
 

  

Spray Computers: Frontiers of Self-Organization for 
Pervasive Computing 

 
Marco Mamei, Franco Zambonelli 

Dipartimento di Scienze e Metodi dell�Ingegneria 
Università di Modena e Reggio Emilia � Via Allegri 13 � Reggio Emilia � ITALY 

{ mamei.marco, franco.zambonelli}@unimo.it 
 
 

Abstract 
We envision a future in which clouds of microcomputers 
can be sprayed in an environment to provide, by 
spontaneously networking with each other, an endlessly 
range of futuristic applications. However, beside the 
vision, spraying may also act as a powerful metaphor 
for a range of other scenarios that are already under 
formation, from ad-hoc networks of embedded and 
mobile devices to worldwide distributed computing. 
After having detailed the different spray computers 
scenarios and their applications, this paper discusses 
the issues related to the design and development of 
spray computer applications, issues which call for novel 
approaches exploiting self-organization and emergent 
behaviors as first-class tools. Finally, this paper 
presents the key research efforts being taken in the area 
and attempt at defining a rough research agenda.  

Keywords: Spray Computers, Bottom-up Software 
Engineering, Self-organization, Emergent Behaviors. 

1. Introduction 

With the MEMS revolution in full swing, micro-sensors 
are now following manufacturing curves that are at least 
related to Moore's Law [Pis00]. This trend, when 
combined with both the push for low power 
communication and computation devices and for the 
ubiquitous provisioning of data and services, pave the 
way for the spray computers revolution. 

It is not hard to envision a future in which network of 
micro computers will be literally sold as spray cans, to be 
sprayed in an environment or on specific artifacts to 
enrich them with functionalities that, as of today, may 
appear futuristic and visionary [Abe00, Nag03, ZamM02, 
Pis03]. The number of potential applications of the 
scenario is endless, ranging from smart and invisible 
clothes, intelligent interactive environments, self-
assembly materials and self-repairing artifacts.  

However, the vision of spray computers may also act 
as a powerful metaphor for a range of other scenarios that 
are already under formation. These include distributed 
applications in embedded, possibly mobile, ad hoc 
networks [ZamP03], as well as distributed service- and 
data-oriented activities on the Internet [CabLZ02, 
RowD01, Rat01]. In fact, besides the different physical 
scale of the components involved and of their interactions 
(from micro-computers interacting within networks 
extending across a few meters, to Internet hosts 
interacting at a world-wide scale), all of these types of 
spray computer networks raise the same challenges as far 
as development and deployment of applications is 
involved, calling for radically novel approaches to 
distributed systems development and management.  

On the one hand, to avoid the unaffordable efforts 
related to the placement, configuration, and maintenance 
of such systems, there is the need of approaches enabling 
of deploying components without any a priori layout 
effort, and letting components to self-organize their 
application activities and self-retune their overall 
behavior depending on specific contingencies (e.g., 
localized faults and environmental changes) [KepC03]. 
On the other hand, the autonomous and decentralized 
nature of the activities in such scenarios, together with 
the possibly unpredictable dynamics of the operating 
environments, is likely to make those systems exhibit 
unexpected, "emergent" behaviors - as recent 
observations in several types of decentralized networks 
(i.e., the Internet, the Web, as well as Gnutella) suggest. 
Therefore, there is also the need of appropriate 
methodologies to predict and control the emergence of 
such behaviors and, when possible, offensively exploit 
them for the achievement of otherwise impossibly 
complex distributed tasks [ParBS02, ZamP03, 
ZamMR03].  

This paper aims at exploring the above issues with a 
strong application-orientation and with a touch of inter-
disciplinarity (by analyzing potentially-related research 
findings in different areas). To this end, the final paper 



 

  2

will be organized as follow: Section 2 will detail our 
vision about spray computers, starting from the micro-
scale (i.e., literally sprayable computers), to the medium 
scale (smart artifacts and MANETs), up to the macro-
scale (wide-area networks). Section 3 will present and 
discuss the major issues arising in the exploiting self-
organization for the design and development of 
applications for spray computers. Section 4 will briefly 
present a few representative research efforts being taken 
in this area. Section 5 concludes the paper by attempting 
to define a roadmap of activities in the area of spray 
computers.  

2. Spray Computers and Applications 

The concept of spray computers will soon pervade the 
ICT scenarios at every scale and at every level. In the 
following we will briefly survey our idea of future 
computer-based systems from the micro-scale (literally 
spray computers), to the medium-scale (handheld and 
wearable computers) to the global scale (Internet and 
Web computing).  

1.1 The Micro Scale 
As proved in the context of the Smart Dust project at 
Berkeley [BerG97, KahKP00], it is already possible to 
produce fully-fledged computer-based systems smaller 
than few cm3, and even much smaller ones will be 
produced in the next few years. Such computers, which 
can be enriched with communication capabilities (radio 
or optical), local sensing (e.g., optical, thermal, or 
inertial) and local effecting (e.g., optical and mechanical) 
capabilities, are the basic ingredients of our spray 
computers vision.  

