Context-dependency in I nter net-agent Coor dination

Giaoomo Cabiri, Letizia Leonardi, Franco Zamborelli
Dipartimento di Scienze dell'lngegneria — Universita di Modena e Reggio Emilia
Via Campi 213/b — 41100 Modena — ITALY
Phone: +39-059-376735 — Fax: +39-059-376799

{giacomo.cabri, letizia.leonardi, franco.zambonelli}@unimao.it

Abstract

The design and development of Internet applications can take advantage of a
paradigm based on autonomous and mobile agents. However, agent mobility
introduces peculiar coordination problems in Internet applications. First, it suggests
the exploitation of an infrastructure based on a multiplicity of local interaction spaces.
Second, it may require coordination activities to be adapted both to the characteristics
of the execution environment where they occur and to the needs of the application to
which the coordinating agents belong. In this context, this paper introduces the concept
of context-dependent coordination based on programmable interaction spaces. On the
one hand, interaction spaces associated to different execution environments may be
independently programmed so as to lead to differentiated, environment-dependent,
behaviors. On the other hand, agents can program the interaction spaces of the visited
execution environments to obtain an application-dependent behavior of the interaction
gpaces themselves. Several examples show how a model of context-dependent
coordination can be effectively exploited in Internet applications based on mobile
agents. In addition, several systems are briefly presented that, to different extent, define
a model of context-dependent coordination.

Keywords: Internet Applications, Mobile Agents, Locality, Coordination

Corresponding Author: Franco Zambonelli

1. Introduction

The design and development of Internet applications can effedively take alvantage of an agent-
based approach. By concdving and developing applicaions in terms of autonamous entities,
cgpable bath o reading to changes in the environment and d proadively deding with urexpeded
situations, ore naturally ded with the intrinsic uncertainty and dynamicity of the Internet. In
addition, by exploiting the nation d sociality typicd of the agent-oriented paradigm, ore can more
eally decompose an application in terms of a multi-agent organization, where dl the necessary
interadion protocols find afirst-order acoommodation and definition.

Among the other charaderistics, agent mobility [Whi97, KarT98], i.e., the ajents cgpability
of moving aaossthe Internet while exeauting, is being recgnized as a useful property for both the
adual exeaution and the mnceptua design of Internet applicaions. The physical movement of a
software agent —i.e., the transfer of its code, data, and state — towards the nodes where the resources
it needs to accessare dlocaed can provide for saving network bandwidth, and for increasing both
the reliability and the dficiency of the exeaution [Whi97, LanO98]. The logical movement of a
software agent, insteal, refers to the faad that, in agent-based Internet applicaions, it is suitable to
abstraa the Internet as a multiplicity of execution environments [FugPV98] and to design
applicaionsin terms of agentsthat are avare of the distributed nature of the target and that logically
move (when na even plysicdly) in dff erent exeaution environments during their exeaution.

The presence of mohility, together with the intrinsic openness of the Internet scenario, also
introduces svera problems in the design and development of Internet applicaions. Among the
others, coordination problems, because of the neal for agents to interad, communicae, and
synchronize their adivities, bah with ather agents (inter-agent coordination) and with resources on
the hosting exeaution environments (agent-environment coordination). With regard to physicd
mohility, relying only on traditional coordination models (i.e., pee-to-pea and client-server) for
global interadions between agents canna always be feasible if agents can fredy move & a world-
wide scde [CabLZ00]. With regard to logicd mohility, the fad that an agent exeautes and interads
on dfferent exeaution environments during its life has svera implicaions on application design.
On the one hand, ore must take into account that ead environment has its gedfic charaderistics

and seaurity palicies, which may somehow influence and/or constrain the behavior of an agent in

coordinating with it. On the other hand, ore may require the mordination adivities of application
agents to occur acarding to spedfic goplicaion reals, despite the different charaderistics of the
locd environment and the diff erent coordination rules there enaded.

