
 1

 Context-dependency in Internet-agent Coordination

 Giacomo Cabri, Letizia Leonardi, Franco Zambonelli

 Dipartimento di Scienze dell’Ingegneria – Università di Modena e Reggio Emilia

 Via Campi 213/b – 41100 Modena – ITALY

 Phone: +39-059-376735 – Fax: +39-059-376799

 {giacomo.cabri, letizia.leonardi, franco.zambonelli}@unimo.it

 Abstract

 The design and development of Internet applications can take advantage of a

paradigm based on autonomous and mobile agents. However, agent mobility

introduces peculiar coordination problems in Internet applications. First, it suggests

the exploitation of an infrastructure based on a multiplicity of local interaction spaces.

Second, it may require coordination activities to be adapted both to the characteristics

of the execution environment where they occur and to the needs of the application to

which the coordinating agents belong. In this context, this paper introduces the concept

of context-dependent coordination based on programmable interaction spaces. On the

one hand, interaction spaces associated to different execution environments may be

independently programmed so as to lead to differentiated, environment-dependent,

behaviors. On the other hand, agents can program the interaction spaces of the visited

execution environments to obtain an application-dependent behavior of the interaction

spaces themselves. Several examples show how a model of context-dependent

coordination can be effectively exploited in Internet applications based on mobile

agents. In addition, several systems are briefly presented that, to different extent, define

a model of context-dependent coordination.

 Keywords: Internet Applications, Mobile Agents, Locality, Coordination

 Corresponding Author: Franco Zambonelli

 2

1. Introduction

 The design and development of Internet applications can effectively take advantage of an agent-

based approach. By conceiving and developing applications in terms of autonomous entities,

capable both of reacting to changes in the environment and of proactively dealing with unexpected

situations, one naturally deal with the intrinsic uncertainty and dynamicity of the Internet. In

addition, by exploiting the notion of sociality typical of the agent-oriented paradigm, one can more

easily decompose an application in terms of a multi -agent organization, where all the necessary

interaction protocols find a first-order accommodation and definition.

 Among the other characteristics, agent mobility [Whi97, KarT98], i.e., the agents’ capabilit y

of moving across the Internet while executing, is being recognized as a useful property for both the

actual execution and the conceptual design of Internet applications. The physical movement of a

software agent – i.e., the transfer of its code, data, and state – towards the nodes where the resources

it needs to access are allocated can provide for saving network bandwidth, and for increasing both

the reliabilit y and the eff iciency of the execution [Whi97, LanO98]. The logical movement of a

software agent, instead, refers to the fact that, in agent-based Internet applications, it is suitable to

abstract the Internet as a multiplicity of execution environments [FugPV98] and to design

applications in terms of agents that are aware of the distributed nature of the target and that logically

move (when not even physically) in different execution environments during their execution.

 The presence of mobilit y, together with the intrinsic openness of the Internet scenario, also

introduces several problems in the design and development of Internet applications. Among the

others, coordination problems, because of the need for agents to interact, communicate, and

synchronize their activities, both with other agents (inter-agent coordination) and with resources on

the hosting execution environments (agent-environment coordination). With regard to physical

mobilit y, relying only on traditional coordination models (i.e., peer-to-peer and client-server) for

global interactions between agents cannot always be feasible if agents can freely move at a world-

wide scale [CabLZ00]. With regard to logical mobilit y, the fact that an agent executes and interacts

on different execution environments during its li fe has several implications on application design.

On the one hand, one must take into account that each environment has its specific characteristics

and security policies, which may somehow influence and/or constrain the behavior of an agent in

 3

coordinating with it. On the other hand, one may require the coordination activities of application

agents to occur according to specific application needs, despite the different characteristics of the

local environment and the different coordination rules there enacted.

