

Self-organizing Spatial Regions for Sensor Network Infrastructures

Nicola Bicocchi, Marco Mamei, Franco Zambonelli

DISMI – Università di Modena e Reggio Emilia – Via Amendola 2 – Reggio Emilia – ITALY
{nicola.bicocchi, marco.mamei, franco.zambonelli}@unimore.it

Abstract
This paper focuses on sensor networks as shared
environmental infrastructures, and presents an
approach to enable a sensor network to self-partition
itself, at pre-defined energy costs, into spatial regions of
nodes characterized by similar patterns of sensed data.
Such regions can then be used to aggregate data on a
per-region basis and to enable multiple mobile users to
extract information at limited and pre-defined costs.

1. Introduction

The increasing diffusion of sensor networks [3] will
make them become more and more as a general shared
infrastructure for the use of multiple [4, 10] and possibly
mobile users [4, 7]. In the near future, users in an
environment will be able access the sensors in their
neighborhood to gather information about the
surrounding physical world and/or to support the
activities of context-aware services. In such a scenario,
traditional approaches based on optimization of routing
paths towards a fixed sink [1, 13] (possibly after some
limited in-network processing of such data [5, 8]) do not
work properly, implying notable energy costs and slow
response times..

For sensor networks to become effectively usable as a
shared infrastructure for interacting with the physical
world, it is necessary to conceive novel approaches to
gather information from them in an effective way. The
needs of multiple and possibly mobile users must be
satisfied quickly and with reasonable accuracy, still
ensuring predictable bounds both on the amount of
energy globally consumed by the sensor network to
satisfy all these needs.

Our approach considers that a sensor network should
continuously run, at specific frequency rates and thus
with predefined energy costs, a distributed algorithm to
identify regions of the network characterized by similar
patterns for sensed data. To this end, each node
periodically compares the sensed data patterns with its
neighbors, so as to eventually self-organize an overlay of

logical links partitioning the network into regions. Once
region are formed, it is possible to exploit a gossip-based
algorithm that – at no additional communication costs –
aggregate data on a per-region basis.

The processes of region partitioning and of per-
region aggregation, provides multiple and mobile users
in need to access information with a prompt access to
aggregated values on the local region, and can also
acquire a compact perception of the network status.

Although we are aware of a number of current
limitations of our approaches, performance studies
performed in a simulation environment confirm the
effectiveness of our approach and its applicability.

2. Self-organized Region Aggregation

Our approach is based on the following two self-
organizing algorithms: (i) a distributed algorithm with
predictable energy costs is continuously running in the
sensor network to partition it into regions characterized
by similar patterns of sensed data; (ii) The formation of
such regions is used to compute, at no additional costs
and on a per-region basis, aggregation of sensed data.

2.1. Region Formation

Let us assume to sense, over a certain area covered by a
sensor network, a particular property (see Figure 1-a and
1-b), and that each sensor is capable of measuring the
local value v of such property.

The goal of the region formation algorithm is to have
sensors self-organize into disjoint set of regions each
characterized by “similar” measures of the property (see
Figure 1-c and 1-d). Organization in regions occur via a
process of building an overlay of virtual weighted links
between neighbor nodes, so that nodes belonging to the
same region have strong links, while neighbor nodes
belonging to different regions have weak (or null) links.
As examples: measuring the light level could be used for
a sensor network in a building to self-partition on a “per
room” basis (different rooms being characterized by
different light level, while the light level inside a room is
always quite homogeneous); measuring the vibration

level on a mountain slope could lead to self-organizing a
sensor network into regions associated to surfaces with
different geological properties.

a) b)

c) d)
Figure 1. Region self-partitioning. a) a scalar field
with 4 regions with different values of a property v;
b) a sensor network immersed in the above field, with
links representing the physical layer; c) overlay
defining 2 regions (we show only the logical links); d)
overlay defining 4 regions,