To owercome the problems introduced by physicad mobility of agents, it has aready been
argued that both inter-agent and agent-environment coordination can effedively rely on an
infrastructure based ona multiplicity of independent interadions gaces (whether meding points or
tuple spaces), eat asociated to an exeaution environment and in charge of mediating both inter-
agent and agent-environment interadions [OmiZ99, CabLZ00]. This makes it possble for agents to
coordinate, via the mediation d the locd interadion space withou worrying abou ead cther's
pasition and reame. In addition, by enhancing interadion spaces with the capability of dynamicdly
programming their behaviors, ore can make interadion spaces behave in dfferent ways depending
on which agent issued which interadion event. This charaderistic can be used to suppat the logicd
mobhility of agents, by making their coordination context-dependent. On the one hand, interadion
spaces asociated to dff erent exeaution environments may exhibit diff erent behaviors in resporse to
the same interadion events. This enables to integrate in the form of new behaviors — transparently to
agents — whatever neaded environment-spedfic palicy to rule the locd coordination adivities. On
the other hand, ona given site, the same interadion events performed by agents belonging to
different applicaions can leal to dfferentiated, appli caion-dependent, behavior. Thus, agents can
cary-on the aode needed to implement and control an applicaion-spedfic coordination pdicy and
instal it in the form of a new behavior into the interadion spaceof the visited site. In this way,
agents can coordinate on the site being guaranteed that the interadion spacewill | et them coordinate
acordingly to their spedfic neals.

This paper is organized as follows. Sedion 2 lbiefly motivates the alopgion d locd
interadion spaces in Internet applicaions based on mohile agents, by spedficaly focussng on
tuple-based interadion spaces, and by introducing a smple cae study applicaion. Sedion 3 dtail s
the cncept of context-dependent coordination and dscusses, via several examples, how it can be
effedively exploited. Sedion 4 briefly survey several existing coordination systems and model that,
to dfferent extent, tend towards a model of context-dependency. Sedion 6 concludes the paper,

outlining open reseacch dredions.

2. From Global and Coupled to L ocal and Uncoupled I nteractions

Physicd mohility of agentsintroduces peauliar problems that discourage the generali zed adoption o
traditional coordination models, such as pee-to-pea message-passng and client-server, which
enforceglobal and couped interadions. First, the globality of the Internet scenario and, therefore, of
the spaceof possble interadions, can make communicaions between dstant agents inefficient and
unreliable, aso cdling for complex infrastructure to ded with message forwarding [MurP99], and
lookup d agents positions and rames. Seaond, the intrinsic autonamy and dynamicity of agents
clashes with the strict couging (in terms of bath synchronization d the adivities and rnecessty of
sharing a ammmon rame space enforced by these models.

The dternative is to make aent coordination rely, whenever possble, on an infrastructure
enforcing locd and urcouged interadions. On the one hand, interadions are to be cnfined within a
locd interadion space aciated to the locd exeaution environment. On the other hand, the locd
interadion space shoud ad as the medium through which asynchronows and anonymous (i.e.,
uncouped) interadions may occur. The mediation d the interadion space ca make it possble for
agentsto indiredly interad with ather agents disregarding their current paositions and remes, and for
the locd environment to make the interadion space at as the gate through which agent can access
the locd resources. Although dfferent kinds of infrastructures can be @nceved providing this
charaderistics and inspired by different coordination models (e.g., medings [Whi97] or event-
channels [Bau98)), we spedficdly suggest the adoption d an infrastructure based on independent
tuple spaces [AhuCG86] associated to ead exeaution environment. An agent on a site — via storing
and retrieving of tuples in the locd tuple space— can exchange data and knavledge messages with
other agents, in an asociative way, whoever and wherever these ggents are, and whenever they will
read (have written) the messages. In addition, an environment can publish in the form of tuples in
the locd spaceits pulic resources, to be accesed by locdly exeauting agents.

