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Abstract. Emerging distributed computing scenarios call for novel 
“autonomic” approaches to distributed systems development and 
management. In this position paper we analyze the distinguishing 
characteristics of those scenarios, discuss the inadequacy of traditional 
paradigms, and elaborate on primary role of “space” in modern 
distributed computing. In particular, we show that spatial abstractions 
promise to be basic necessary ingredients for a novel “spatial computing” 
paradigm, acting as a unifying framework for autonomic computing and 
communication. On this base, we propose a preliminary “spatial 
computing stack” to frame the key concepts and mechanisms of spatial 
computing. Eventually, we try to sketch a research agenda in the area. 

1. Introduction 

In the past few years, a variety of novel distributed computing scenarios have emerged 
that, although apparently very different from each other, share some key characteristics. 
By considering scenarios as diverse as P2P networks, multi-agent ecologies, pervasive 
computing systems, sensor networks, and robot swarms, one can easily recognize that 
[ZamP04]: (i) they all involve distributed computational and communication activities 
taking place in decentralized networks with a very large number of components and (ii) 
with a highly dynamic structure; (iii) components are embedded in some external dynamic 
environment, whether physical or computational, and their activities are influenced by 
their position in that environment.  

The large size and the dynamics of the network, as well as the unpredictability 
induced by environmental dynamics, make traditional approaches to distributed systems 
management – involving humans-in-the-loop and typically assuming the capability of 
centralized control – fall short. Novel approaches supporting autonomous self-
configuration and self-adaptation of activities in response to network and environmental 
dynamics are required.  

A variety of solutions exploiting specific forms of self-organization and self-
adaptation to solve specific application problems are being proposed (see [Dim04] for a 
comprehensive overview). The question of whether it is possible to devise a single 
unifying conceptual framework, applicable with little or no adaptations to scenarios as 
diverse as P2P networks and local networks of embedded sensors, is still open.  

In this position paper, without having the ambition of providing a definitive answer to 



  

the above question, we will try to identify the important role that will likely be played in 
that process by spatial abstractions. In addition to the fact that spatial abstractions 
naturally suit systems whose activity are situated in some environment, the key point is 
that a spatial computing model can facilitate the integration of autonomic feature in 
distributed systems. In particular: (i) the central role of the network is substituted by an 
abstraction of space, built over the network in an autonomous and adaptive way; (ii) all 
application-level activities are abstracted as taking place in such space; (iii) autonomic 
behavior emerge form both the capability of the system of dynamically adapting the 
structure of the space as well as from the capability of application-level components of 
sensing, acting in, and navigating that space.  

This paper is organized as follow. Section 2 outlines the key characteristics of modern 
scenarios and discusses the inadequacy of traditional approaches. Section 3 introduces 
“Spatial Computing” and discusses its basic concepts and advantages, and its relations 
with autonomic computing and communications. Section 4 proposes a “Spatial 
Computing Stack”, as a framework to organize and understand the basic abstractions and 
mechanisms involved in spatial computing. Section 5 sketches a rough research agenda in 
the area and concludes.   

2. Modern Distributed Systems Scenarios and the Need for Novel 
Approaches 

A variety of modern distributed computing scenarios exhibit characteristics challenging 
traditional approaches to network and distributed systems management.  

2.1 Key Characteristics 
Such scenarios include (i) micro-scale ones, i.e., networks of low-end computing devices 
typically distributed over a geographically small area (e.g., sensor networks [Est02], 
smart dusts [Pis00] and spray computers [Zam04]); (ii) medium-scale scenarios, i.e., 
networks of medium-end devices, distributed over a geographically bounded area, and 
typically interacting with each other via short/medium range wireless connections 
(pervasive computing systems and smart environments [GelSB02] and cooperative robot 
teams); (iii) global-scale scenarios, characterized by high-end computing systems 
interacting at a world-wide scale (the physical Internet, the Web, P2P networks [RipIF02] 
and multiagent systems ecologies [Kep02].   