 To overcome the problems introduced by physical mobilit y of agents, it has already been

argued that both inter-agent and agent-environment coordination can effectively rely on an

infrastructure based on a multiplicity of independent interactions spaces (whether meeting points or

tuple spaces), each associated to an execution environment and in charge of mediating both inter-

agent and agent-environment interactions [OmiZ99, CabLZ00]. This makes it possible for agents to

coordinate, via the mediation of the local interaction space, without worrying about each other's

position and name. In addition, by enhancing interaction spaces with the capabilit y of dynamically

programming their behaviors, one can make interaction spaces behave in different ways depending

on which agent issued which interaction event. This characteristic can be used to support the logical

mobilit y of agents, by making their coordination context-dependent. On the one hand, interaction

spaces associated to different execution environments may exhibit different behaviors in response to

the same interaction events. This enables to integrate in the form of new behaviors – transparently to

agents – whatever needed environment-specific policy to rule the local coordination activities. On

the other hand, on a given site, the same interaction events performed by agents belonging to

different applications can lead to differentiated, application-dependent, behavior. Thus, agents can

carry-on the code needed to implement and control an application-specific coordination policy and

install it i n the form of a new behavior into the interaction space of the visited site. In this way,

agents can coordinate on the site being guaranteed that the interaction space will l et them coordinate

accordingly to their specific needs.

 This paper is organized as follows. Section 2 briefly motivates the adoption of local

interaction spaces in Internet applications based on mobile agents, by specifically focussing on

tuple-based interaction spaces, and by introducing a simple case study application. Section 3 details

the concept of context-dependent coordination and discusses, via several examples, how it can be

effectively exploited. Section 4 briefly survey several existing coordination systems and model that,

to different extent, tend towards a model of context-dependency. Section 6 concludes the paper,

outlining open research directions.

 4

2. From Global and Coupled to Local and Uncoupled Interactions

 Physical mobilit y of agents introduces peculiar problems that discourage the generalized adoption of

traditional coordination models, such as peer-to-peer message-passing and client-server, which

enforce global and coupled interactions. First, the globality of the Internet scenario and, therefore, of

the space of possible interactions, can make communications between distant agents ineff icient and

unreliable, also calli ng for complex infrastructure to deal with message forwarding [MurP99], and

lookup of agents' positions and names. Second, the intrinsic autonomy and dynamicity of agents

clashes with the strict coupling (in terms of both synchronization of the activities and necessity of

sharing a common name space) enforced by these models.

 The alternative is to make agent coordination rely, whenever possible, on an infrastructure

enforcing local and uncoupled interactions. On the one hand, interactions are to be confined within a

local interaction space associated to the local execution environment. On the other hand, the local

interaction space should act as the medium through which asynchronous and anonymous (i.e.,

uncoupled) interactions may occur. The mediation of the interaction space can make it possible for

agents to indirectly interact with other agents disregarding their current positions and names, and for

the local environment to make the interaction space act as the gate through which agent can access

the local resources. Although different kinds of infrastructures can be conceived providing this

characteristics and inspired by different coordination models (e.g., meetings [Whi97] or event-

channels [Bau98]), we specifically suggest the adoption of an infrastructure based on independent

tuple spaces [AhuCG86] associated to each execution environment. An agent on a site – via storing

and retrieving of tuples in the local tuple space – can exchange data and knowledge messages with

other agents, in an associative way, whoever and wherever these agents are, and whenever they will

read (have written) the messages. In addition, an environment can publish in the form of tuples in

the local space its public resources, to be accessed by locally executing agents.

 Let us consider an application in which a mobile searcher agent roams an itinerary of Internet

sites to access and analyze specific HTML pages. The searcher agent arrives at a site, retrieves the

needed data, and continues its itinerary. However, if the searcher agent discovers the presence of

other interesting sites (via HTML links) not originally in its itinerary, it can clone itself and let the

clones go to those sites. This can generate a tree of searcher agents, and makes it li kely for two

agents to arrive in the same site at different times. This situation must be avoided by coordinating

 5

the agents’ movements: when on a site, a searcher agent must know if the site has already been

visited or not by another searcher agent.

 Since a searcher agent not only does not know where the other searcher agents are, but it also

ignores who and how many they are, relying on peer-to-peer interaction between them is not

feasible: searcher agents are forced to refer to a fixed, well -known, “home agent” , acting as

mediator for all searcher agents, introducing performance and reliabilit y problems, and also

complicating the application design. Instead, a tuple space infrastructure can be exploited in a very

simple and elegant way, leading to a more eff icient and simple application design. When a searcher

agent arrives on a site, it simply checks the local tuple space for the presence of a tuple left by

another searcher agent on a previous visit. If the tuple is not found, the site has never been visited

and the incoming searcher agent is in charge of leaving a tuple in its turn, to mark its current visit.