Let us consider an applicaion in which a mobhil e seacher agent roams an iti nerary of Internet
sites to accessand analyze spedfic HTML pages. The seacher agent arrives at a site, retrieves the
needed data, and continues its itinerary. However, if the searcher agent discovers the presence of
other interesting sites (via HTML links) nat originaly in itsitinerary, it can clone itself and let the
clones go to those sites. This can generate atree of seacher agents, and makes it likely for two

agents to arrive in the same site a different times. This stuation must be avoided by coordinating

4

the agents movements: when on a site, a seacher agent must know if the site has already been
visited or nat by anather seacher agent.

Since aseacher agent not only does not know where the other seacher agents are, bu it also
ignores who and hav many they are, relying on pee-to-pee interadion ketween them is nat
feasible: seacher agents are forced to refer to a fixed, well-known, “home aent”, ading as
mediator for al seacher agents, introducing performance and reliability problems, and aso
complicaing the goplicaion design. Instead, a tuple spaceinfrastructure can be exploited in a very
simple and elegant way, leading to a more dficient and simple gplicaion design. When a seacher
agent arrives on a site, it simply chedks the locd tuple spacefor the presence of a tuple left by
ancther seacher agent on a previous visit. If the tuple is nat found, the site has never been visited
and the incoming seacher agent isin charge of leaving atuplein itsturn, to mark its current visit.

In the @ove example, the tuple space— duwe to the asciative acces to tuples — can be
effedively used also to accessthe information abou the locd HTML files. The aministrator can
write, in the tuple space tuples in the form: (flename,extension,keyword,modification_time,size).
Seacher agents, by their side, can retrieve information abou locd HTML files related to the

argument “coordination’, by asking for tuples matching: (string?,“html”,”coordination”,date?,int?).
3. Towards Context-Dependent Coordination

A modd of locd and urcouped interadions not only fits the physicd mohility of agents, but also
invites thinking applicaions in terms of logicd mobility. When an agent migrates to a new
exeaution environment, its interadion space fianges acordingly and is confined within the new
environment. In ather words, the ajent's percavable world changes as a @nsequence of its
movement.

Even if the interadion model is the same independently of the environment, agents are likely
to face several problems in procealing with their coordination adivities in al the different
environments they visit. First, coordinating with the agents residing in a foreign environment may
require fadng al the typicd problems of open systems, such as oppatunistic behavior in
interadions, heterogeneity of languages and protocols [Zam0Q]. Second, ead environment has its
spedfic charaderistics and may somehow constrain the behavior of an agent in coordinating with it,

for seaurity or resource @ntrol reasons. Finaly, despite the different charaderistics of eadh

environment, appli cation agents may still require that their coordination accurs acarding to spedfic
applicaion reals.

In such a scenario, if the interadion space is smply an infrastructure for storing and
forwarding of data and message, agents have to embed in their code dl the intelligence needed to
effedively hande their coordination adivities in foreign exeaution environments. Alternatively, ore
can think abou having the interadion space itself in charge of the burden of handing all
coordination adivities, to med ether environment-spedfic needs, or applicaion-spedfic ones, or
bath. However, this requires the interadion spaceto be somehow adive and to enable adynamic
adaptation d its behavior in resporse to interadion events.

For instance, ore can enhance the basic tuple-space model towards a programmable tuple
gpace model: for any kind d accessevents, a new behavior in resporse to it can be programmed to
override the basic behavior of the tuple space (i.e., storing and extradion d tuples based on a
statelessand bult-in pattern-matching medanism). To this end, ore must: (i) charaderize the kind
of accessevents of interest, in terms the identity of the agent performing it, the primitive used to
access the tuple space and the parameter tuple supdied in the primitive; (i) express the new
behavior (also cdled reaction) to be assumed by the tuple spacein resporse to this kind o access
events. Similar considerations may apply when considering the ehancement towards
programmabilit y of interadion spaces other than those based onthe tuple spacemodel

The aoption d a programmable tuple spacemodel in mobile-agent Internet applicaions, as
well as of any model based on pogrammable and locd interadion spaces, naturally leals to a model
of context-dependent coordination. As discussd in the following of this sdion with reference to
programmable tuple spaces, this enables. (i) the alministrator to adapt the behavior of the
interadion space to enforce — transparently to agents — site-spedfic pdicies on the locd
interadions; (ii) applicaion agents to dynamicdly adapt the behavior of the interadion space
acordingly to spedfic goplicaion reeds.