Despite clear dissimilarities in structure and goals, one can also easily recognize some 
key common characteristics: 
• Large Scale: the number of nodes in all the above types of networks and 

consequently the number of components involved in a distributed application is 
typically very high and, due to decentralization, hardly controllable. It is not possible 
neither to enforce a strict control over the configuration of components (consider e.g., 
the nodes of a P2P network) nor to directly control each of them during execution 
(consider e.g., the nodes of a sensor network distributed in a landscape).   

• Network dynamism: the activities of components will take place in network whose 
structure derives from an almost random deployment process, and that is likely to 
change over time with unpredictable dynamics. Factors that may contribute to 
dynamically change the network topology include environmental contingencies or 



  

failure of components (very likely e.g., in sensor networks and pervasive computing 
systems) and mobility of nodes (as e.g., in robot teams and in network of smart 
appliances). In addition, at the application level, software components can be of an 
ephemeral or temporary nature (consider e.g. the peers of a P2P network).  

• Situatedness: The activities of components will be strongly related to their location in 
either a physical or a virtual computational environment. On the one hand, 
situatedness can be at the very core of the application (e.g. in sensor networks and in 
pervasive computing systems the very goal is to exploit the physical location of nodes 
and their capabilities to collect environmental data and to improve our interaction with 
the physical world). On the other hand, situatedness can relate to the fact that 
components can take advantage of their environment to organize the access to 
distributed resources (as e.g., in P2P data sharing networks). 

The first two characteristics (large size and network dynamism) compulsory call for self-
organizing and self-adapting approaches, enabling those systems to exhibit – both at the 
network and at the application level – autonomic behavior. In fact, if the dynamics of the 
network and of the environment compulsory require dynamic adaptation, the 
impossibility of enforcing a direct control over each component of the system implies that 
such adaptation must occur without any human intervention. The last characteristic, 
situatedness, calls for an approach that elects the environment, its spatial distribution, and 
its dynamics, to primary design dimensions, aspects which have been mostly disregarded 
by traditional approaches. In any case, the capability of self-organization and self-
adaptation cannot abstract from the capability of the system of becoming “context-
aware”, i.e., of letting components to perceive the local properties of the space in which 
they are situated, and to act and adapt their behavior on this basis.    

Summarizing: all presented scenarios of distributed computing share very similar 
characteristics and all require novel approaches promoting both autonomic behavior and 
an explicit modeling of situatedness. On this base, one could imagine that a single 
general-purpose distributed computing and communication paradigm, suitable for a 
variety of scenarios and enabling to face a variety of problems in a uniform way can be 
conceived. Unfortunately, traditional distributed computing paradigm appears not suitable 
to this purpose. 

2.2 Inadequacy of Traditional Approaches 
Early researches in parallel and distributed computing promoted a transparent 

distributed computing paradigm, in which the presence of an underlying network was 
totally hidden from application components [ChiC91]. The key motivation was that, to 
avoid the complexities inherent in having to deal with a distributed environment, it was 
necessary to hide distribution and enable components to execute and interact with each 
other as if they were all executing on a single, centralized, node. Figure 1a summarizes 
this by outlining that a component can interact with another one by simply “naming” it 
and disregarding its actual position.   

Unfortunately, a transparent approach to distributed computing is totally unsuitable 
for modern scenarios. First, promoting transparency is very costly and can hardly scale to 
large-scale systems, in that it requires the presence of complex global naming services. In 
addition, transparent – i.e., “by name” – interactions can be effectively supported only in 
the presence of static interaction patterns and closed systems, definitely not in the 



  

presence of network dynamics. Finally, a transparent distributed computing paradigm 
does not provide an appropriate abstraction to deal with the situatedness of components in 
a distributed environment: under this paradigm, the distributed environment does not 
exist.  

a) 

Send(msg, Alice)

I know who you are!