 In the above example, the tuple space – due to the associative access to tuples – can be

effectively used also to access the information about the local HTML files. The administrator can

write, in the tuple space, tuples in the form: (filename,extension,keyword,modification_time,size).

Searcher agents, by their side, can retrieve information about local HTML files related to the

argument “coordination” , by asking for tuples matching: (string?,“html”,”coordination”,date?,int?).

3. Towards Context-Dependent Coordination

 A model of local and uncoupled interactions not only fits the physical mobilit y of agents, but also

invites thinking applications in terms of logical mobilit y. When an agent migrates to a new

execution environment, its interaction space changes accordingly and is confined within the new

environment. In other words, the agent's perceivable world changes as a consequence of its

movement.

 Even if the interaction model is the same independently of the environment, agents are likely

to face several problems in proceeding with their coordination activities in all the different

environments they visit. First, coordinating with the agents residing in a foreign environment may

require facing all the typical problems of open systems, such as opportunistic behavior in

interactions, heterogeneity of languages and protocols [Zam00]. Second, each environment has its

specific characteristics and may somehow constrain the behavior of an agent in coordinating with it,

for security or resource control reasons. Finally, despite the different characteristics of each

 6

environment, application agents may still require that their coordination occurs according to specific

application needs.

 In such a scenario, if the interaction space is simply an infrastructure for storing and

forwarding of data and message, agents have to embed in their code all the intelli gence needed to

effectively handle their coordination activities in foreign execution environments. Alternatively, one

can think about having the interaction space itself in charge of the burden of handling all

coordination activities, to meet either environment-specific needs, or application-specific ones, or

both. However, this requires the interaction space to be somehow active and to enable a dynamic

adaptation of its behavior in response to interaction events.

 For instance, one can enhance the basic tuple-space model towards a programmable tuple

space model: for any kind of access events, a new behavior in response to it can be programmed to

override the basic behavior of the tuple space (i.e., storing and extraction of tuples based on a

stateless and built -in pattern-matching mechanism). To this end, one must: (i) characterize the kind

of access events of interest, in terms the identity of the agent performing it, the primitive used to

access the tuple space, and the parameter tuple supplied in the primitive; (ii) express the new

behavior (also called reaction) to be assumed by the tuple space in response to this kind of access

events. Similar considerations may apply when considering the enhancement towards

programmabilit y of interaction spaces other than those based on the tuple space model

 The adoption of a programmable tuple space model in mobile-agent Internet applications, as

well as of any model based on programmable and local interaction spaces, naturally leads to a model

of context-dependent coordination. As discussed in the following of this section with reference to

programmable tuple spaces, this enables: (i) the administrator to adapt the behavior of the

interaction space to enforce – transparently to agents – site-specific policies on the local

interactions; (ii) application agents to dynamically adapt the behavior of the interaction space

accordingly to specific application needs.

3.1 Environment-Dependent Coordination

 Agents, while accessing a tuple space always with the same interface, can have the semantics of

their coordination activities (as well as their perception of the environment) affected by the specific

behavior programmed for the local tuple space. In other words, the same interactions can have

different effects depending on the site in which they are performed. This can be used both to embed

 7

security policies in the tuple space, and to help agents entering the new environment without having

to explicitl y take in charge of all the issues implied in executing in and accessing a foreign

environment.

 Enforcing Security. When a site opens itself to the execution of mobile agents, it must be aware

that malicious agents are likely to arrive at the site and undermine the integrity of its data and

resources, which must be therefore protected from unauthorized accesses. Agents, on their side, may

not be aware of the security policies adopted by an execution environment, so that their interactions

with an environment are likely to issue a large number of security exceptions, to be handled by the

agents themselves. However, if all the interactions with the environment are mediated by a

programmable tuple space, the above problems can find a simple and elegant solution. In fact, the

administrator can program the behavior of the tuple space so as to make any unauthorized access to

the tuple space harmless without requiring the agent to handle exceptions. In the application

example, if a searcher agent tries to extract a tuple representing a HTML file (while it has only the

right to read that kind of tuples) a properly programmed tuple space can provide that tuple to agent

without actually extracting it from the tuple space. As an additional example, a stateful reaction can

be programmed to let searcher agents read only a specified amount of HTML tuples: once the

specified amount has been extracted, the tuple space simply starts appearing to agents as if it does

not contain further HTML tuples. In both examples, agents do not experience any exception when

violating the access control policies of the environment: they simply perceive a different view of the

tuple space content, while the local environment can maintain and enforce its security policies.