3.1 Environment-Dependent Coordination

Agents, while accedng a tuple space &ways with the same interface can have the semantics of
their coordination adivities (as well as their perception d the environment) affeded by the spedfic
behavior programmed for the locd tuple space In ather words, the same interadions can have

different effeds depending on the site in which they are performed. This can be used bah to embed

6

seaurity paliciesin the tuple space andto help agents entering the new environment withou having
to explicitly take in charge of all the issues implied in exeauting in and accessng a foreign
environment.

Enforcing Security. When a site opens itself to the exeaution d mohile agents, it must be avare
that malicious agents are likely to arrive & the site and undrmine the integrity of its data and
resources, which must be therefore proteded from unauthorized accesses. Agents, ontheir side, may
not be avare of the seaurity palicies adopted by an exeaution environment, so that their interadions
with an environment are likely to issue alarge number of seaurity exceptions, to be handled by the
agents themselves. However, if al the interadions with the ewvironment are mediated by a
programmable tuple space the @owve problems can find a simple and elegant solution. In fad, the
administrator can program the behavior of the tuple spaceso as to make aty unauthorized accessto
the tuple space harmless withou requiring the agent to hande exceptions. In the gplicaion
example, if a seacher agent tries to extrad atuple representing a HTML file (while it has only the
right to read that kind d tuples) a properly programmed tuple space ca provide that tuple to agent
withou adually extrading it from the tuple space As an additional example, a stateful readion can
be programmed to let seacher agents read orly a spedfied amourt of HTML tuples. once the
spedfied amournt has been extraded, the tuple spacesimply starts appeaing to agents as if it does
not contain further HTML tuples. In bah examples, agents do nd experience any exception when
violating the accescontrol padlicies of the environment: they simply perceve adifferent view of the
tuple space ontent, while the locd environment can maintain and enforceits saurity palicies.
Handling Heterogeneity. Different exeaution environments can adopt different choices w.r.t. the
format of their data and resources qored, as well as w.r.t. their representation in the locd tuple
gpace Agents, in these caes, have to explicitly ded with heterogeneity and somehow discover how
to fruitfully access the ewironment. When adopting a programmable tuple space model, a
completely different perspedive can be adopted. In particular, a tuple space ca be programmed so
as to read to the acces performed by agents by somehow transforming the agents’ request and
making them homogeneous to the locd representation. Therefore, on the one hand an agent can
percave atuple space a if it were homogeneous to its expedations, on the other hand, the
environment is not forced to change its tuple-based representation d the eavironment or dugicate it

in dfferent formats. In the gplicaion example, seacher agents look ona site for HTML files

having the “html” extension, by asking for the mrrespondng HTML tuples. If the eavironment, by
its sde, stores HTML pages in files having the “htm” extensions, and shapes its tuples acardingly,
a seacher agent, urlessintelligent enowgh, has no pashility of discovering the presence HTML
pages of that site. Then, the alministrator (which is suppased to know that most of the agents will
look for “html” files) can modify the behavior of the tuple space so as to transform the agents
requests into requests for “htm” files, transparently to agents. In ather words, the aministrator
modifies the matching medanisms asto make “html” match with “htm” in HTML tuples.

Supporting Open Interactions. Exploiting tuple spaceprogrammability to ded with heterogeneity
issues naturally extends also to these caes in which a site is suppcsed to be open to host the
exeaution d agents belonging to dfferent applicaions and aganizations, posshbly heterogeneousin
terms of suppated languages and protocols, and reverthelessin need of coordinating with eadh
other. Again, a tuple space ca be used as a mediator, so as to suppat the wordination adivities
among agroup d heterogeneous agents. Even more, atrusted site can be used to ad as an impartial
arbiter, in charge of controlli ng the interadions of agents with ather, passbly self-interested, agents,
that would be likely to be unfruitful or damaging the ayents, otherwise. As an example still related
to the information retrieval area the tuple space ca be used so as to control the behavior of
oppatunistic “advertising agents’ that coud have interest in dverting the reseach o seacher

agents toward spedfic commercial sites.