No matter where you are!
Send(msg, Alice)

I know who you are!

No matter where you are!   b) 

I know who you are!
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Figure 1. Interactions in: (a) a transparent distributed computing model; (b) a 
network-aware distributed computing model; (c) a spatial computing model. 

 
The limitations of transparent distributed computing became evident in the mid 90’s, 

with the advent of the Internet and of world-wide distributed computing.  Such global 
scenarios outlined the need for network-aware computing models, in which application 
components were made aware of the distributed and decentralized nature of their 
operational environment [Wal97]. The assumption in network-aware computing is to 
make all interactions rely on the explicit knowledge of the network allocation – i.e., the IP 
– of components and resources. Figure 1b summarizes this with regard to the interaction 
between two distributed components: an interaction relies on the knowledge on the local 
name of a component on a specific network node. 

Network-aware computing is suitable for large-scale network systems. First, it enables 
to explicitly take into account the costs involved in distributed interactions. Second, it 
involves local naming services which can scales well. However, network-aware 
computing does not provide at hand solutions to deal with network dynamics. If the 
structure of the network can dynamically change, and if nodes (and software components 
over them) can be of an ephemeral nature (i.e., intermittently available) a network-aware 
computing model requires to handle explicitly the exceptions caused by nodes 
unavailability. This naturally complicates the system’s execution and management and 
also increases the costs and complexity of discovery services. Also, as far as situatedness 
is concerned, the only actual environmental abstraction reduces to be the network itself, 
an abstraction which is quite low level and does not easily enable modeling the logical 
relations between the network components.  

3. Spatial Computing 

To overcome the limitations of network-aware computing without losing its advantages it 
is necessary to identify a general-purpose model that: 
• Hides the complexities intrinsic in dealing with a dynamic network. 



  

• Provides suitable and conceptually simple environmental abstractions. 
• Preserves an explicit awareness of the distribution of the scenarios. 

3.1 Key Concepts in Spatial Computing 
To this end, the key idea underlying spatial computing is to: 
• Make the concept of “network” – a discrete system of variously interconnected 

nodes – evolve into a concept of “space” – i.e., a metric continuum.  
• Let distributed components be aware of their surrounding space and to let them 

perceive (and possibly influence) the local properties of space. 
• Rely on such spatial perception for all management-level and application-level 

activities.  
In particular, in spatial computing, any type of networked environment is hidden below 
some of virtual metric n-dimensional space, mapped as an overlay over the physical 
network. The nodes of the network are assigned a specific area of the virtual space, and 
are logically connected to each other accordingly to the spatial neighborhood relations. 
Accordingly, each and every entity in the network, being allocated in some nodes of the 
network, is also automatically situated in a specific position in space.  In this way, 
components in the network are no longer “network-aware” but rather “space-aware”. On 
the one hand, components perceive their local position in space as well as the local 
properties of space (e.g., the locally available data and services) and possibly change 
them. On the other hand, the activities of components in that space are related to some 
sort of “navigation” in that space, which may include moving themselves to a specific 
different position of space or moving data and events in space according to 
“geographical” routing algorithms. The primary way to refer to entities in the network is 
by “position”, i.e., any entity is characterized by being situated in a specific position in 
the physical space. In other words, the concept of “names” loses its primary role. This is 
summarized in Figure 1c: an entity interacts to another entity by sending data to a position 
in space. 

Spatial computing models appear very suitable for the identified key characteristics of 
modern distributed computing scenarios: 
• Large size: the size of a network does not influence the models or the mechanisms, 

which are the same for a small network and for a dramatically large one. 
• Network dynamics: since the presence of the network is not directly perceived by 

components, the fact that it can be of a highly dynamic nature is irrelevant. The 
network is hidden behind a stable structure of space that is maintained despite 
network dynamism. 

• Situatedness: the abstraction of space is a conceptually simple abstraction of 
environment, which also perfectly matches the needs of those systems, such as 
pervasive computing systems and sensor networks, whose activities are strictly 
intertwined with the physical space. 

