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Abstract 
This paper focuses on sensor networks as shared 
environmental infrastructures, and presents an 
approach to enable a sensor network to self-partition 
itself, at pre-defined energy costs, into spatial regions of 
nodes characterized by similar patterns of sensed data. 
Such regions can then be used to aggregate data on a 
per-region basis and to enable multiple mobile users to 
extract information at limited and pre-defined costs.  

1. Introduction 

The increasing diffusion of sensor networks [3] will 
make them become more and more as a general shared 
infrastructure for the use of multiple [4, 10] and possibly 
mobile users [4, 7]. In the near future, users in an 
environment will be able access the sensors in their 
neighborhood to gather information about the 
surrounding physical world and/or to support the 
activities of context-aware services. In such a scenario, 
traditional approaches based on optimization of routing 
paths towards a fixed sink [1, 13] (possibly after some 
limited in-network processing of such data [5, 8]) do not 
work properly, implying notable energy costs and slow 
response times.. 

For sensor networks to become effectively usable as a 
shared infrastructure for interacting with the physical 
world, it is necessary to conceive novel approaches to 
gather information from them in an effective way. The 
needs of multiple and possibly mobile users must be 
satisfied quickly and with reasonable accuracy, still 
ensuring predictable bounds both on the amount of 
energy globally consumed by the sensor network to 
satisfy all these needs. 

Our approach considers that a sensor network should 
continuously run, at specific frequency rates and thus 
with predefined energy costs, a distributed algorithm to 
identify regions of the network characterized by similar 
patterns for sensed data. To this end, each node 
periodically compares the sensed data patterns with its 
neighbors, so as to eventually self-organize an overlay of 

logical links partitioning the network into regions. Once 
region are formed, it is possible to exploit a gossip-based 
algorithm that – at no additional communication costs – 
aggregate data on a per-region basis.  

The processes of region partitioning and of per-
region aggregation, provides multiple and mobile users 
in need to access information with a prompt access to 
aggregated values on the local region, and can also 
acquire a compact perception of the network status.  

Although we are aware of a number of current 
limitations of our approaches, performance studies 
performed in a simulation environment confirm the 
effectiveness of our approach and its applicability.   

2. Self-organized Region Aggregation 

Our approach is based on the following two self-
organizing algorithms: (i) a distributed algorithm with 
predictable energy costs is continuously running in the 
sensor network to partition it into regions characterized 
by similar patterns of sensed data; (ii) The formation of 
such regions is used to compute, at no additional costs 
and on a per-region basis, aggregation of sensed data. 

2.1. Region Formation 

Let us assume to sense, over a certain area covered by a 
sensor network, a particular property (see Figure 1-a and 
1-b), and that each sensor is capable of measuring the 
local value v of such property. 

The goal of the region formation algorithm is to have 
sensors self-organize into disjoint set of regions each 
characterized by “similar” measures of the property (see 
Figure 1-c and 1-d). Organization in regions occur via a 
process of building an overlay of virtual weighted links 
between neighbor nodes, so that nodes belonging to the 
same region have strong links, while neighbor nodes 
belonging to different regions have weak (or null) links. 
As examples: measuring the light level could be used for 
a sensor network in a building to self-partition on a “per 
room” basis (different rooms being characterized by 
different light level, while the light level inside a room is 
always quite homogeneous); measuring the vibration 



  

level on a mountain slope could lead to self-organizing a 
sensor network into regions associated to surfaces with 
different geological properties.   

 

a)  b)  

c)  d)  
Figure 1. Region self-partitioning. a) a scalar field 
with 4 regions with different values of a property v; 
b) a sensor network immersed in the above field, with 
links representing the physical layer; c) overlay 
defining 2 regions (we show only the logical links); d) 
overlay defining 4 regions,  

 
Our algorithm works as follows. Let si and sj be two 

sensors. They can be considered neighbors if they are 
within the wireless radio range r. Let us define the values 
sensed by si and sj as v(si) and v(sj), and assume that a  
generic distance function D can be defined for couples of 
v values. Region formation is then based on iteratively 
computing the value of the logical link l(si,sj) for each 
and every node of the system, as in the following 
“Update_link” procedure: 