3.2 Application-Dependent Coordination

Applicaion designers can exploit the programmability of the tuple spaces in dfferent ways. It can
be used to fadlitate the accasto the information onthe visited site, to suppat the exchange of
complex knowledge between agents and to implement complex coordination protocols. More
generally, applicaion designers can exploit programmability of tuple spaces as to adapt the
interadion model to their spedfic, applicaion-dependent, neals. Of course, since these
modificaions of the tuple spaces behaviors are intended to med spedfic goplicaion reals, some
form of confinement must be provided by the tuple spaces to ensure that any application-spedfic
behavior can affed only those accesevents performed by agents of that spedfic goplicaion.

Facilitating Access. Let us consider again the gplication example. To avoid dugicaed work, ore
can think abou having seacher agents put a "marker" tuple in the spaceof the visited sites. This

makes later incoming seacher agents of the same gplicaion aware of the fad that the site has

8

already been visited. Even better, the marker tuple can report the time of the visit: later incoming
seacher agents, in this case, can simply deted which files have been modified since the previous
visit and colled only the information that is updated w.r.t. that held by the ealier visiting agent.
However, the basic pattern matching mecdhanism would force aseacher agent to retrieve dl the
tuples representing fil es and, subsequently, to selea only those representing files which have been
modified since the last visit. Therefore, the gplicaion cdls for a different pattern-matching
mechanism, to effedively suppat itsinter-agent interadion reeds, i.e., ore that can make it possble
to seled al HTML tuples in which the modification_time field is greaer than the one spedfied in the
template tuple. Of course, ony thase accesevents performed by agents of the goplicaion example
must trigger the readion leading to the new pattern-matching mechanism. That is, the spedfic
pattern-matching mecdhanism has to influence only that appli cation context.

Exchanging Knowledge. In the gplicaion example, putting a marker tuple in the spaceto be real
by other application agents is a sort of knowledge exchange between agents of the same
applications. "I have visited this ste & time T and, if any agent ever reads that tuple, has to know
that it has to analyze only those HTML files that has been modified sincetime T". However, when
we designed the gplicaion, we dready knew that the gpli cation was compased of multiple ayents,
which were likely to arrive onthe same site & different times. Therefore, we designed ead agent so
as to explicitly look for marker tuples in the visited site. Let us now suppacse, insteal, that an agent
does nat know that there ae other appli cation agents that can passbly have visited the same site in
the past. In this case, of course, an agent does nat worry at al abou aaquiring this knowledge by
chedking for the presence of a marker tuple in the tuple space Actualy, thisis avery common case
in multi-agent applications: an agent aaquires sosme sorts of new knowledge or expertise (“I know
what information was in that site & time X”) that can be very useful to the other agents to improve
their work (“If | go to that site | have to analyze updated information orly”) and aher agents,
instead, canna think at aqquiring (“Why shoud | suppcse that someone dse has alrealy visited a
site?’). Inthe presence of a programmable tuple spacemodel, the knowledge ayents aqquire can, in
several cases, be enbedded in the form of new tuple space behavior, that is meant to influence
further accesses to the tuple space performed by other agents of the same gplicaion. In aher
words, an agent can install in atuple space areadion that refleds, in term of produced information,

the knowledge aquired, to be transferred to ather applicaion agents. Via the readion, dher

appli cation agents can exploit this knowledge in a transparent way, withou having to be explicitly
informed and without being forced to ask for this knowledge. With regard to the @bove examples, an
agent that has visited a site can install areadionthat returns, to ather agents of the same gplicaion,
only those files that have been modified sinceits last visit. In that way, ancther agent arriving there
does not have to knov or to worry abou previous visits, becaise the readion guarantees the
avoidance of dupgicaed work. The @ove example shows how making coordination on a site
appli cation-dependent can leal to a very powerful model, which is likely to smplify inter-agent
coordination and to enable dynamic exchange of knowledge withou influencing at al the agent
code.