Spray computers, as we imagine them, are clouds of 
sub-millimeter-scale microcomputers, to be deployed in 
an environment or onto specific artifacts via a spraying or 
a painting process. Once deployed, such components will 
spontaneously network with each other and will 
coordinate their actions (i.e., local sensing and effecting) 
to provide specific �smart� functionalities. We imagine it 
will be possible, say in 2020, to go to the local store and 
there buy, for a few dollars, a �pipe repairing� spray, 
made up of a cloud of MEMS microcomputers capable of 
navigating in a pipeline, recognizing the presence of 
holes, and self-assembling with each other so as perfectly 
repair the pipe. Similarly, we could imagine a spray to 
transform our everyday desk into an active one, capable 
of recognizing the positions and characteristics of objects 
placed on it and letting them meaningfully interact.  

Another peculiar application we envision is the �spray 
of invisibility� (described in [ZamM02]): a spray of 
micro devices capable of receiving and re-transmitting 

light emissions in a directional way, and capable of 
interacting with each other via short-range wireless 
communications. When an object is covered by a layer of 
such spray, the emissions of the devices make external 
observers perceive exactly the same light configurations 
that they would have perceived if there were nothing in 
between. In fact sensors on the rear side of the object can 
receive such configurations and, via distributed 
coordination, can communicate them to emitters on the 
observer�s side to be retransmitted. Other types of 
application one could envision include any type of self-
assembly artifact [Nag03], there included thing like 
Terminator-2, the nano-swarms of Michael Chricton�s 
novel �Prey� [Chr02], and MEMS-based artificial 
immune systems and drugs [Pis03].  

Whatever the applications one envision, the key 
characteristics that will distinguish spray computers 
applications from traditional distributed computing 
systems are not � as one could at first think � the scale at 
which processes take place and the fact that processes are 
likely to be situated in a physical environment and have 
to strongly interact with the physical world. After all: (i) 
the fact that a process executed on a micro device rather 
than on a high-end computer does not change it basic 
nature; (ii) distributed computing systems traditionally 
have to carry on their activities while being situated in a 
computational environment and have to interact with it. 
Instead, what we think strongly distinguish spray 
computers are the facts that: 
• their computational activities take place in a network 

whose structure derives from an almost random 
deployment process (as a spraying process is), and 
that is likely to change over time with unpredictable 
dynamics (due to environmental contingencies, failure 
of components, or simply mobility of components); 

• the number of (hardware and, consequently, software) 
components involved in a distributed application is 
dramatically high and hardly controllable. It is neither 
possible to enforce a strict configuration of software 
components nor to control their behavior during 
execution at a fine-grained level.  

Both the above characteristics compulsory call for 
execution models in which applications are made capable 
of self-configuring and self-tuning their activities in a 
spontaneous and unsupervised way, adapting to whatever 
network structure and surviving network dynamics.  

2.1. The Medium Scale 
Besides micro devices to be literally sprayed, spray 
computers can also act as a power metaphor for 
describing the key characteristics of the emerging 
scenarios of ubiquitous and pervasive computing, as 
enabled by handheld, wearable, and embedded, 
networked computing systems.  



 

  3

We already typically carry on two or three computers 
(i.e., a cell phone, a laptop, and possibly a PDA). Also, 
our houses our already populated by a variety of 
microprocessor based furniture (e.g. TVs, phones, etc.). 
However, at the moment, the networking capabilities of 
these computer-based systems are under-exploited. Very 
soon, our world will be densely populated by personal-
area networks (e.g., the ensemble of Bluetooth enabled 
interacting computer-based components we could carry 
on or we could find in our cars), local ad-hoc networks of 
handheld computers (e.g., networks of interacting PDAs 
carried by a team that have to directly interact and 
coordinate with each other in an open space), and 
furniture networks (e.g., Web-enabled fridges and ovens 
able to interact with each other and effectively support 
our cooking activities in a coordinated way).  

What we want to emphasize here is that the above 
types of networks, although being formed by different 
types of computer-based devices (let�s say, medium-end 
computers) and at different physical scales than literally 
spray computers, shares with them the same issues as far 
as the development and management of distributed 
applications is concerned. In fact: 
• most of these networks will be wireless, with 

structures dynamically varying depending on the 
relatives positions of devices, all of which 
intrinsically mobile (the persons in an ad-hoc network 
can move around in an environment and the position 
of home furniture can changed on needs) and 
characterized by the dynamic arrival dismissing of 
nodes (a PDA running out of power or a new home 
furniture being bought).  

• even if technically possible, it is simply not 
commercially and economically viable to consider 
deploying applications that would require explicit 
configuration and explicit tuning to meet the 
amorphous and dynamic nature of the networks in 
which applications will be expected to operate. 

Also in these cases, new approaches are needed to 
develop applications as if they were to execute on a 
network of spray computers. 