 Handling Heterogeneity. Different execution environments can adopt different choices w.r.t. the

format of their data and resources stored, as well as w.r.t. their representation in the local tuple

space. Agents, in these cases, have to explicitl y deal with heterogeneity and somehow discover how

to fruitfully access the environment. When adopting a programmable tuple space model, a

completely different perspective can be adopted. In particular, a tuple space can be programmed so

as to react to the access performed by agents by somehow transforming the agents’ request and

making them homogeneous to the local representation. Therefore, on the one hand an agent can

perceive a tuple space as if it were homogeneous to its expectations; on the other hand, the

environment is not forced to change its tuple-based representation of the environment or duplicate it

in different formats. In the application example, searcher agents look on a site for HTML files

 8

having the “html” extension, by asking for the corresponding HTML tuples. If the environment, by

its side, stores HTML pages in files having the “htm” extensions, and shapes its tuples accordingly,

a searcher agent, unless intelli gent enough, has no possibilit y of discovering the presence HTML

pages of that site. Then, the administrator (which is supposed to know that most of the agents will

look for “html” files) can modify the behavior of the tuple space so as to transform the agents’

requests into requests for “htm” files, transparently to agents. In other words, the administrator

modifies the matching mechanisms so as to make “html” match with “htm” in HTML tuples.

 Supporting Open Interactions. Exploiting tuple space programmabilit y to deal with heterogeneity

issues naturally extends also to these cases in which a site is supposed to be open to host the

execution of agents belonging to different applications and organizations, possibly heterogeneous in

terms of supported languages and protocols, and nevertheless in need of coordinating with each

other. Again, a tuple space can be used as a mediator, so as to support the coordination activities

among a group of heterogeneous agents. Even more, a trusted site can be used to act as an impartial

arbiter, in charge of controlli ng the interactions of agents with other, possibly self-interested, agents,

that would be likely to be unfruitful or damaging the agents, otherwise. As an example still related

to the information retrieval area, the tuple space can be used so as to control the behavior of

opportunistic “advertising agents” that could have interest in diverting the research of searcher

agents toward specific commercial sites.

3.2 Application-Dependent Coordination

 Application designers can exploit the programmabilit y of the tuple spaces in different ways. It can

be used to facilit ate the access to the information on the visited site, to support the exchange of

complex knowledge between agents and to implement complex coordination protocols. More

generally, application designers can exploit programmabilit y of tuple spaces so as to adapt the

interaction model to their specific, application-dependent, needs. Of course, since these

modifications of the tuple spaces’ behaviors are intended to meet specific application needs, some

form of confinement must be provided by the tuple spaces to ensure that any application-specific

behavior can affect only those access events performed by agents of that specific application.

 Facilitating Access. Let us consider again the application example. To avoid duplicated work, one

can think about having searcher agents put a "marker" tuple in the space of the visited sites. This

makes later incoming searcher agents of the same application aware of the fact that the site has

 9

already been visited. Even better, the marker tuple can report the time of the visit: later incoming

searcher agents, in this case, can simply detect which files have been modified since the previous

visit and collect only the information that is updated w.r.t. that held by the earlier visiting agent.

However, the basic pattern matching mechanism would force a searcher agent to retrieve all the

tuples representing files and, subsequently, to select only those representing files which have been

modified since the last visit. Therefore, the application calls for a different pattern-matching

mechanism, to effectively support its inter-agent interaction needs, i.e., one that can make it possible

to select all HTML tuples in which the modification_time field is greater than the one specified in the

template tuple. Of course, only those access events performed by agents of the application example

must trigger the reaction leading to the new pattern-matching mechanism. That is, the specific

pattern-matching mechanism has to influence only that application context.