Implementing Coordination Protocols. The burden of implementing a @ordination protocol,
whether invalving agents interading in a pee-to-pea way or indiredly via anot-programmable
tuple space increases the mmplexity of agents. In fad, agents are in charge of implementing in their
code the caability of diredly handliing and controlling the proper exeaution d the wordination
protocols. A better and cleaner solutionwould be to charge the interadion spaceitself (i.e., the tuple
space of the burden of controlling the wordination protocols. In particular, a programmable tuple
gpace ca expressthe wmntrol part of the wordination protocols in terms of behaviors in resporse to
access events. This can free aents from the duty of adually controlling the exeaution d the
protocol, and provides for a dean separation d concens between the “computational” task of

appli cation agents and the “coordination rules’ required for the protocols of the gplication.
4. Context-Dependent Coordination in Existing Systems

A few of the proposals in the aeaof mohbile ayents explicitly focus on coordination models suited
to mohility. Also, to ou knowledge, nore of these propasals explicitly introduce mncepts ssmehow
related to the one of context-dependent coordination.

MARS (Mobile Agent Readive Spaces), developed at the University of Modena and Reggio
Emilia, and firstly described in [CabLZ98], implements a portable and programmable Linda-like
coordination architedure for Java mohbile agents, which naturally suppats a cntext-dependent
coordination model. Globally, the MARS architedure is made up d a multiplicity of independent
programmable tuple spaces, ea ore ssciated to anode and accessed by (and ony by) the agents
locdly exeauting in that node: in ather words, in MARS, logicd mohility of application agents has

10

to necessarily imply their physicd mohility. MARS tuple spaces can be independently programmed
by assciating readions to accessevents, via meta-level tuples stored in a meta-level tuple space A
meta-level tuple represents a spedfic event (or classof accessevents) in terms of identity of the
invoking agents, type of operation performed, type of tuple/template provided. When an access
event performed onthe base level MARS tuple spaces matches the meta-level tuple, the exeaution
of amethod d a spedfied Java objed is triggered to replacethe basic pattern-matching mechanism.
Several meta-tuples can match a single accesevent, in which case dl the mrrespondng readions
are omposed and exeauted. When a readion method exeautes, it is provided with the information
abou the identity of the agents that has triggered the readion, the operation it has performed, as
well as the output of the matching mecdhanism (or of the previously exeauted readion in the
pipeline). The fad that a readion can be a&sciated to access events either when performed by
agents with a spedfic identity or independently of the identity of the accedng agents enables for
bath environment-dependent coordination (the readion applies to al agents), and application
dependent one (the readion applies only to spedfic agents).

The TUCSoN model [OmizZ99], developed in the cntext of a reseach projed affili ated to
MARS, adops a very similar architedural model, and enhances it by making it possble for agents
to refer to remote tuple spaces via URLS, as an Internet service This enforces network-awareness
and logicd mohility withou forcing physicd agent mohility. With regard to the tuple spacemodd,
TuCSoN resembles MARS in its full programming capability of tuple spaces, athough TUCSoN it
defines logic tuple spaces where bath tuples and tuple spacebehaviors are expressed in terms of
untyped first-order logic terms, and where unification is the basic pattern-matching mecdanism.

The LIME model attempts to facethe problem of handling interadions in the presence of
mobhility in a more general way, also including mobhile users and devices [PicMR99]. Each “agent”,
whether a software agent, an Internet node, or a physicd mobile device owns and caries onin its
movement a tuple space The ayent-owned tuple spaceis the only medium provided to the agent
itself for interadions. Whenever the agent keegps in touch (i.e., gets conreded) with ancther agent,
the tuple spaces owned by ead of the agents merge together, thus alowing to interad via the
merged tuple space A limited form of readivity is provided to automaticadly move tuples aaoss
tuple spaces, and to ndify agents abou the events occurring in their tuple space Althowgh na

explicitly mentioned by their designers, LIME naturally promotes a primitive form of context-

11

dependent coordination: the dfed of an agent accessng to its own-tuple space ca be very different
depending on whether the tuple spaceis currently merged with aher tuple spaces and which ores,
that is, depending onwhich context the agent currently belongs to.