3.2 Examples of Spatial Computing Approaches 
We do not claim to have invented the spatial computing paradigm from scratch. Rather, 
we consider spatial computing as an emerging trend that is, more or less explicitly, 
making its appearance in diverse scenarios. 



  

As an example, consider a sensor network scenario with a multitude of wireless 
sensors randomly deployed in a landscape to perform some monitoring of environmental 
conditions [Est02]. There, all activities of sensors are intrinsically of a spatial nature. 
First, each sensor is devoted to local monitoring a specific portion of the physical space 
(that it can reach with its sensing capabilities). Second, components must coordinate with 
each other based on their local positions, rather than on their IDs, to perform activities 
such as detecting the presence and the size of pollution clouds, and the speed of their 
spreading in the landscape. All of this implies that components must be made aware of 
their relative positions in the spatial environment by re-constructing a virtual 
representation of the physical space [NagSB03]. Moreover, they can take advantage of 
“geographical” communication and routing protocols in which messages, data, and 
events, flow towards specific position of the physical/virtual space [RaoP03].     

Another example in which spatial concepts appear in a less trivial way is world-wide 
P2P computing. In P2P computing, an overlay network of peers is built over the physical 
network and, in that networks, peers act cooperatively to search specific data and 
services.  In first generation P2P systems (e.g., Gnutella [RipIF02]), the overlay network 
is totally unstructured, being built by having peers randomly connect to a limited number 
of other peers. Therefore, in these networks, the only effective way to search for 
information is message flooding. More recent proposals [Rat01, RowD01] suggest 
structuring the network of acquaintances into specific regular “spatial shapes”, e.g., a ring 
or an N-dimensional torus. When a peer connects to the networks, it occupies a portion of 
that spatial space, and networks with those other peers that are neighbors accordingly to 
the occupied position of space. Then, data and services are allocated in specific positions 
in the network (i.e., by those peers occupying that position) depending on their 
content/description (as can be provided by a function hashing the content into specific 
coordinates). In this way, by knowing the shape of the network and the 
content/description of what data/services one is looking for, it is possible to effectively 
navigate in the network to reach the required data/services. That is, P2P networks define a 
spatial computing scenario in which all activities of application components are strongly 
related to positioning themselves and navigating in an abstract metric space. It is also 
worth outlining that recent researches promote mapping such spatial abstractions over the 
physical Internet network so as to reflect the geographical distribution of Internet nodes 
(i.e., by mapping IP addressed into geographical physical coordinates [Row04]) and, 
therefore  improve efficiency. 

In addition to the above examples, other proposals in areas such as pervasive 
computing [Bor04] and self-assembly [MamVS04] explicitly exploit spatial abstractions 
(and, therefore, a sort of spatial computing model) to organize distributed activities. 

3.3 Autonomic Features in Spatial Computing 
Autonomic features, including the capability of a distributed system of self-configuring its 
activity, self-inspecting and self-tuning its behavior in response to changed conditions, or 
self-healing it in the presence of faults, are necessary for enabling spatial computing and, 
at the same time, are also intrinsically promoted by the adoption of a spatial computing 
model. 

On the one hand, to enable a spatial computing model, it is necessary to envision 
mechanisms to build the appropriate overlay spatial abstraction and to have such spatial 



  

abstraction be coherently preserved despite network dynamics. In other words, this 
requires the nodes of a network to be able to autonomously connect with each other, set 
up some sort of common coordinate systems, and self-position themselves in such space. 
In addition, this requires the nodes of the network to be able to self-reorganize their 
distribution in the virtual space so as to (i) make room for new nodes joining the network 
(i.e., allocate a portion of the virtual space to these nodes); (ii) fill the space left by nodes 
that for any reason leave the network; (iii) re-allocate the spatial distribution of nodes to 
react to node mobility. It is also worth outlining that, since the defined spatial structure 
completely shields the application from the network, it is also possible for a system to 
dynamically tune the structure of the space so as enforce some sorts of autonomic 
management of the network, transparently to the higher application levels. As an 
example, load unbalances in the network can be dynamically dealt, transparently from the 
application  level, by simply re-organizing the spatial structure so as to have overloaded 
nodes occupy a more limited portion of the space.   