1.2 The Global Scale 
Also in the case of macro-scale networks made up of 
high-end computer systems, i.e., the Internet and the 
Web, the dramatic growth of these networks and of the 
information and traffic to be managed, together with the 
increasing request for ubiquitous connectivity and the 
peculiar structures exhibited by such networks [AlbJB00, 
RipIF02], have recently raised researchers� attention to 
the need of novel approaches to distributed systems 
management.  

Traditional approaches to management, requiring 
human configuration efforts and supervision, fall shorts 

when the number of nodes in the network (or the number 
of interrelated services and links in the Web) grows in a 
fully decentralized way, and when the presence of the 
nodes in a network is of an intrinsically ephemeral nature, 
as it is the case of laptops and, with regard to the Web, of 
several non-commercial data and services. In particular, 
the need to access data and services according to a 
variety of patterns and independently of the 
availability/location of specific servers calls for P2P 
approaches to distributed application development 
centered on the idea of overlay networks. The idea 
(promoted by first generation P2P systems such as 
Gnutella [RipIF02], and later improved by second-
generation P2P systems such as Chord [Sto01], Pastry 
[RowD01], and CAN [Rat01]) is to have data and 
services organized in sorts of spontaneously organized 
virtual networks of acquaintances. The key assumption is 
that the allocation of software components in need to 
interact with each other (think, e.g., at file-sharing 
applications) can be intrinsically amorphous and 
dynamic, i.e., composed by an unpredictable number of 
possibly unknown peers placed almost anywhere in the 
physical network, as if it were a network of spray 
components. Thus, instead of promoting strict control 
over the execution of single software components and of 
their interactions, the idea of overlay network is to 
promote and support adaptive organization and 
maintenance of a structured network of logical 
relationships among components, to abstract from the 
physical �sprayed� nature of the actual network and 
survive events such the arrival of new nodes or the 
dismissing of some nodes.  

Overlay networks are currently the most widely 
investigated approach to promote unsupervised and 
adaptive approach to distributed application management, 
and are leveraging a variety of useful applications 
facilitating access to (and coordination over) a variety of 
world-wide distributed data and services, they may not be 
necessarily the only and best approach. In any case, the 
great deal of attention towards self-organizing overlay 
network is the body of evidence of the need of novel 
approaches to distributed application development. 

As a final note, we emphasize that, although the 
micro, medium, and global scale represent almost 
separated worlds, this will not be the case in the near 
future. All the above systems will probably be in the near 
future part of a mega decentralized network, including 
traditional Internet nodes, smart computer-enriched 
objects and furniture, networks of embedded and 
dispersed micro-sensors. For instance, the IPv6 
addressing scheme will make it possibly to assign an 
Internet address to every cubic millimeter in the earth 
surface [ImiG00], thus opening the possibility for each 



 

  4

and every computer-based component to become part of 
a single worldwide network. 

3. Programming Spray Computers 

Programming  a spray computer means to engineer a 
prespecified, coherent and useful behavior from the 
cooperation of an immense number of unreliable parts 
interconnected in unknown, irregular, and time-varying 
ways. 

This translates in devising control methodologies and 
algorithms to let the sprayed computing devices to auto-
organize their interaction patterns: computing devices 
have to start working together without the presence of 
any a-priori global supervisor or centralized facility. 

This problem is further exacerbated by the fact that 
both technological reasons and scalability issues call for a 
strictly local perception of the environment and for only 
strictly local interactions between components. 
Moreover, mobility and environment dynamism, on the 
one hand, and network and components� failures, on the 
other hand, call for even more robust and fault-tolerant 
approaches. 

Unfortunately, we still do not know how to program 
and manage these kinds of systems. The main conceptual 
difficulty is that we have direct-engineered control only 
on component local activities, while the application task 
is often expressed at the global scale (e.g. in sensor 
network or modular robot) [SheS02, BonDT99]. 
Bridging the gap between local and global activities is 
not nearly easy, but it is although possible: distributed 
algorithms for modular robots have been proposed and 
successfully verified, routing protocols is MANET (in 
which devices coordinate to let packets flow from sources 
to destinations) have been already widely used. 

The problem is still that the above successful 
approaches are tailored ad-hoc to a specific application 
domain and it is very difficult to generalize them to other 
scenarios.  

There is a great need for general, widely applicable, 
techniques, engineering methodologies, middleware and 
APIs for this kind of systems [Abe00, ZamP03]. General 
and abstract solutions would have an impact in all the 
above scenarios (micro, medium and global scale), 
because the interaction patterns and control flows of 
those systems are similar and the underlying principles 
the same. 

To face this situation, several researchers turned their 
attention to engineering approaches that take inspiration 
from natural systems already providing robustness and 
performance despite uncertainty and environment 
dynamism e.g. the embryo�s development, the immune 
system and the collective behavior of social animals, like 
ants. Robustness in these systems arises from the fact that 

they have the ability to achieve its goal even when some 
individuals die or fail to perform their task; flexibility 
arises from the fact that the patterns of interactions 
between the individuals are not fixed by contract and can 
be instead dynamically re-shaped to self-adapt to 
changing environments. Following other authors 
[BonDT99], we refer to those kind of systems as swarm 
intelligent systems, to stress the fact that their features 
and capabilities are not embedded in the single 
components of the system, but emerge by the coordinated 
activities of a swarm of individuals. 