Update_link: 
if D(v(si),  v(sj)) < T  
  l(si,sj) = min(l(si,sj) + delta, 1) 
 else  
  l(si,sj) = max(l(si,sj) - delta, 0) 

Where: T is a threshold that determines whether the 
measured values are close enough for l(si,sj) to be re-
enforced or, otherwise, weakened, and delta is a value 
affecting the reactiveness of the algorithm in updating 
link. Details on these parameters follow. What is already 
clear, though, is that after some iterations, if the D(v(si),  
v(sj)) is lower than threshold T, l(si,sj) will converge to 1 
otherwise to 0. In the simplest case, one could consider 
two nodes si and sj to be in the same region when l(si,sj) 

is over a threshold Th, However, to improve stability, we 
introduced a hysteretic cycle with two threshold Tl and 
Th. To run the algorithm, each node stores a vector 
describing, for each of the neighbors, the current value of 
the link towards it, and a flag signaling whether the link 
is connected or not. 

The distributed execution of the algorithm is based on 
a sort of gossip scheme [6]: each node wakes up every t 
time steps, randomly selects a specific number of its 
neighbors num_neigh, exchanges with them the needed 
data (i.e., the v values, plus other data that will be 
detailed in the following), and then executes the 
“Update_link” procedure for each of the selected 
neighbors (Due to the broadcast nature of the wireless 
links in sensor networks, the actual algorithm relies on 
the receiving neighbors to determine whether they have 
been selected in the data exchange session or they can 
just drop the message).  

Do_forerever: 
 Wait(t); 
 neigh[] = Select_neighbor(num_neigh);  
 Foreach(neigh[]) 
  Data = Exchange_data(); 
  Update_link(data); 
Done 

Given that, it is rather clear that our algorithm tends 
to impose a pre-defined, parameterizable, and uniform 
load, on the system. Each node in the system executes 
the same amount of operations, the interval t determining 
the frequency of such operations and the number of 
neighbors num_neigh selected at each round determining 
the communication costs of these operations. Shorter t or 
higher num_neigh tend to speed up the convergence of 
the algorithm, but increase the energy consumed by 
sensors per time unit.  

Let us detail the other parameters of our algorithm: 
the parameter delta determines how fast the link weight l 
changes its value. The choice of this parameter is not 
crucial, provided that it is chosen small enough to require 
several cycles of the “Update_link” procedure to actually 
modify the status of link (in other words, it should be 
notably smaller than the Tl-Th hysteretic interval). This 
avoids that random fluctuations of the measured value at 
a node causes changes in the established regions.  

Concerning T, a challenging issue in our approach is 
consists is tackling the difference between the strictly 
local nature of “Update_link” interactions and the 
inherently global meaning of the threshold T. For 
instance, a difference of 10°C in a wood can be 
considered relevant during normal days but irrelevant for 
the sake of fire detection. To deal with this problem, 



  

avoiding the need for a priori information, we opted to 
define T by exploiting dynamically collected global 
values of the property v. In particular we define T as a 
portion of the whole range of values seen over the 
network. Using scalar values, we defined T as:  

T = (globalMax – globalMin) * p  

where p is a real number between 0 an 1. In this way, 
one can parameterize the sensibility of the algorithm by 
using a relative value p rather than some absolute value 
requiring a priori knowledge on the range of v values. If 
one wants to obtain very large regions to organize the 
network based on macroscopic difference one can select 
p close to 1 (p=0.4, as in Figure 1-c). If one is interested 
in more fine-grained region organizations one can select 
p close to 0 (p=0.05, as in Figure 1-d). It is worth 
emphasizing that for each node to locally acquire the 
globalMax and globalMin value, one can execute a 
global aggregation algorithm over the whole network. 
Simply, as described in [6], each node, when exchanging 
data with one of its neighbors, can exchange with it the 
information about the maximum and minimum he knows 
so far, possibly update its local knowledge, and 
eventually have the knowledge about the actual 
globalMin and globalMax reach each node of the 
network. Specifically, each node si, after having 
exchanged data with node sj, executes the following 
“Global_aggregation” procedure: 

Global_aggregation: 
 if(globalMini>globalMinj) globalMini=globalMinj 
 if(globalMaxi<globalMaxj) globalMaxi=globalMaxj 

with globalMini and globalMaxi both initialized at vi. 
We emphasize this requires minimal additional effort 

by nodes. In fact, one can exploit the existing region 
aggregation noise and its “Exchange_data” messages to 
piggyback the GlobalMin and GlobalMax values.   