Our algorithm works as follows. Let si and sj be two

sensors. They can be considered neighbors if they are
within the wireless radio range r. Let us define the values
sensed by si and sj as v(si) and v(sj), and assume that a
generic distance function D can be defined for couples of
v values. Region formation is then based on iteratively
computing the value of the logical link l(si,sj) for each
and every node of the system, as in the following
“Update_link” procedure:

Update_link:
if D(v(si), v(sj)) < T
 l(si,sj) = min(l(si,sj) + delta, 1)
 else
 l(si,sj) = max(l(si,sj) - delta, 0)

Where: T is a threshold that determines whether the
measured values are close enough for l(si,sj) to be re-
enforced or, otherwise, weakened, and delta is a value
affecting the reactiveness of the algorithm in updating
link. Details on these parameters follow. What is already
clear, though, is that after some iterations, if the D(v(si),
v(sj)) is lower than threshold T, l(si,sj) will converge to 1
otherwise to 0. In the simplest case, one could consider
two nodes si and sj to be in the same region when l(si,sj)

is over a threshold Th, However, to improve stability, we
introduced a hysteretic cycle with two threshold Tl and
Th. To run the algorithm, each node stores a vector
describing, for each of the neighbors, the current value of
the link towards it, and a flag signaling whether the link
is connected or not.

The distributed execution of the algorithm is based on
a sort of gossip scheme [6]: each node wakes up every t
time steps, randomly selects a specific number of its
neighbors num_neigh, exchanges with them the needed
data (i.e., the v values, plus other data that will be
detailed in the following), and then executes the
“Update_link” procedure for each of the selected
neighbors (Due to the broadcast nature of the wireless
links in sensor networks, the actual algorithm relies on
the receiving neighbors to determine whether they have
been selected in the data exchange session or they can
just drop the message).

Do_forerever:
 Wait(t);
 neigh[] = Select_neighbor(num_neigh);
 Foreach(neigh[])
 Data = Exchange_data();
 Update_link(data);
Done

Given that, it is rather clear that our algorithm tends
to impose a pre-defined, parameterizable, and uniform
load, on the system. Each node in the system executes
the same amount of operations, the interval t determining
the frequency of such operations and the number of
neighbors num_neigh selected at each round determining
the communication costs of these operations. Shorter t or
higher num_neigh tend to speed up the convergence of
the algorithm, but increase the energy consumed by
sensors per time unit.

Let us detail the other parameters of our algorithm:
the parameter delta determines how fast the link weight l
changes its value. The choice of this parameter is not
crucial, provided that it is chosen small enough to require
several cycles of the “Update_link” procedure to actually
modify the status of link (in other words, it should be
notably smaller than the Tl-Th hysteretic interval). This
avoids that random fluctuations of the measured value at
a node causes changes in the established regions.

Concerning T, a challenging issue in our approach is
consists is tackling the difference between the strictly
local nature of “Update_link” interactions and the
inherently global meaning of the threshold T. For
instance, a difference of 10°C in a wood can be
considered relevant during normal days but irrelevant for
the sake of fire detection. To deal with this problem,

avoiding the need for a priori information, we opted to
define T by exploiting dynamically collected global
values of the property v. In particular we define T as a
portion of the whole range of values seen over the
network. Using scalar values, we defined T as:

T = (globalMax – globalMin) * p

where p is a real number between 0 an 1. In this way,
one can parameterize the sensibility of the algorithm by
using a relative value p rather than some absolute value
requiring a priori knowledge on the range of v values. If
one wants to obtain very large regions to organize the
network based on macroscopic difference one can select
p close to 1 (p=0.4, as in Figure 1-c). If one is interested
in more fine-grained region organizations one can select
p close to 0 (p=0.05, as in Figure 1-d). It is worth
emphasizing that for each node to locally acquire the
globalMax and globalMin value, one can execute a
global aggregation algorithm over the whole network.
Simply, as described in [6], each node, when exchanging
data with one of its neighbors, can exchange with it the
information about the maximum and minimum he knows
so far, possibly update its local knowledge, and
eventually have the knowledge about the actual
globalMin and globalMax reach each node of the
network. Specifically, each node si, after having
exchanged data with node sj, executes the following
“Global_aggregation” procedure:

Global_aggregation:
 if(globalMini>globalMinj) globalMini=globalMinj
 if(globalMaxi<globalMaxj) globalMaxi=globalMaxj

with globalMini and globalMaxi both initialized at vi.
We emphasize this requires minimal additional effort

by nodes. In fact, one can exploit the existing region
aggregation noise and its “Exchange_data” messages to
piggyback the GlobalMin and GlobalMax values.

2.2. Per-Region Aggregation

Clearly, the local availability of aggregated information
over a sensor network may be of some use independently
of regions. However, globally aggregated values give
very little details on the status of the network, and are
definitely of little use for users wishing to acquire
information about environmental properties around
him/her. For this reason, our approach also exploits per-
region aggregation algorithms.

By considering the situation in which regions are
already formed, computing aggregation function in a
region reduces to executing a gossip-based aggregation

algorithm only between those couples of neighbor nodes
that are in the same region (i.e., for which the l is over
the Th threshold). Again, computing per-region
aggregation function does not introduce significant
additional burden to the network. The exchange of data
between nodes can occur by piggybacking over the
existing messages, and the computation of local
aggregation algorithms reduces to adding a simple
“Local_aggregation” function in the main body of our
basic scheme, as follows:

Do_forerever:
 Wait(t);
 neigh[] = Select_neighbor(num_neigh);
 Foreach(neigh[])
 Data = Exchange_data();
 Update_link(data);
 Global_aggregation();
 If(connected) Local_aggregation();
Done

The “Local_aggregation” function can include the
identification of the local minimum and the local
maximum of some sensed value w within the region, or
the calculus of the average Avg of some value w.
Currently, in our scheme, we also decided to enforce two
peculiar aggregation functions that are of great use for
facilitating the gathering of information by users.
• The first aggregation function considers that each

node at the border of a region (i.e., each node which
has at least one virtual link l below the threshold)
propagates within the region a “hop counter”
initialized to 0. By having such counter re-propagated
by each node on per-minimum basis, the results is
that each nodes in the region eventually becomes
aware of its distance form the closest border. This is
use for enabling each node to locally estimate the
“radius” within which the aggregated data are
definitely meaningful, and to identify whether or not
it can properly answer to a query.

• A second aggregation function exploits a sort of per-
region minimum identification towards the election
of a region leader. By having each sensors exchange
its unique ID with its neighbor, the minimum ID
eventually recognized by each node will define the
leader. This can be very useful for mobile users to
identify that they are changing regions, as well as to
enable a quick and compact identification of all the
regions within an area.

It can be shown that gossip-based aggregation processed
does not experience problems if executed on a growing
number of nodes, as in the region formation transitory.

This also applies for the identification of the region
leader (when two regions merge, one of the two leaders
will eventually recognize it lost his role). Similar
considerations apply to the case in which new sensors are
dynamically added in the system.

Let us now consider the case in which some existing
regions shrinks, either because a confining region has
expanded or because some sensor nodes have died. In
this case, two problems arise:

• the values computed by the local aggregation
functions may no longer be valid (e.g., the former
maximum may have left the region) but they will not
be properly updated, due the cumulative nature of
gossip-based aggregation;

• the region leader may have exited the region.

To overcome the former problem, we decided to enforce
a sort of “evaporation” of the values computed by the
local aggregation algorithms. The local aggregated
values in a node are slowly moved towards the values
sensed by the node. In this way, the weight of those data
cumulated by the algorithm will gradually diminish,
unless properly re-enforced. As an example, consider the
case of the maximum of a region, and assume that each
node in a region has already locally available the value
of such maximum. Now, have each node slightly
“evaporate” such value by making it approach the local
value. If the node holding such maximum is still in the
region, a node will receive its value undoing the
evaporation effects. If the node holding the maximum,
instead, has exited the region, evaporation will enable to
stabilize the new maximum at each node, after proper
evaporation. Similar considerations apply, e.g., to the
calculus of the average.