In the following of this section, we introduce two 
approaches, weaved in the swarm intelligence 
philosophy, that in our opinion are the embryos of a 
radically new engineering methodology to deal with 
spray computers. The first � direct engineering � aims at 
devising control algorithms from scratch: adopting 
standard engineering principles (modularity, 
composition, etc.) together with low-level, swarm-
inspired interaction mechanisms (e.g. ants� pheromone 
communication). The second � reverse engineering � 
aims at devising control algorithms by trying to recreate 
in the spray computer those behaviors arising in systems 
with similar features (e.g. cellular automata) that appear 
to be useful in the targeted application scenario.    

 
3.1. Direct Engineering via Self Organization 
The key idea of this approach is to combine standard 
engineering principles together with low-level, swarm-
inspired interaction mechanisms. 

In this approach, the high-level cooperation 
mechanism are formalized by means of programming 
languages or middleware-level APIs, with explicit 
primitives, means of combination, and means of 
abstraction, thus providing a framework for the design 
and analysis of systems. These general high-level 
operations are then automatically compiled into a series 
of low-level swarm-inspired interaction patterns that 
enable the sprayed computers to perform the cooperation 
tasks in a robust and effective way. 

The spray computer is thus programmed with 
abstractions that are suitable to consider it as a whole and 
the single low-level code executed by the particles is 
invisible form the programmer point of view. 

The power of this approach is that it allows us to take 
advantage of traditional computer science techniques for 
managing complexity, while eventually relying on 
biological models, like gradient diffusion or stigmergy, 
for achieving robustness at the local level. 

This has many advantages: (1) It is possible to rely on 
results from other disciplines to determine the classes of 
coordination patterns that can be formed (2) The 
primitives themselves can be made robust by relying on 



 

  5

mechanisms inspired by biological systems (3) The 
analysis of a complex system becomes tractable because 
it is built in understood ways from smaller parts (4) The 
compiler makes it possible to easily specify complex 
behavior. 

Let us clarify the above procedure with an example; in 
[Nag03] a system providing a language for specifying 
shape formation on an intelligent reconfigurable sheet 
composed of thousands of identically-programmed but 
locally-interacting flexible agents is presented. The 
system uses a novel approach: the desired global shape is 
specified at an �abstract� level as a folding construction 
on a continuous sheet of paper, which is then 
automatically compiled to produce the program run by 
the identically-programmed agents (see figure 1). All 
agent behavior is constructed from a set of five general-
purpose robust primitives, inspired by epithelial cell 
morphogenesis and cell differentiation in multicellular 
organisms such as the Drosophilae. The global-to-local 
compilation is achieved by composing these primitive 
building blocks in a principled way, using a set of 
geometry axioms taken from paper-folding mathematics. 
The resulting process is versatile and reliable in the face 
of random agent distributions, varying numbers of agents 
and random agent death, without relying on global 
coordinates, a global clock, or centralized control. 

 

 
Fig 1. Spray computer direct engineering: a 
global shape, described in terms of a folding 
construction, is compiled into a set of low-level, 
swarm inspired interaction patterns executed by 
the sprayed particles. 

 
3.2. Reverse Engineering of Emergent 

Behaviors 
This approach aims at recreating in the spray computer 
those (emergent) behaviors arising in systems with 
similar features that appear to be useful in the targeted 
application scenario. Simulations will be the workhorse 
of this approach. Simulations of spray computer systems 
will not only provide a framework on which to test the 

functionalities of a developed systems, but they could be 
fully integrated in the development process. Engineering 
spray computer applications is difficult because the 
collective behaviors of the particles can hardly be 
foreseen, but can be typically analyzed only a-posteriori 
in a simulated environment. In this way, simulations 
provide a strong feedback and actually become the 
principal tool of the modeling phase.     

Following this approach, the modeling phase consists 
in verifying via simulations the correctness of an 
idealized model suitable, but not necessarily close, to the 
target IT scenario (this model can be for example a 
biological or social model), then to refine the model and 
the simulations (that also realize a prototype 
implementation of the model) to rend both enough similar 
to the actual IT scenario to be taken in consideration as a 
candidate solution.  

Let us clarify the above procedure with an example: 
asynchronous cellular automata can be regarded as 
minimalist spray computer systems and for this reason the 
patterns emerging in cellular automata are expected to 
arise also in deployed spray computer systems. Such 
emerging patterns can be of use in different application 
scenarios: for example, to differentiate the state of the 
spray computer cells, or to let them assume a 
homogeneous coordinated state. 