2.2. Per-Region Aggregation 

Clearly, the local availability of aggregated information 
over a sensor network may be of some use independently 
of regions. However, globally aggregated values give 
very little details on the status of the network, and are 
definitely of little use for users wishing to acquire 
information about environmental properties around 
him/her. For this reason, our approach also exploits per-
region aggregation algorithms.  

By considering the situation in which regions are 
already formed, computing aggregation function in a 
region reduces to executing a gossip-based aggregation 

algorithm only between those couples of neighbor nodes 
that are in the same region (i.e., for which the l is over 
the Th threshold). Again, computing per-region 
aggregation function does not introduce significant 
additional burden to the network. The exchange of data 
between nodes can occur by piggybacking over the 
existing messages, and the computation of local 
aggregation algorithms reduces to adding a simple 
“Local_aggregation” function in the main body of our 
basic scheme, as follows: 

Do_forerever: 
 Wait(t); 
 neigh[] = Select_neighbor(num_neigh);  
 Foreach(neigh[]) 
  Data = Exchange_data(); 
  Update_link(data); 
  Global_aggregation(); 
  If(connected) Local_aggregation(); 
Done 

The “Local_aggregation” function can include the 
identification of the local minimum and the local 
maximum of some sensed value w within the region, or 
the calculus of the average Avg of some value w. 
Currently, in our scheme, we also decided to enforce two 
peculiar aggregation functions that are of great use for 
facilitating the gathering of information by users.  
• The first aggregation function considers that each 

node at the border of a region (i.e., each node which 
has at least one virtual link l below the threshold) 
propagates within the region a “hop counter” 
initialized to 0. By having such counter re-propagated 
by each node on per-minimum basis, the results is 
that each nodes in the region eventually becomes 
aware of its distance form the closest border. This is 
use for enabling each node to locally estimate the 
“radius” within which the aggregated data are 
definitely meaningful, and to identify whether or not 
it can properly answer to a query. 

• A second aggregation function exploits a sort of per-
region minimum identification towards the election 
of a region leader. By having each sensors exchange 
its unique ID with its neighbor, the minimum ID 
eventually recognized by each node will define the 
leader. This can be very useful for mobile users to 
identify that they are changing regions, as well as to 
enable a quick and compact identification of all the 
regions within an area.  

It can be shown that gossip-based aggregation processed 
does not experience problems if executed on a growing 
number of nodes, as in the region formation transitory. 



  

This also applies for the identification of the region 
leader (when two regions merge, one of the two leaders 
will eventually recognize it lost his role). Similar 
considerations apply to the case in which new sensors are 
dynamically added in the system. 

Let us now consider the case in which some existing 
regions shrinks, either because a confining region has 
expanded or because some sensor nodes have died. In 
this case, two problems arise: 

• the values computed by the local aggregation 
functions may no longer be valid (e.g., the former 
maximum may have left the region) but they will not 
be properly updated, due the cumulative nature of 
gossip-based aggregation; 

• the region leader may have exited the region.  

To overcome the former problem, we decided to enforce 
a sort of “evaporation” of the values computed by the 
local aggregation algorithms. The local aggregated 
values in a node are slowly moved towards the values 
sensed by the node. In this way, the weight of those data 
cumulated by the algorithm will gradually diminish, 
unless properly re-enforced. As an example, consider the 
case of the maximum of a region, and assume that each 
node in a region has already locally available the value 
of such maximum. Now, have each node slightly 
“evaporate” such value by making it approach the local 
value. If the node holding such maximum is still in the 
region, a node will receive its value undoing the 
evaporation effects. If the node holding the maximum, 
instead, has exited the region, evaporation will enable to 
stabilize the new maximum at each node, after proper 
evaporation. Similar considerations apply, e.g., to the 
calculus of the average. 