To overcome the region leader problem, each node
keeps track of the “oldness” of the value of the leader ID
(accounting for the number of cycles of the algorithm
since the last time it received from some node such ID).
Whenever such oldness becomes excessive, the current
leader ID is considered obsolete and a new leader is
identified and elected. Clearly, all the above solutions
also help to deal with sensor networks immersed in
environment with dynamically changing properties, and
make our approach self-organizing and self-adaptable.

3. Performance Evaluation

We have performed numerous experiments based on
simulations. First, we wanted to evaluate the
effectiveness of the region detection algorithm. Second,
we wanted to evaluate the convergence and accuracy
level of the aggregation algorithms. The results of the

simulations were obtained by simulating scalar fields in
which the sensor network is immersed. Though we have
conducted several experiments on fields with different
shapes and values, we have always obtained comparable
results from both qualitative and quantitative viewpoint.
Therefore, we report here on an environment filled with
500 wireless sensors disposed over a random graph such
that the mean number of neighbors for each node is 15
(similarly to the sensor network of Figure 1-b). The
simulated scalar field exhibits values v such that four
different quadrants are recognizable (as in Figure 1-a).
Each quadrant has a fixed mean m and variance s.
Starting from the top left quadrant and proceeding
clockwise, they could be identified as q1, q2, q3, q4. Mean
values m1..m4 are respectively 120, 80, 20, -20.
Variances s1..s4 are arranged such that in each quadrant
are allowed values v in range [m – 2, m + 2].

3.1. Region Formation

From a static viewpoint, we can analyze, independently
from the speed of convergence, which are stable states
reached by the network and evaluate the effects of
related parameter p. As described in Subsection 2.1 and
as shown in Figure 1, variations on the parameter p
induce the network to self-partition into regions of
different sizes.

From a dynamic viewpoint, we can show how
variations of the gossip percent num_neigh and the sleep
cycle t affect the speed of convergence and the accuracy
of the algorithm. Initially all nodes are not connected
with any neighbor. We collect data over the first 255
cycles. Within cycles from 0 to 128 p is set to 0.4.
During this interval the network converge to a status
similar to that of Figure 1-c, i.e., splitting the network
into regions. At cycle 129, we changed p from 0.4 to 1.0
, making the network re-compact into a single region (as
in Figure 1-b). Figure 2 shows the evolution in the
average number of nodes per region as time passes, by
varying the gossip percentage. Values are collected at the
completion of each simulation cycle, and figure shows
that the number of nodes of the region start from 0, grow
to 250 during the first phase [0 – 128 cycles] and than
reaches 500 during the second phase [129 – 255 cycles].

Clearly, reducing the gossip percentage or increasing
the sleep period t makes the network slower in the region
detection process. It is trivial to understand that any
increase in t corresponds to a directly proportional
increase in the time required for region detection. The
impact of decreasing num_neigh is more interesting. In
fact, as Figure 2 shows, lowering num_neigh only
slightly slow-down the convergence time.

0

50

100

150

200

250

300

350

400

450

500

0 25 50 75 100 125 150 175 200 225 250

Cycle

N
um

be
r o

f n
od

es

num_neigh 100%

num_neigh 50%

num_neigh 25%

Figure 2. Evolution of region detection for t = 1 and
for various values of num_neigh.