Starting form these considerations, a control algorithm 
for a spray computer system could be based on applying 
to the sprayed particles the interaction rules of a suitable 
cellular automaton, eventually trying to control the 
formation of proper patterns. A similar control procedure 
has been  exploited in cellular automata in which the 
emergence of specific spatial patterns has been induced 
by external stimuli capable of perturbing the cellular 
automata state [ZamMR03]. 

 

  
 

 
Fig 2. External stimuli controlling the emergence 
of regular patterns on an asynchronous cellular 
automaton. 



 

  6

4. Relevant Research Projects 

Several projects around the world are starting to 
recognize the above needs and are facing issues related, 
to different extent, to the engineering of spray computers 
systems and applications. Without the ambition to be 
exhaustive, we present here a few relevant threads of 
activities and discuss their shortcomings. 

With regard to the micro-scale, the Amorphous 
Computing project at MIT focuses on the problem of 
identifying suitable models for programming applications 
over amorphous networks of �particles�, for the sake of 
enabling the emergence of coherent patterns of activity in 
the network [But02, Nag03]. The particles constituting an 
amorphous computer have the basic capabilities of 
locally propagating sorts of computational fields in the 
network, and to locally sense and react to such fields. In 
particular, particles can transfer an activity state towards 
directions described by fields� gradients, so as to make 
coordinated patterns of activities emerge in the system 
independently of the specific structure of the network.  So 
far, the Amorphous computing project has defined a 
simple yet effective language for programming particles 
on the basis of computational fields. On this base, it has 
been shown how it is possible to exploit such a language 
to let the particles self-organize a coordinate systems and 
self-determine their position in it, and how it is possible 
to let a variety of global patterns getting-organized in a 
system from local interactions. What the project has still 
not addressed are the problems related to mobile and 
ephemeral particles: the network is considered static, and 
the relative position of particles is considered fixed. Also, 
the project so far has focused on very simple particles as 
finite-state machine with a limited number of states � not 
much different from cellular automata cells. The 
effectiveness of their model and programming language 
in programming systems of complex particles is still to be 
verified. 

Besides amorphous computers, most of the researches 
in the area of micro-scale spray computers (i.e., literally 
spray computers) are performed in the context of the 
�sensor networks� research community, whose most 
representative research group is headed at UCLA 
[Est02]. There, the key issues being investigated relate to 
the identification of effective algorithms and tools to 
perform distributed monitoring activities by a cloud of 
distributed sensors in a physical environment (tracing the 
position and movement of an object, determining the 
occurrence of specific conditions, reporting sensed data 
back in an efficient way). These researches are indeed 
providing good insights on the theme of self-organization 
and are leading to some very interesting results. 
Techniques for self-localization, self-synchronization of 
activities, adaptive data distribution, all of which of 

primary importance for any type of spray computers, 
have been widely investigated. Still, we feel these 
researches are somewhat limited by two main factors. 
First, the accent on �sensing� tends to disregard the 
�actuating� factor � potential source of a wide range of 
interesting applications � and the algorithms and tools 
that could be of use to perform specific actuation works. 
Second, most research work is being devoted to the 
definition of �power-aware� and �power-effective� 
algorithms for distributed sensing (where distributed 
sensors tends to self-organize their activities so as to 
minimize resource consumption). This is motivated by 
the current impossibility of providing such small 
computer systems with enough battery power to last for a 
long time. However, it is the opinion of the authors that 
short-life batteries and the consequent need of power-
aware computing models are a current contingent 
problem, rather than a basic research issues likely to have 
long-term impact. Scavenging power from sunlight, 
vibration, thermal gradients, and background RF, next 
generation of microcomputers will be fully autonomous 
in terms of power supply, and will be capable of long-
lasting, if not ever-lasting, activity. As also Kris Pister 
(the inventor of the Smart Dust technology) envision 
[Pis00, Pis03], computer-based sensors and actuators, 
being entirely solid state and with no natural decay 
processes, may well survive the human race. 

Coming the medium scale, as far as we can see most 
of the researches are focusing either on routing 
algorithms for mobile ad-hoc networks of handheld 
computers [Bro98] or on the definition of effective user-
level ubiquitous environments [Rom02, HesC03]. 
Researches on routing algorithms for mobile networks 
share several common issues with researches on 
algorithms for data distribution on sensor networks. In 
our opinion, these works are, again, too often focused on 
power and resources limitation problems and mostly 
disregard higher-level issues such as coordination of 
distributed behaviors. Researches on ubiquitous 
computing environments mostly focus on achieving 
dynamic interoperability of existing application-level 
components and of smart-artifact and pervasive 
computing devices. For instance, the Gaia system 
developed at PARC [Rom02], defines an architecture 
based on �active� interaction spaces, as a reification of a 
specific real-world environment (e.g., a meeting room), 
where pre-existing (and pre-programmed) devices and 
user-level software components can dynamically enter, 
leave and interoperate dynamically with each other 
according to specific patterns specified as part of the 
active environment. Although such an approach is very 
important to organize user-level activities and their 
interactions with a smart environment, neither Gaia nor 
most of the other proposals in this direction has 



 

  7

something to say on the issue of designing, developing, 
and controlling self-organizing coordinated distributed 
applications.  

