext

Page 175

DSL in practice

Page 176

Xtext

•  Framework for the development of
domain-specific languages

•  Fully benefits of Eclipse
– Syntax coloring
– Code completion
– Code templates
– Eclipse perspectives and views

•  Model to Text tool

Page 177

Create a project
File>New>Xtext>Xtext Project

Page 178

CV
CV

Page 179

Your grammar

Code generator

Editor, Code completion

Page 180

The grammar for your DSL, looks like a model...

Page 181

Book DSL

•  Libraries
–  Contains Books

•  Books
–  Title
–  One or more Authors
–  One or more Chapters

•  Authors
–  First Name, Last Name, Date of Birth

•  Chapters
–  Number
–  Number of Pages
–  Text

Page 182

Here is our grammar in Xtext
Terminals between quote characters
Nonterminals with a ‘;’

Page 183

Run this file to create the language generator

Then selects the project, and
execute it
 as an Eclipse application

Page 184

In this second Eclipse, create a new project File>New>General>Project

Page 185

Be sure to suffix your file with
the extension you used in the project

Page 186

Code completion

Syntax coloring

Page 187

The current grammar was limited, it is difficult to enter data,
Update the grammar as follows

Page 188

One final step

•  Xtext approach:
– Code generating from the model defined

before.
•  Still incomplete in Xtext

Page 189

Labs in Xtext (DSL)

•  Install Xtext
•  Develop a DSL for publications (like Bibtex

but simplify the metamodel)

Page 190

Conclusion

•  Model-driven Architecture is a reality in
industry

•  Developers have to be trained to work on
Model-driven Engineering

•  Several tools available:
– MDA
– MDE
– M2M
– M2T

Page 191

Thanks a lot for your attention

Page 192