3.2. Per-Region Aggregation

Let us focus on the behavior of the RAN approach in
evaluating aggregated values. From the static viewpoint,
all local aggregation algorithms experiences correctly
reach convergence towards the corrent (real) value. From
the dynamic viewpoint, Figure 3 shows the trend of
several values aggregated on a per region basis. Curves
in each graph represent the minimum (worst case)
estimate of the region maximum, the maximum (worst
case) estimate of the region minimum, the minimum and
the maximum (the two worst cases) estimates of the
average, and the real actual value of the average
computed over all nodes within the growing region.
Figure 3-a show results obtained with num_neigh=1.0
and t=1. Figure 3-b shows results obtained reducing
num_neigh to 0.5. Clearly, reducing the gossip
percentage expressed by num_neigh or increasing the
sleep period t make the network slower not only in
region detection but also in correctly evaluating locally
aggregated values. Since, as already discussed, the
impact of t is of direct proportionality, we only focus
here on the impact of num_neigh. All the graphs in
Figure 3 show the same trend. During the first cycles
while links are being reinforced, all the aggregated
values don’t change. At the beginning (cycle 0), when
the region starts forming is clearly visible a fast
convergence of the local maximum and minimum to their
new values respectively of 120 and 80. Average related
values have a relatively small transitory and eventually
reach the value of 100 as expected. At cycle 128, p is
changed to p = 1.0 and the region starts growing another
time. The local maximum does not have to change its
value. The local minimum reaches quickly its new value
(-20) in a few iterations. Average values instead have a
longer transitory but eventually slowly converge to the
expected value of 50. Observing Figure 3 is clear that

different aggregate values behave differently varying
num_neigh. In particular accuracy of average related
values are really more sensible to variations of
num_neigh than the local minimum and maximum have.

Summarizing, there is a clear trade-off between
energy consumption and accuracy: higher num_neigh
and the lower t clearly provides for more accuracy over
time, but overall increase the energy consumed. In any
case, to decrease energy consumption without
compromising too much accuracy, it is worth exploiting
both an appropriate increase of t complemented by an
appropriate lowering of num_neigh.

a) -20

0

20

40

60

80

100

120

0 25 50 75 100 125 150 175 200 225 250

Cycle

Va
lu

e

Real Average
Max Average
Min Average
Max
Min

b) -20

0

20

40

60

80

100

120

0 25 50 75 100 125 150 175 200 225 250

Cycle

Va
lu

e

Real Average
Max Average
Min Average
Max
Min

Figure 3. Per region aggregated values. Minimum
estimate of the maximum, maximum estimate of the
minimum, minimum and maximum estimates of the
average and real value of the average. a) num_neigh
= 1.0, t = 1; b) num_neigh = 0.5, t = 1.

4. Related Work

Most work on data gathering and aggregation in sensor
networks assumes the presence of fixed sinks (base
stations) to which sensed data flow. The basic approach
is that of having sensors build a tree rooted at the sink
and supporting the routing of sensed data towards it [13].
Some form of in-network data aggregation (e.g.,
averaging) can be performed as data from sensors climbs
the tree [5, 8], and various optimization can apply in tree
formation [1]. In any case, these approaches can hardly

apply for shared infrastructural sensor networks, because
the costs of building a tree on demand for many possible
users at different and varying locations would be high,
both in terms of energy and response time.

Several research works in the area of sensor networks
start recognizing the need to promote direct access to
sensor data by multiple and mobile users [4, 11]. These
works mostly focuses of defining suitable general-
purpose primitives and language constructs to enable
users to flexibly query the network and obtain
information about individual sensor data and aggregated
data related to specific regions. However, apart from a
few exceptions [9], none of these systems faces the
problem of how to implement the query functionalities,
i.e., of what specific data gathering and aggregation
algorithms should run in the sensor network.

Some in-network algorithms for self-organization of
region partitioning in sensor networks have been
proposed [2, 12], sharing some basic principle with our
approach. The key differences being that: (i) these
algorithms require a priori information about the
typically patterns exhibited by the environment, while
our approach does not and it is fully self-organizing; (ii)
these algorithms are not conceived for other goals than
recognizing regions, while our approach goes further, by
exploiting region partitioning for computing aggregation
and for supporting efficient queries by multiple and
mobile users.