 Exchanging Knowledge. In the application example, putting a marker tuple in the space to be read

by other application agents is a sort of knowledge exchange between agents of the same

applications: "I have visited this site at time T and, if any agent ever reads that tuple, has to know

that it has to analyze only those HTML files that has been modified since time T". However, when

we designed the application, we already knew that the application was composed of multiple agents,

which were likely to arrive on the same site at different times. Therefore, we designed each agent so

as to explicitl y look for marker tuples in the visited site. Let us now suppose, instead, that an agent

does not know that there are other application agents that can possibly have visited the same site in

the past. In this case, of course, an agent does not worry at all about acquiring this knowledge by

checking for the presence of a marker tuple in the tuple space. Actually, this is a very common case

in multi -agent applications: an agent acquires some sorts of new knowledge or expertise (“ I know

what information was in that site at time X”) that can be very useful to the other agents to improve

their work (“ If I go to that site I have to analyze updated information only”) and other agents,

instead, cannot think at acquiring (“Why should I suppose that someone else has already visited a

site?”). In the presence of a programmable tuple space model, the knowledge agents acquire can, in

several cases, be embedded in the form of new tuple space behavior, that is meant to influence

further accesses to the tuple space performed by other agents of the same application. In other

words, an agent can install i n a tuple space a reaction that reflects, in term of produced information,

the knowledge acquired, to be transferred to other application agents. Via the reaction, other

 10

application agents can exploit this knowledge in a transparent way, without having to be explicitl y

informed and without being forced to ask for this knowledge. With regard to the above examples, an

agent that has visited a site can install a reaction that returns, to other agents of the same application,

only those files that have been modified since its last visit. In that way, another agent arriving there

does not have to know or to worry about previous visits, because the reaction guarantees the

avoidance of duplicated work. The above example shows how making coordination on a site

application-dependent can lead to a very powerful model, which is li kely to simpli fy inter-agent

coordination and to enable dynamic exchange of knowledge without influencing at all the agent

code.

 Implementing Coordination Protocols. The burden of implementing a coordination protocol,

whether involving agents interacting in a peer-to-peer way or indirectly via a not-programmable

tuple space, increases the complexity of agents. In fact, agents are in charge of implementing in their

code the capabilit y of directly handling and controlli ng the proper execution of the coordination

protocols. A better and cleaner solution would be to charge the interaction space itself (i.e., the tuple

space) of the burden of controlli ng the coordination protocols. In particular, a programmable tuple

space can express the control part of the coordination protocols in terms of behaviors in response to

access events. This can free agents from the duty of actually controlli ng the execution of the

protocol, and provides for a clean separation of concerns between the “computational” task of

application agents and the “coordination rules” required for the protocols of the application.

4. Context-Dependent Coordination in Existing Systems

 A few of the proposals in the area of mobile agents explicitl y focus on coordination models suited

to mobilit y. Also, to our knowledge, none of these proposals explicitl y introduce concepts somehow

related to the one of context-dependent coordination.

 MARS (Mobile Agent Reactive Spaces), developed at the University of Modena and Reggio

Emilia, and firstly described in [CabLZ98], implements a portable and programmable Linda-like

coordination architecture for Java mobile agents, which naturally supports a context-dependent

coordination model. Globally, the MARS architecture is made up of a multiplicity of independent

programmable tuple spaces, each one associated to a node and accessed by (and only by) the agents

locally executing in that node: in other words, in MARS, logical mobilit y of application agents has

 11

to necessarily imply their physical mobilit y. MARS tuple spaces can be independently programmed

by associating reactions to access events, via meta-level tuples stored in a meta-level tuple space. A

meta-level tuple represents a specific event (or class of access events) in terms of identity of the

invoking agents, type of operation performed, type of tuple/template provided. When an access

event performed on the base level MARS tuple spaces matches the meta-level tuple, the execution

of a method of a specified Java object is triggered to replace the basic pattern-matching mechanism.

Several meta-tuples can match a single access event, in which case all the corresponding reactions

are composed and executed. When a reaction method executes, it is provided with the information

about the identity of the agents that has triggered the reaction, the operation it has performed, as

well as the output of the matching mechanism (or of the previously executed reaction in the

pipeline). The fact that a reaction can be associated to access events either when performed by

agents with a specific identity or independently of the identity of the accessing agents enables for

both environment-dependent coordination (the reaction applies to all agents), and application-

dependent one (the reaction applies only to specific agents).

 The TuCSoN model [OmiZ99], developed in the context of a research project aff ili ated to

MARS, adopts a very similar architectural model, and enhances it by making it possible for agents

to refer to remote tuple spaces via URLs, as an Internet service. This enforces network-awareness

and logical mobilit y without forcing physical agent mobilit y. With regard to the tuple space model,

TuCSoN resembles MARS in its full programming capabilit y of tuple spaces, although TuCSoN it

defines logic tuple spaces where both tuples and tuple space behaviors are expressed in terms of

untyped first-order logic terms, and where unification is the basic pattern-matching mechanism.