As far as the global scale is involved, most research on 
adaptive and unsupervised computing focus, as we have 
already stated, on the key idea of self-organizing overlay 
networks for P2P computing. However, we do not think 
this is the best approach. In fact, building and 
maintaining globally coherent overlay networks at a 
worldwide scale may be very costly. Thus, despite the 
simulation on small-scale systems show the feasibility of 
the approach, it is not very clear how this could scale to 
millions of nodes. In addition, although most of the 
proposals for overlay network prove their effectiveness in 
re-organizing a coherent structure upon dynamic changes 
in the structure, such studies are typically performed by 
testing the sequential arrival/dismissing of single nodes, 
and it is not clear if higher degree of networks dynamics 
(with concurrent arrivals/dismissing of nodes) would be 
sustained equally well. In our opinions, P2P systems 
based on overlay networks are being of great help to 
understand the basic property of dynamic networks and 
the basic requirements for adaptive applications, although 
next generation P2P should better rely on more flexible 
and light-weight approaches.  For instance, approaches 
based on artificial ants [BabMM02, BonDT99, BraE02, 
MenT03] and virtual computational fields [MamZL03, 
BanMS02] appear very promising. As an example of an 
approach based on artificial ants, Anthill [BabMM02] 
support the design and development of adaptive peer-to-
peer applications by relying on distributed mobile 
components (�ants�) that can travel and can indirectly 
interact and cooperate with each other by leaving and 
retrieving bunches of information (to act as synthetic 
pheromones) in the visited hosts. The key objective of 
anthill is to build robust and adaptive networks of peer-
to-peer services by exploiting the capabilities of ants to 
re-organize their activity patterns accordingly to the 
changes in the network structure. As an example of an 
approach based on computational fields, TOTA (Tuples 
On The Air) [MamZL03] relies on spatially distributed 
tuples for both supporting adaptive and uncoupled 
interactions between agents, and context-awareness. 
Agents can inject these tuples in the network, to make 
available some kind of contextual information and to 
interact with other agents. Tuples are propagated by the 
middleware, on the basis of application specific patterns, 
defining sorts of �computational fields�, and their 
intended shape is maintained despite network dynamics, 
such as topological reconfigurations. Agents can locally 
�sense� these fields and can rely on them for both 
acquiring contextual information and carrying on 
distributed self-organizing coordination activities. 
However, the generality of this approach in supporting 

the design and development of a variety of applications 
and their power in supporting very large-scale 
applications for highly dynamic networks is still to be 
proved. 

Whether the micro, medium, or global scale is 
involved, most of the researches so far focus on direct 
engineering approaches to self-organization. With the 
notable exception of ant-based system like Anthill, a 
coherent global behavior is always achieved by direct 
design of algorithms that can provably lead to the desired 
global behavior. Little or none is said about the 
possibility of having a global systems behavior arise from 
�emergence�, that as a complex results of simple rules 
attracting a systems (i.e., its patterns of activities) 
towards a specific configuration. Emergent behaviors in 
complex distributed systems have been mostly studied in 
terms of structural properties (e.g., the scale-free 
structures of networks such as Gnutella [RipIF02] and the 
Web [AlbBJ00, Bar02]). However, as far as spray 
computers are involved, their dynamic behavior (i.e., the 
evolution of their patterns of activities) is of possibly 
higher interest. Our research group has performed an 
interesting set of experiments with a new class of cellular 
automata  [ZamMR03] for which the external 
environment can somehow perturb the natural evolution 
of the cells. We have observed that stable macro-level 
global structures emerge from local interactions among 
cells. Since perturbed cellular automata express 
characteristics strongly resembling those of spray 
computer systems, we expect that similar sorts of macro-
level behaviors are likely to emerge and need to be 
studied, controlled, and possibly fruitfully exploited (e.g., 
the emergence of global structures from local interactions 
can be effectively exploited to achieve globally 
coordinated patterns of activity at low cost). A 
preliminary set of experiments reporting two ways of 
indirectly controlling the behavior of dissipative cellular 
automata are reported and discussed w.r.t. the possibility 
of applying similar sort of indirect control on large spray 
computer systems. 

5. Research Agenda 

In this section we will try to sketch out a rough research 
agenda for what we believe are the key challenges to be 
faced in the area of self-organization for the design, 
development, and control, of spray computer 
applications. 