On the other hand, the so defined spatial structure can be exploited by application 
level components to organize their activities in space in an autonomous and adaptive way. 
First of all, it is a rather assessed fact that “context-awareness” and “contextual activity”, 
i.e., the capabilities of a component to perceive the properties of the operational 
environment and of influencing them, respectively, are basic ingredients to enable any 
form of adaptive self-organization and to establish the necessary feedback promoting self-
adaptation. In spatial computing, this simply translates in the capability of perceiving the 
local properties of space, which in the end reflect some specific characteristics of either 
the network or of some application-level characteristics and of changing them. Second, 
one should also recognize that the vast majority of known phenomena of self-organization 
and self-adaptation in nature (from ant-foraging to reaction-diffusion systems, just to 
mention two examples in biology and physics) are actually phenomena of self-
organization in space, emerging from the related effect of some “component” reacting to 
some property of space and, by this reaction, influencing at its turn the properties of 
space. Clearly, a spatial computing model makes it rather trivial to reproduce in 
computational terms such types of self-organization phenomena, whenever they may be 
of some use in a distributed system.   

4. Framing Spatial Computing  

Let us now have a detailed look at the basic mechanisms that have been exploited so far 
in distributed computing to promote self-organization and autonomic behavior. We will 
show that most of these mechanisms can be easily interpreted and mapped into very 
similar spatial concepts, and that they can be framed in a unifying flexible framework. 

4.1. A Spatial Computing Stack 
As shown in Figure 2, we frame these mechanisms according to a “space-oriented” stack 
of levels. For each level, we can recognize that different mechanisms, exploited in 
different scenarios, can serve similar purposes and aim at providing similar “spatial 
services” (see Table 1). In other words, by introducing a new paradigm rooted on spatial 
concepts, it is possible to interpret a lot of proposed self-organizing and autonomic 
approaches in terms of mechanisms to manage and exploit the space. On this basis, it is 



  

likely that a simply unifying model for autonomic computing and communication – 
leading to a single programming model and methodology and – can be actually identified. 

The lowest “physical level” is about how components start interacting – in a dynamic 
and spontaneous way – with other components in the systems. This is a very basic 
expression of autonomic behavior which is a pre-requisite to support more complex forms 
of autonomy and of self-organization at higher levels. To this end, the basic mechanism 
exploited is broadcast (i.e. communicate with whoever is available). Radio broadcast is 
used in sensor networks and in pervasive computing systems, and different forms of 
TCP/IP broadcast (or of dynamic lookup) are used as a basis for the establishment of 
overlay networks in wide area P2P computing. Whatever the case, this physical level can 
be considered as in charge of enabling a component of a dynamic network application to 
get into existence in it and to start interacting with the other components. 

 
Figure 2. A Spatial Computing Stack. 

 
The “structure level” is the level at which some sort of spatial structure is built and 

maintained by components existing in the physical network. As already outlined, the fact 
that a system is able to create a stable spatial structure capable of surviving network 
dynamics and adapting the working conditions of the network is an important expression 
of autonomic behavior per se. However, such spatial structure is not a goal for the 
application, and it is instead used as the basic spatial arena to support higher levels of 
organization of activities.  