 The LIME model attempts to face the problem of handling interactions in the presence of

mobilit y in a more general way, also including mobile users and devices [PicMR99]. Each “agent” ,

whether a software agent, an Internet node, or a physical mobile device, owns and carries on in its

movement a tuple space. The agent-owned tuple space is the only medium provided to the agent

itself for interactions. Whenever the agent keeps in touch (i.e., gets connected) with another agent,

the tuple spaces owned by each of the agents merge together, thus allowing to interact via the

merged tuple space. A limited form of reactivity is provided to automatically move tuples across

tuple spaces, and to notify agents about the events occurring in their tuple space. Although not

explicitl y mentioned by their designers, LIME naturally promotes a primitive form of context-

 12

dependent coordination: the effect of an agent accessing to its own-tuple space can be very different

depending on whether the tuple space is currently merged with other tuple spaces and which ones,

that is, depending on which context the agent currently belongs to.

 The model of Law-governed interactions, described in [MinU00], addresses the problem of

making peer-to-peer coordination within a group of non-mobile agents obey to a set of specified

rules. An agent can initiate a group, and fix the rules to be respected by other agents willi ng to enter

and interact within the group. These rules are typically security-oriented, and express which

operations the agents are allowed to perform, and in which order. To enforce these rules, the model

dynamically associates a controller process to each agent that joins the group. The controller process

intercepts all messages to from the agent and, by coordinating with other controllers, checks their

compatibilit y with the enforced rules. Although the Law-governed interaction model does not

address in any way the problems related to agent mobilit y and does not explicitl y identify

environment-dependent and application-dependent coordination, it has the full potential for

enforcing context-dependent coordination in complex systems of non-mobile agents interacting in a

peer-to-peer way.

 As a final note, it is interesting to note that the multi -agent systems community is recently

recognizing that interactions in agent systems can no longer simply rely on the agent capabilit y of

communicating via agent communication languages and of acting accordingly to the

need/expectations of each agent in the system. Instead, concepts such as “organizational rules” and

“social laws” are receiving more and more attention [MosT95, DemC96, FerG98], and are leading

to a variety of models and proposals. However, these concepts and models often lack of concrete

and eff icient implementations. The concept of context-dependent coordination introduced by this

paper is li kely to facilit ate the definition and the implementation of complex multi -agent systems on

the Internet, in that concepts such as organizational rules and social laws can be easily enforced by

tuple space programming.

5. Conclusions and Work in Progress

 In this paper, we have introduced the concept of context-dependent coordination for mobile agents,

and have shown how this concept can be effectively exploited in Internet applications. Defining a

framework in which agent coordination in the Internet may easily be represented and controlled, and

 13

may be tuned to the specific needs of both applications and environments, can simpli fy application

design and management, and may represent an important driving force towards the successful

deployment of Internet applications based on mobile agents.

 Several issues not addressed by this paper still needs to be analyzed for the proposed concepts

to be effectively usable and used. In particular: (i) coordination infrastructures must be somehow

integrated with Agent Communication Languages [Fin94], to let agents interact in terms of high-

level, knowledge-based, information; (ii) roles and role models [Ken99], due to their importance in

the analysis and design of multi -agent applications, have to be somehow integrated in the model;

(iii) specific software-engineering methodologies [Zam00] must be defined to help in developing

agent-based applications and in clearly devising whether and how to exploit agent mobilit y and

context-dependency.

 All the above issues are the current interest of our research group. In addition, we aim at

defining a more general and formal notion of context-dependent coordination, possibly exploiting

already defined formal models for mobile systems [CarG98].

 References

 [AhuCG86]S. Ahuja, N. Carriero, D. Gelernter, “Linda and Friends” , IEEE Computer, Vol. 19, No.
8, pp. 26-34, August 1986.

 [Bau98] J. Baumann, F. Hohl, K. Rothermel, M. Straßer, “Mole - Concepts of a Mobile Agent
System”, The World Wide Web Journal, Vol. 1, No. 3, pp. 123-137, 1998.