To overcome the region leader problem, each node 
keeps track of the “oldness” of the value of the leader ID 
(accounting for the number of cycles of the algorithm 
since the last time it received from some node such ID). 
Whenever such oldness becomes excessive, the current 
leader ID is considered obsolete and a new leader is 
identified and elected. Clearly, all the above solutions 
also help to deal with sensor networks immersed in 
environment with dynamically changing properties, and 
make our approach self-organizing and self-adaptable. 

3. Performance Evaluation 

We have performed numerous experiments based on 
simulations. First, we wanted to evaluate the 
effectiveness of the region detection algorithm. Second, 
we wanted to evaluate the convergence and accuracy 
level of the aggregation algorithms. The results of the 

simulations were obtained by simulating scalar fields in 
which the sensor network is immersed. Though we have 
conducted several experiments on fields with different 
shapes and values, we have always obtained comparable 
results from both qualitative and quantitative viewpoint. 
Therefore, we report here on an environment filled with 
500 wireless sensors disposed over a random graph such 
that the mean number of neighbors for each node is 15 
(similarly to the sensor network of Figure 1-b). The 
simulated scalar field exhibits values v such that four 
different quadrants are recognizable (as in Figure 1-a). 
Each quadrant has a fixed mean m and variance s. 
Starting from the top left quadrant and proceeding 
clockwise, they could be identified as q1, q2, q3, q4. Mean 
values m1..m4 are respectively 120, 80, 20, -20. 
Variances s1..s4 are arranged such that in each quadrant 
are allowed values v in range [m – 2, m + 2]. 

3.1. Region Formation 

From a static viewpoint, we can analyze, independently 
from the speed of convergence, which are stable states 
reached by the network and evaluate the effects of 
related parameter p. As described in Subsection 2.1 and 
as shown in Figure 1, variations on the parameter p 
induce the network to self-partition into regions of 
different sizes.  

From a dynamic viewpoint, we can show how 
variations of the gossip percent num_neigh and the sleep 
cycle t affect the speed of convergence and the accuracy 
of the algorithm. Initially all nodes are not connected 
with any neighbor. We collect data over the first 255 
cycles. Within cycles from 0 to 128 p is set to 0.4. 
During this interval the network converge to a status 
similar to that of Figure 1-c, i.e., splitting the network 
into regions. At cycle 129, we changed p from 0.4 to 1.0 
, making the network re-compact into a single region (as 
in Figure 1-b). Figure 2 shows the evolution in the 
average number of nodes per region as time passes, by 
varying the gossip percentage. Values are collected at the 
completion of each simulation cycle, and figure shows 
that the number of nodes of the region start from 0, grow 
to 250 during the first phase [0 – 128 cycles] and than 
reaches 500 during the second phase [129 – 255 cycles].  

Clearly, reducing the gossip percentage or increasing 
the sleep period t makes the network slower in the region 
detection process. It is trivial to understand that any 
increase in t corresponds to a directly proportional 
increase in the time required for region detection.  The 
impact of decreasing num_neigh is more interesting. In 
fact, as Figure 2 shows, lowering num_neigh only 
slightly slow-down the convergence time.    
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Figure 2. Evolution of region detection for t = 1 and 
for various values of num_neigh. 