First of all, we think that researches in this area rely 
on a deep understanding of the global behavior of 
spatially distributed systems of autonomous and 
interacting components, in any area. This could be used 
to exploit self-organization principles both offensively 
(i.e., to use them so as to achieve in a simple way 



 

  8

globally coordinated behaviors) and defensively (i.e., to 
prevent the potential emergence of possibly dangerous 
self-organizing behaviors). Both cases may requires the 
study of mechanisms and tools to somehow direct and 
engineering such systems in a decentralized way, so as to 
enforce some sorts of control over these systems despite 
the impossibility of controlling them in their full. As 
previously anticipated, some recent approaches already 
take inspiration from phenomena of self-organization in 
real-world systems to defines adaptive and reliable 
solutions to specific contingent problems (e.g., ant-
inspired algorithms and coordination based on 
computational fields). Currently underestimated 
phenomena occurring in other types of spatially 
distributed systems of autonomous components (e.g., 
macro-ecology patterns of population distribution and 
biodiversity, physics of granular media, emergence of 
synchronization, morphogenesis) are worth to be 
explored too. Also, more simulation work to possibly 
predict what types of behaviors the emergent scenarios of 
spray computers will exhibit will be compulsory. 

Once the above understanding will be quite assessed, 
we think there will be need to define a general purpose 
programming model for designing and deploying 
applications in such dynamic networks of spray 
computers, together with the development of associated 
middleware infrastructure and tools. One very ambitious 
objective could be for such a model to enable people to 
program, deploy, and control self-organizing and 
adaptive distributed applications (exploiting both direct 
and reverse engineering approaches) with a minimal 
background knowledge � the same as a undergraduate 
students can currently develop excellent distributed Web-
based Java applications � and independently of the 
specific application scenario, sensor networks rather than 
wide-area distributed applications � the same as an 
undergraduate student can easily and with minimal efforts 
adapt its applications for execution on both a Linux 
workstation and a Cellular phone. The definition of such 
a model will clearly require the identification of a 
minimal set of abstractions enabling the modeling of 
salient characteristics of spray computers and their 
operational environments. 

Eventually, all the above researches will definitely 
increase our understanding on the potentials of spray 
computers at any scale, and will likely cause a range of 
new application areas to come to the fore. For instance, 
systems such as worldwide file sharing and artifacts like 
the cloak of invisibility could have simply never been 
conceived a few years ago. The new software and 
hardware technology will call also for visionary 
application-oriented thinkers, to unfold in full the newly 
achieved application potentials. 

As a final note, we also want to emphasize that the 

widespread and pervasive diffusion of self-organizing 
distributed computing systems to which we will assist in 
the next few years will not come without dangers. Even 
without referring to the (scientifically improbable) 
catastrophic scenarios depicted by Michael Chricton, 
more pragmatic problems will have to be faced such as 
pollution due to (literally) spray computers being 
dispersed in the environment and garbage collection of 
obsolete spray computer software.   

  
References 
[Abe00] H. Abelson, D. Allen, D. Coore, C. Hanson, G. 

Homsy, T. Knight, R. Nagpal, E. Rauch, G. Sussman 
and R. Weiss, �Amorphous Computing�, 
Communications of the ACM, 43(5), May 2000. 

[AlbJB00]  R. Albert, H. Jeong, A. Barabasi, �Error 
and Attack Tolerance of Complex Networks�, Nature, 
406:378-382, 27 July 2000. 

[BabMM02]  O. Babaoglu, H. Meling, A. Montresor, �Anthill: 
A Framework for the Development of Agent-Based 
Peer-to-Peer Systems�, 22nd International Conference 
on Distributed Computing Systems, IEEE CS Press, 
Vienna (A), June 2002. 

[BanMS02] S. Bandini, S. Manzoni, C. Simone, �Space 
Abstractions for Situated Multiagent Systems�, 1st 
International Joint Conference on Autonomous 
Agents and Multiagent Systems, Bologna (I),  ACM 
Press, pp. 1183-1190, July 2002. 

[Bar02] L. Barabasi, �Linked�, Perseus Press, 2002. 
[BerG97]  A. A. Berlin, K. J. Gabriel, �Distributed 

MEMS: New Challenges for Computation�, IEEE 
Computing in Science and Engineering, Vol. 4, No. 1, 
Jan.-March. 1997, pp. 12-16. 

[BonDT99] E. Bonabeau, M. Dorigo, G. Theraulaz, 
�Swarm Intelligence�, Oxford University Press, 1999. 

[BraE02] D. Braginsky, D. Estrin, �Rumor Routing Algorithm 
For Sensor Networks�, 1ST Workshop on Sensor 
Networks and Applications (WSNA), Sept. 2002. 

[Bro98] J. Broch, D. Maltz, D. Johnson, Y. Hu, J. Jetcheva, �A 
Perfomance Comparison of Multi-Hop Wireless Ad Hoc 
Network Routing Protocols�, ACM/IEEE Conference on 
Mobile Computing and Networking, ACM Press, Dallas 
(TX), Oct. 1998. 

[But02] W. Butera, �Programming a Paintable Computer�, 
PhD Thesis, MIT Media Lab, Feb. 2002. 

[CabLZ02] G. Cabri, L. Leonardi, F. Zambonelli, 
�Engineering Mobile Agent Applications via Context-
Dependent Coordination�, IEEE Transactions on 
Software Engineering, 28(11):1040:1058, Nov. 2002. 