The model of Law-governed interadions, described in [MinUOQ], addresses the problem of
making pee-to-pea coordination within a group d nonmobile agents obey to a set of spedfied
rules. An agent can initiate agroup,and fix the rules to be respeded by other agents willi ng to enter
and interad within the group. These rules are typicdly seaurity-oriented, and express which
operations the agents are dlowed to perform, and in which arder. To enforce these rules, the model
dynamicdly associates a ontroll er processto ead agent that joins the group. The @ntroll er process
intercepts all messages to from the agent and, by coordinating with ather controllers, cheds their
compatibility with the enforced rules. Although the Law-governed interadion model does not
address in any way the problems related to agent mobility and daes nat explicitly identify
environment-dependent and applicaion-dependent coordination, it has the full potential for
enforcing context-dependent coordination in complex systems of nornrmobile ayents interading in a
pea-to-pea way.

As afina nate, it is interesting to nde that the multi-agent systems community is recently
recognizing that interadions in agent systems can nolonger simply rely on the agent capability of
communicaing via aent communicaion languages and d ading acwordingly to the
need/expedations of ead agent in the system. Instead, concepts sich as “organizationa rules’ and
“socia laws’ are recaving more and more dtention [MosT95, DemC96, FerG98], and are leading
to a variety of models and propcsals. However, these aoncepts and models often ladk of concrete
and efficient implementations. The mncept of context-dependent coordination introduced by this
paper is likely to fadlit ate the definition and the implementation o complex multi-agent systems on
the Internet, in that concepts such as organizationa rules and social laws can be eaily enforced by

tuple spaceprogramming.
5. Conclusionsand Work in Progress

In this paper, we have introduced the cncept of context-dependent coordination for mobile ayents,
and have shown haw this concept can be dfedively exploited in Internet applications. Defining a

framework in which agent coordinationin the Internet may easily be represented and controll ed, and

12

may be tuned to the spedfic neeals of both applicaions and environments, can simplify applicaion
design and management, and may represent an important driving force towards the successul
deployment of Internet appli cations based onmobhile agents.

Several issles not addressed by this paper till needs to be analyzed for the proposed concepts
to be dfedively usable and wed. In particular: (i) coordination infrastructures must be somehow
integrated with Agent Communication Languages [Fin94], to let agents interad in terms of high-
level, knowledge-based, information; (ii) roles and role models [Ken99, due to their importancein
the analysis and design of multi-agent applications, have to be somehow integrated in the model;
(i) spedfic software-engineeing methoddogies [Zam00] must be defined to help in developing
agent-based applicaions and in clealy devising whether and hav to exploit agent mohility and
context-dependency.

All the a&owe isaues are the airrent interest of our reseach group. In addition, we am at
defining a more general and formal nation d context-dependent coordination, passbly exploiting

already defined formal models for mobil e systems [CarG9§].

References

[AhuCGS86]S. Ahua, N. Carriero, D. Gelernter, “Linda and Friends’, IEEE Computer, Vol. 19,No.
8, pp. 2634, August 1986.

[Bau9g J. Baumann, F. Hohl, K. Rothermel, M. Stral3er, “Mole - Concepts of a Mohile Agent
System”, The World Wide Web Journal, Vol. 1,No. 3, pp. 123137, 1998.

[CabLZz98] G. Cabri, L. Leonardi, F. Zamborelli, “Readive Tuple Spaces for Mohile Agent
Coordination”, 2" Workshop onMobile Agents, LNCS No. 1477 Sept. 1998.

[CabLZ00Q] G. Cabri, L. Leonardi, F. Zamborelli, “Mobile-Agent Coordination Models for Internet
Applicaions”, IEEE Computer, Vol. 33,No. 2, pp. 8289, Feb. 2000.