The various mechanisms that are used at the structure level in different scenarios are – 
again – very similar to each other. Sensor networks as well as self-assembly systems 
typically structure the space accordingly to their positions in the physical space, by 
exploiting mechanisms of geographical self-localization. Pervasive computing systems, in 
addition to mechanisms of geographical localization, often exploit logical spatial 
structures reflecting some sorts of abstract spatial relationships of the physical world (e.g., 
rooms in a building) [Bor04]. Global scale systems, as already anticipated, exploits 
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overlay networks built over a physical communication network. Although early 
approaches (e.g., Gnutella) give no metric structure to such overlay space, more recent 
approaches (as already anticipated) typically exploit metric overlay spaces and aims at 
making the spatial overlay match the spatial distribution of Internet nodes. A possibility 
which is currently under-investigated relates to the possibility – at the structure level – of 
dynamically adapting the structure of the space (and not simply of preserving a stable 
structure) to reflect and adapt to changing working conditions in the network.  

The “navigation level” concerns the basic mechanisms that components exploit to 
orient their activities in the spatial structure and to sense and affect the local properties of 
space (i.e. mechanism to actually “use” the available spatial structure). If the spatial 
structure has not any well-defined metric, the only navigation approaches are flooding 
and gossiping. However, if some sort of metric structure is defined at the structure level 
(as, e.g., in the geographical spatial structures of sensor networks or in metric overlay 
networks) navigation approaches typically relate in following the metrics defined at the 
structure level. For instance, navigation can imply the capability of components to reach 
specific points (or of directing messages and data) in the space based on simple geometric 
considerations as in, e.g., geographical routing.  

Starting from the basic navigation capability, is also possible to enrich the structure of 
the space by propagating additional information to describe “something” which is 
happening in that space, and to differentiate the properties of the space in different areas. 
One can say that the structure of space may be characterized by additional types of spatial 
structures propagating in it, and that components may direct their activities based on 
navigating these additional structures. In other words, the basic navigation capabilities 
can be used to build additional spatial structures with different navigation mechanisms. 
Typical mechanisms exploited at these additional levels are computational fields and 
pheromones. Despite the different inspiration of the two approaches (physical versus 
biological), we emphasize that they can be modeled in a uniform way, e.g., in terms of 
time-varying properties defined over a space [MamZ03]. The basic expression of self-
organization that arises here derives from the fact that the structures propagated in the 
space – and thus the navigation activity of application components – are updated and 
maintained to continuously reflect the actual structure and situation of the space.     

 At the “application level”, navigation mechanisms are exploited by application 
components to interact and organize their activities. Applications can be conveniently 
built on the following self-organizing feedback loop: (i) having components navigate in 
the space (i.e., discriminating their activities depending on the locally perceived structure 
and properties of the space) and (ii) having components, at the same time, modifying 
existing structure due to the evolution of their activities.  

Depending on the types of structures propagated in the space, and on the way 
components react to them, different phenomena of self-organization can be achieved and 
modeled. For example, processes of morphogenesis (as needed in self-assembly, modular 
robots and mobile robotics), phenomena mimicking the behavior of ant-colonies and of 
flocks, phenomena mimicking the behavior of granular media and of weakly correlated 
particles, as well as a variety of social phenomena, can all be modeled in terms  of:  
• entities getting to existence in a space; 
• having a position in a structured space and possibly influencing its structure; 
• capable of perceiving properties spread in that space; 



  

• capable of directing their actions based on perceived properties of such space and 
capable of acting in that space by influencing its properties at their turn. 

Still, the ultimate goal of a uniform modeling approach capable of effectively capturing 
the basic properties of self-organizing computing, and possibly leading to practical and 
useful general-purpose modeling and programming tools, is far from close. 