[Chr02]  M. Chricton, �Prey: a Novel�, HarperCollins, 2002. 
[Est02] D. Estrin, D. Culler, K. Pister, G. Sukjatme, 

�Connecting the Physical World with Pervasive 
Networks�, IEEE Pervasive Computing, 1(1):59-69, Jan. 
2002. 

[HesC03] C. K. Hess, R. H. Campbell, �A Context-



 

  9

Aware Data Management Systems for Ubiquitous 
Computing Applications�, 23rd International Conference 
on Distributed Computing Systems, IEEE CS Press, 
Providence (RI), June 2003. 

[ImiG00]  T. Imielinski, S. Goel, �Dataspace - 
querying and monitoring deeply networked collections in 
physical space�, IEEE Personal Communications 
Magazine, October 2000, pp. 4-9. 

[KahKP00]  J. M Kahn, R. H. Katz, K. S. J. Pister, 
�Emerging Challenges: Mobile Networking for Smart 
Dust�, Journal of Communications and Networks, 
2(3):188-196, Sept. 2000. 

[KepC03] J. Kephart, D. M. Chess, "The Vision of 
Autonomic Computing", IEEE Computer, 36(1):41-50, 
Jan. 2003. 

[MamZL03] M. Mamei, F. Zambonelli, L. Leonardi, 
�Distributed Motion Coordination with Co-Fields: A Case 
Study in Distributed Traffic Management�, 6th IEEE 
Symposium on Autonomous Decentralized systems, IEEE 
CS Press, Pisa (I), April 2003. 

[MenT03] R. Menezes, R. Tolksdorf, �SwarmLinda: a 
New Approach to Scalable Linda Systems based on 
Swarms�, 16th ACM Symposium on Applied 
Computing, Melbourne (FL), March 2003. 

[Nag03] R. Nagpal, A. Kondacs, C. Chang, �Programming 
Methodology for Biologically-Inspired Self-
Assembling Systems�, AAAI Spring Symposium on 
Computational Synthesis: From Basic Building Blocks 
to High Level Functionality, March 2003. 

[ParBS02] V. Parunak, S. Bruekner, J. Sauter, 
"ERIM�s Approach to Fine-Grained Agents", 
NASA/JPL Workshop on Radical Agent Concepts, 
Greenbelt (MD), Jan. 2002. 

[Pis00] K. Pister, �On the Limits and Applicability of MEMS 
Technology�, Defense Science Study Group Report, 
Institute for Defense Analysis, Alexandria (VA), 2000. 

[Pis03]   K. Pister, Invited Plenary Talk, The 23rd International 
Conference on Distributed Computing Systems, 
Providence (RI), May 2003. 

[Rat01]  S. Ratsanamy,, P. Francis, M. Handley, R. Karp, "A 
Scalable Content-Addressable Network", ACM 
SIGCOMM Conference 2001, Aug. 2001. 

[RipIF02] M. Ripeani, A. Iamnitchi, I. Foster, �Mapping the 
Gnutella Network�, IEEE Internet Computing, 6(1):50-
57, Jan.-Feb. 2002. 

[Rom02] M. Roman et al., � Gaia : A Middleware 
Infrastructure for Active Spaces�, IEEE Pervasive 
Computing, 1(4):74-83, Oct.-Dec. 2002. 

[RowD01]  A. Rowstron, P. Druschel, �Pastry: 
Scalable, Decentralized Object Location and Routing 
for Large-Scale Peer-to-Peer Systems�, 18th IFIP/ACM 
Conference on Distributed Systems Platforms, 
Heidelberg (D), Nov. 2001. 

[SheS02]  W. Shen, B. Salemi, P. Will, �Hormone-
Inspired Adaptive Communication and Distributed 
Control for Self-Reconfigurable Robots�, IEEE Trans. 

on Robotics and Automation 18(5):1-12, 2002. 
[Sto01] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. 

Balakrishnan, "Chord: A Scalable Peer-to-Peer Lookup 
Service for Internet Applications", ACM SIGCOMM 
2001 Conference, ACM Press, San Diego (CA), Aug. 
2001. 

[Ten00] D.Tennenhouse, "Proactive Computing", 
Communications  of the ACM, 43(5):43-50, May 2000. 

[ZamM02]  F. Zambonelli, M. Mamei, �The Cloak of 
Invisibility: Challenges and Applications�, IEEE 
Pervasive Computing, 1(4):62-70, Oct.-Dec. 2002. 

[ZamMR03] F. Zambonelli, M. Mamei, A. Roli, �What Can 
Cellular Automata Tell Us About the Behaviour of 
Large Multi-Agent Systems?�, in Software Engineering 
for Large Scale Agent Systems, LNCS No. 2603, April 
2003. 

[ZamP03] F. Zambonelli, V. Parunak, �Signs of a 
Revolution in Computer Science and Software 
Engineering�, 3rd International Workshop on 
Engineering Societies in the Agents� World, LNCS No. 
2577, April 2003.  