 [CabLZ98] G. Cabri, L. Leonardi, F. Zambonelli , “Reactive Tuple Spaces for Mobile Agent
Coordination” , 2nd Workshop on Mobile Agents, LNCS No. 1477, Sept. 1998.

 [CabLZ00] G. Cabri, L. Leonardi, F. Zambonelli , “Mobile-Agent Coordination Models for Internet
Applications ” , IEEE Computer, Vol. 33, No. 2, pp. 82-89, Feb. 2000.

 [CarG98] L. Cardelli , D. Gordon, “Mobile Ambients” , Foundations of Software Science and
Computational Structures, LNCS No. 1378, pp. 140-155, 1998.

[DemC96] Y. Demazeau, A.C. Rocha Costa, “Populations and Organizations in Open Multi -Agent
Systems”, 1st National Symposium on Parallel and Distributed Artificial Intelli gence”,
1996.

 [DenNO98]E. Denti, A. Natali , A. Omicini, “On the Expressive Power of a Language for
Programmable Coordination Media”, Proceedings of the ACM Symposium on Applied
Computing, ACM, 1998.

 [Fin94] T. Finin at al., “KQML as an Agent Communication Language”, 3rd International
Conference on Information Knowledge and Management” , November 1994.

 [FerG98] J. Ferber, O. Gutknecht, “A Meta-Model for the Analysis and Design of Organizations
in Multi -Agent Systems”, 3rd International Conference on Multi -Agent Systems, Paris
(F), July 1998, IEEE CS Press, pp. 128-135.

 [FugPV98] A. Fuggetta, G. Picco, G. Vigna, “Understanding Code Mobilit y” , IEEE Transactions on

 14

Software Engineering, Vol. 24, No. 5, pp. 352-361, May 1998.

 [Gra98] R. S. Gray, D. Kotz, G. Cybenko, and D. Rus, “D'Agents: Security in a Multiple-
Language Mobile-agent System ” , Mobile Agents and Security, Lecture Notes in
Computer Science, No. 1419, pages 154-187, Springer-Verlag, 1998.

 [KarT98] N. M. Karnik, A. R. Tripathi, “Design Issues in Mobile-Agent Programming Systems”,
IEEE Concurrency, Vol. 6, No. 3, pp. 52-61, July-September 1998.

 [Ken99] E. Kendall , “Role Modelli ng for Agent Systems Analysis, Design and Implementation” ,
1st International Symposium on Agent Systems and Applications” , Palm Springs (CA),
IEEE CS Press, Oct. 1999.

 [LanO98] D. B. Lange, M. Oshima, “Programming and Deploying Java™ Mobile Agents with
Aglets™”, Addison-Wesley, Reading (MA), August 1998.

 [MinU00] N.H. Minky, V. Ungureanu, “Law-Governed Interaction: A Coordination & Control
Mechanism for Heterogeneous Distributed Systems”, Draft Technical Report,
Department of Computer Science, Rutgers University, 2000, available at
http://www.cs.rutgers.edu/~minsky/pubs.html.

 [MosT95] Y. Moses, M. Tenneholtz, “Artificial Social Systems”, Computers and Artificial
Intelli gence, Vol. 14, No. 3, pp. 533-562, 1995.

 [MurP99] A.L. Murphy, G.P. Picco, “Reliable Communications for Highly-Mobile Agents” , 1st

International Symposium on Agent Systems and Applications” , Palm Springs (CA),
IEEE CS Press, Oct. 1999.

 [OmiZ99] A. Omicini, F. Zambonelli , “Coordination for Internet Application Development” ,
Journal of Autonomous Agents and Multi -Agent Systems, Vol. 2, No. 3, pp. 251-269,
Sept. 1999.

 [PicMR99] G.P. Picco, A.M. Murphy, G.-C. Roman, “LIME: Linda Meets Mobilit y, 1999
International Conference on Software Engineering, Los Angeles (CA), ACM Press,
1999.

 [Whi97] J. White, “Mobile Agents” , in J. Bradshaw ed.: Software Agents, AAA I Press, Menlo
Park (CA), pp. 437-472, 1997.

 [Zam00] F. Zambonelli , N. R. Jennings, A. Omicini, M. J. Wooldridge, “Agent-Oriented
Software Engineering for Internet Applications” , in Coordination of Internet Agents:
Models, Technologies and Applications, Springer, 2000, to appear.