3.2. Per-Region Aggregation 

Let us focus on the behavior of the RAN approach in 
evaluating aggregated values. From the static viewpoint, 
all local aggregation algorithms experiences correctly 
reach convergence towards the corrent (real) value. From 
the dynamic viewpoint, Figure 3 shows the trend of 
several values aggregated on a per region basis. Curves 
in each graph represent the minimum (worst case) 
estimate of the region maximum, the maximum (worst 
case) estimate of the region minimum, the minimum and 
the maximum (the two worst cases) estimates of the 
average, and the real actual value of the average 
computed over all nodes within the growing region. 
Figure 3-a show results obtained with num_neigh=1.0 
and t=1. Figure 3-b shows results obtained reducing 
num_neigh to 0.5. Clearly, reducing the gossip 
percentage expressed by num_neigh or increasing the 
sleep period t make the network slower not only in 
region detection but also in correctly evaluating locally 
aggregated values. Since, as already discussed, the 
impact of t is of direct proportionality, we only focus 
here on the impact of num_neigh. All the graphs in 
Figure 3 show the same trend. During the first cycles 
while links are being reinforced, all the aggregated 
values don’t change. At the beginning (cycle 0), when 
the region starts forming is clearly visible a fast 
convergence of the local maximum and minimum to their 
new values respectively of 120 and 80. Average related 
values have a relatively small transitory and eventually 
reach the value of 100 as expected. At cycle 128, p is 
changed to p = 1.0 and the region starts growing another 
time. The local maximum does not have to change its 
value. The local minimum reaches quickly its new value 
(-20) in a few iterations. Average values instead have a 
longer transitory but eventually slowly converge to the 
expected value of 50. Observing Figure 3 is clear that 

different aggregate values behave differently varying 
num_neigh. In particular accuracy of average related 
values are really more sensible to variations of 
num_neigh than the local minimum and maximum have.  

Summarizing, there is a clear trade-off between 
energy consumption and accuracy: higher num_neigh 
and the lower t clearly provides for more accuracy over 
time, but overall increase the energy consumed. In any 
case, to decrease energy consumption without 
compromising too much accuracy, it is worth exploiting 
both an appropriate increase of t complemented by an 
appropriate lowering of num_neigh.  
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Figure 3. Per region aggregated values. Minimum 
estimate of the maximum, maximum estimate of the 
minimum, minimum and maximum estimates of the 
average and real value of the average. a) num_neigh 
= 1.0, t = 1; b) num_neigh = 0.5, t = 1. 

4. Related Work 

Most work on data gathering and aggregation in sensor 
networks assumes the presence of fixed sinks (base 
stations) to which sensed data flow. The basic approach 
is that of having sensors build a tree rooted at the sink 
and supporting the routing of sensed data towards it [13]. 
Some form of in-network data aggregation (e.g., 
averaging) can be performed as data from sensors climbs 
the tree [5, 8], and various optimization can apply in tree 
formation [1]. In any case, these approaches can hardly 



  

apply for shared infrastructural sensor networks, because 
the costs of building a tree on demand for many possible 
users at different and varying locations would be high, 
both in terms of energy and response time.   

Several research works in the area of sensor networks 
start recognizing the need to promote direct access to 
sensor data by multiple and mobile users [4, 11]. These 
works mostly focuses of defining suitable general-
purpose primitives and language constructs to enable 
users to flexibly query the network and obtain 
information about individual sensor data and aggregated 
data related to specific regions. However, apart from a 
few exceptions [9], none of these systems faces the 
problem of how to implement the query functionalities, 
i.e., of what specific data gathering and aggregation 
algorithms should run in the sensor network. 

Some in-network algorithms for self-organization of 
region partitioning in sensor networks have been 
proposed [2, 12], sharing some basic principle with our 
approach. The key differences being that: (i) these 
algorithms require a priori information about the 
typically patterns exhibited by the environment, while 
our approach does not and it is fully self-organizing; (ii) 
these algorithms are not conceived for other goals than 
recognizing regions, while our approach goes further, by 
exploiting region partitioning for computing aggregation 
and for supporting efficient queries by multiple and 
mobile users.   

5. Conclusions and Future Work 

The proposed approach enables a sensor network to 
analyze the patterns of sensed information so as to self-
partition into regions characterized by similar sensing 
patterns, and then to aggregate data on a per-region 
basis. In this way, multiple and mobile users can extract 
meaningful information from the network at very limited 
costs and with notable accuracy.   

We are currently working to overcome some 
limitations of our approach. First, we would like it to 
support multiple overlays and general-purpose queries, 
there included inter-region global queries. Second, we 
would like it to work even without the availability of 
global aggregated information. Last but not least, we are 
in the process of verifying the effectiveness of the 
approach on a real sensor network testbed.  
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