5. Conclusions and Future Work

The proposed approach enables a sensor network to
analyze the patterns of sensed information so as to self-
partition into regions characterized by similar sensing
patterns, and then to aggregate data on a per-region
basis. In this way, multiple and mobile users can extract
meaningful information from the network at very limited
costs and with notable accuracy.

We are currently working to overcome some
limitations of our approach. First, we would like it to
support multiple overlays and general-purpose queries,
there included inter-region global queries. Second, we
would like it to work even without the availability of
global aggregated information. Last but not least, we are
in the process of verifying the effectiveness of the
approach on a real sensor network testbed.

Acknowledgments. Work supported by the project
CASCADAS (IST-027807) funded by the FET Program
of the European Commission.

References

[1] Athanassios Boulis, Saurabh Ganerival, and Mani B.
Srivastava, “Aggregation in sensor network: An Energy-
Accuracy Trade-off”, IEEE SANPA, 2003.

[2] E. Catterall, K. Van Laerhoven and M. Strohbach. "Self-
Organization in Ad-Hoc Sensor Networks: An Empirical
Study". The 8th International Conference on the
Simulation and Synthesis of Living Systems, Sydney,
(AU). MIT Press, pp. 260-264.

[3] C.-Y. Chong, S. P. Kumar, “Sensor networks: Evolution,
opportunities, and challenges”, Proceedings of the IEEE,
91(8):1247-1256, Aug. 2003.

[4] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. Murphy,
G. P. Picco, "Mobile Data Collection in Sensor
Networks: The TinyLime Middleware", Journal of
Pervasive and Mobile Computing, (4)1:446-469, 2005.

[5] Johannes Gehrke, Samuel Madden, “Query Processing In
Sensor Networks”, IEEE Pervasive Computing, 3(1):46-
55, Jan. 2004.

[6] M. Jelasity, A. Montresor, O. Babaoglu, “Gossip-based
Aggregation in Large Dynamic Networks”, ACM
Transactions on Computer Systems, 23(3):219-252, 2005.

[7] Chenyang Lu, Guoliang Xing, Octav Chipara, Chien-
Liang Fok, Sangeeta Bhattacharya: “A Spatiotemporal
Query Service for Mobile Users in Sensor Networks”,
25th International Conference on Distributed Computing
Systems, June 2005, pp. 381-390.

[8] Samuel Madden, Joseph M. Hellerstein, “Distributing
queries over low-power wireless sensor networks”, ACM
SIGMOD International Conference on Management of
Data, 2002.

[9] G. Mottola, G. P. Picco, "Logical Neighborhoods: A
Programming Abstraction for Wireless Sensor
Networks", Proceedings of the 2nd International
Conference on Distributed Computing in Sensor Systems,
San Francisco (CA), June 2006.

[10] R. Müller, G. Alonso, “Shared Queries in Sensor
Networks for Multi-User Support”, Technical Report
508, ETH Zürich, Institute of Pervasive Computing, Feb.
2006. 23(3):219-252, Aug. 2005.

[11] R. Newton, M. Welsh, “Region Streams: Functional
Macroprogramming for Sensor Networks”, Proceedings
of the 1st International Workshop on Data Management
for Sensor Networks, Toronto (CA), pp. 78 – 87, 2004.

[12] A. Panangadan. G. S. Sukhatme, “Data Segmentation for
Region Detection in a Sensor Network”, Center for
Robotics and Embedded Systems, University of Southern
California, Technical Report 05-005, 2005.

[13] J. Polastre, R. Szewcyk, A. Mainwaring, D. Culler, J.
Anderson, "Analysis of Wireless Sensor Networks for
Habitat Monitoring", in Wireless Sensor Networks,
Kluwer Academic Publishers (NY), 2004, pp. 399-423.