 

4.2 Multiple Spaces and Nested Spaces 
In general, different scenarios and different application problems may require different 
perceptions of space and different spatial structures. For instance, a world-wide resource-
sharing P2P network over the Internet may require – for efficiency reason – a 2-D spatial 
abstraction capable of reflecting the geographical distribution of Internet nodes over the 
earth surface. On the other hand, a P2P network for social interactions may require a 
spatial abstraction capable of aggregating in close regions of the virtual space users with 

 MICRO SCALE 
Nano Networks, Sensor 
Networks, Smart Dust, Self-
Assembly, Modular Robots  
 

MEDIUM SCALE 
Home Networks, MANETs, 
Pervasive Environments, Mobile 
Robotics 

GLOBAL SCALE 
Internet, Web, P2P networks, 
multiagent systems 

“Application” 
Level 
(exploiting the 
spatial 
organization to 
achieve in a self-
organizing and 
adaptive way 
specific app. 
goals)  

Spatial Queries 
Spatial Self-Organization and 
Differentiation of Activities 
Spatial Displacement 
Motion Coordination & pattern 
formation 
 
DATA: environmental data 

Discovery of Services 
Spatial Displacement 
Coordination and Distribution of 
Task and Activities 
Motion coordination & pattern 
formation 
 
DATA: local resources and 
environmental data 

P2P Queries as Spatial Queries in 
the Overlay 
Motion Coordination on the 
Overlay 
Pattern formation (e.g., for 
network monitoring) 
 
DATA: files, services, knowledge 

“Navigation” 
Level 
(dealing with the 
mechanism 
exploited by the 
entities living in 
the space to 
direct activities 
and movements 
in that space) 

Flooding 
Gossiping (random navigation) 
Geographical Routing (selecting 
and reaching specific physical 
coordinates) 
Directed Diffusion (navigation 
following sorts of computational 
fields) 
Stigmergy (navigation following 
pheromone gradients) 

Computational fields 
Multi-hop routing based on 
Spanning Trees 
Pattern-matching and Localized 
Tuple-based systems 

Flooding 
Gossiping (random navigation) 
Metric-based (moving towards 
specific coordinates in the 
abstract space) 
Gossiping (random navigation) 
Stigmergy (navigation following 
pheromone gradients distributed 
in the overlay network) 

“Structure” 
Level 
(dealing with 
mechanisms and 
policies to 
adaptively shape 
a metric space 
and let 
components find 
their position in 
that space) 

Self-localization (beacon-based 
triangulation) 

Self-localization (Wi-Fi or RFID 
triangulation) 
Definition and Maintenance of a 
Spanning Tree (as a sort of 
navigable overlay) 
 

Establishment and Maintenance 
of an Overlay Network (for P2P 
systems) 
Referral Networks and e-
Institutions (for multiagent 
systems) 

“Physical” 
Level 
(dealing with the 
mechanism 
necessary to get 
into existence in 
a network) 

Radio Broadcast 
Radar-like localization 

Radio Broadcast 
RF-ID identification 
 

TCP broadcast – IP identification 
Directed TCP/UDP messages 
Location-dependent Directory 
services 

Table 1. Spatial Mechanisms in Modern Distributed Computing Scenarios 



  

similar interests. Also, one must consider that in the near future, the different network 
scenarios we have identified will be possibly part of a unique huge network (consider that 
IPv6 addressing will make it possible to assign an IP address to each and every square 
millimeter on the earth surface). Therefore, it is hard to imagine that a unique flat spatial 
abstraction can be effectively built over such a network and satisfy all possible 
management and application needs.  

With this regard, the adoption of the spatial computing paradigm does not prescribe at 
all to adopt the same set of mechanisms and the same type of spatial structure for all 
networks and for applications. Instead, being the spatial structure a virtual one, it is 
possible to conceive both (i) the existence, over the same physical network, of multiple 
complimentary spatial abstraction independently used by different types of applications; 
and (ii) the existence of multiple layers of spatial abstractions, built one over the other in 
a multi-layered system.  

With regard to the former point, in addition to the example of the different types of 
P2P networks calling for different types of spatial abstractions, one could also think at 
how different problems such as Internet routing, Web caching, virtual meeting points,  
introduce very different problems and may require the exploitation of very different 
spatial concepts. 