[CarG98] L. Carddli, D. Gordon, “Mohile Ambients’, Founditions of Software Science and
Computational Structures, LNCS No. 1378, pp. 14055, 1998.

[DemC96] Y. Demazeau, A.C. Rocha Costa, “Popuations and Organizations in Open Multi-Agent
Systems’, 1% National Symposium on Parallel and Distributed Artificial Intelli gence”,
1996.

[DenNO9gJE. Denti, A. Natali, A. Omicini, “On the Expressve Power of a Language for
Programmable Coordination Media”, Procealings of the ACM Sympasium on Applied
Computing, ACM, 1998.

[Fin94 T. Finin a d., “KQML as an Agent Communicaion Language”, 3 International
Conferenceon Information Knowledge and Management”, November 1994.

[FerG98] J. Ferber, O. Gutknedt, “A Meta-Model for the Analysis and Design of Organizations
in Multi-Agent Systems”, 39 International Conference on Multi-Agent Systems, Paris
(F), July 1998,IEEECS Ress pp. 128135.

[FugPVv 98| A. Fuggetta, G. Picoo, G. Vigna, “Understanding Code Mohility”, IEEE Transadions on

13

[Gragg]

[KarT9g]

[Ken99

[LanO98g]

[MinUOQ]

[MosT95]

[MurP9g]

[OmiZ99]

Software Engineeing, Vol. 24,No. 5, pp. 352361,May 1998.

R. S. Gray, D. Kotz, G. Cybenko, and D. Rus, “D'Agents. Seaurity in a Multiple-
Language Mobile-agent System ", Mobile Agents and Seaurity, Ledure Notes in
Computer Science, No. 1419, pges 154187, Springer-Verlag, 1998.

N. M. Karnik, A. R. Tripathi, “Design Issues in Mobile-Agent Programming Systems”,
IEEE Concurrency, Vol. 6,No. 3, pp. 5261, July-September 1998.

E. Kendall, “Role Modelling for Agent Systems Analysis, Design and Implementation”,
1% International Symposium on Agent Systems and Applicaions’, Palm Springs (CA),
IEEECS Ress Oct. 1999.

D. B. Lange, M. Oshima, “Programming and Deploying Java™ Mobile Agents with
Aglets™” Addison-Wesley, Reading (MA), August 1998.

N.H. Minky, V. Ungureanu, “Law-Governed Interadion: A Coordination & Control
Medhanism for Heterogeneous Distributed Systems’, Draft Tedwnicd Report,
Department of Computer Science, Rutgers University, 2000, available &
http://www.cs.rutgers.edu/~minsky/pulbs.html.

Y. Moses, M. Tennehdtz, “Artificid Socia Systems’, Computers and Artificia
Intelligence Vol. 14,No. 3, pp. 533562, 1995.

A.L. Murphy, G.P. Picco, “Reliable Communications for Highly-Mobile Agents’, 1%
International Sympaosium on Agent Systems and Applicaions’, Paim Springs (CA),
IEEECS Ress Oct. 1999.

A. Omicini, F. Zamborlli, “Coordination for Internet Applicaion Development”,
Journal of Autonamous Agents and Multi-Agent Systems, Vol. 2, No. 3, pp. 251269,
Sept. 1999.

[PicMR99] G.P. Picco, A.M. Murphy, G.-C. Roman, “LIME: Linda Meds Mobility, 1999

[Whi97]

[ZamO0]

International Conference on Software Engineaing, Los Angeles (CA), ACM Press
1999.

J. White, “Mobile Agents’, in J. Bradshaw ed.. Software Agents, AAA| Press Menlo
Park (CA), pp. 437472, 1997.

F. Zambordlli, N. R. Jennings, A. Omicini, M. J. Wodldridge, “Agent-Oriented
Software Engineaing for Internet Applicaions’, in Coordination d Internet Agents:
Models, Tedindogies and Applicaions, Springer, 2000,to appea.

14