With regard to the latter point, one can consider two different possibilities. Firstly, one 
can think at exploiting a first-level spatial abstractions (and the services it provides) to 
offer a second-level spatial abstraction enriching it with additional specific characteristics. 
For examples, one can consider that a spatial abstraction capable of mapping the nodes of 
the Internet into geographical coordinates can be exploited, within a campus, to build an 
additional overlay spatial abstraction mapping such coordinates into logical location (e.g., 
the library, the canteen, the Computer Science department and, within it, the office of 
Prof. Zambonelli). Such additional spatial abstraction could then be used to build 
semantically-enriched location dependent services. Secondly, one could think at 
conceiving a hierarchy of spatial abstractions that provides different levels of information 
about the space depending on the level at which they are observed, the same as the 
information we get on a geographical region are very different depending on the scaling 
of the map on which we study it. As an example, we can consider that the spatial 
abstraction of a wide-area network can map a sensor network – connected to the large 
network via a gateway – as a “point” in that space, and that the distributed nature of the 
sensor networks (with nodes having in turn a specific physical location in space) becomes 
apparent only when some activity takes place in that point of space (or very close to it).   

In any case, although we have strongly advocated the flexibility and modularity of a 
spatial computing paradigm, whether and how it could be put to practice and could fulfill 
its promises is an open research issue.  

5. Research Agenda 

Spatial computing, by abstracting the execution of distributed applications around spatial 
concepts (localization and navigation in some sorts of metric space), and by exploiting the 
same set of spatial abstractions to perform adaptive network management activities, 
promises to be an effective paradigm for modern distributed computing scenarios.  

In any case, besides the considerations made in this paper, much formal and practical 



  

work is needed to asses the potentials of spatial abstractions in distributed computing, and 
to verify whether they can actually pave the way to a sound and general-purpose 
engineered approach to autonomic computing and communication. In particular: 
• Is the research for a unifying model fueled by enough application problems? In other 

words, is there a compulsory need for a unifying approach to promote a uniform 
autonomic treatment of a variety of problems in different scenarios? Or is instead the 
current way of doing (i.e., researching specific special-purpose autonomic solutions to 
specific problems in specific scenarios) the most economic and effective one?  

• If the research of a unifying modes is worth (as we believe), is the proposed spatial 
computing stack meaningful and useful? Here, we have proposed it as a preliminary 
attempt to frame some basic concepts, and we are well aware that not everything fits 
perfectly in it. Nevertheless, our opinion is that, once all the layers will be properly 
defined, they will support a better engineering of such systems, promoting separation 
of concerns and clearly identifying the duties of the different levels. 

• Beside the fact that spatial computing seems promising, can really all (or at least a 
large portion of) conceivable autonomic features – from the network management 
level up to the application level – be effectively expressed and implemented in such 
terms? With regard to network management, earlier in this paper we have sketched a 
rough idea on how spatial computing could be of some use to adaptively promote load 
balancing in a network. However, could issues such as QoS management, service 
personalization, emergence of pathological congestion patterns, take any advantage of 
a spatial computing approach? With regard to the application level, a variety of 
application problems requiring self-organizing and adaptive behavior deals with 
concepts that can be hardly intuitively mapped into spatial concepts. Consider, for 
instance, phenomena of adaptive division of labor or phenomena or adaptive 
evolution. For these problems, would exploring some sorts of spatial mapping to face 
them still be useful and practical? Would it carry advantages? 

• If a unifying model spatial computing model can be found, can it be translated into a 
limited set of general-purpose and manageable protocols, tools, and programming 
abstractions? Also, can it lead to the identification of a sound methodology for 
developing and deploying autonomic features in modern distributed systems?  

All the above issues need to be investigated, complemented by researches aimed at better 
understanding and framing the behavior of self-organizing and self-adaptive systems. 

To conclude, we simply point out that our research group is currently involved in the 
development of a middleware called TOTA [MamZ04]. TOTA, suitable for both large-
scale wide-area networks and local ad-hoc networks of small computing devices, defines 
(i) a set of network-level services to build and self-maintain spatial overlay structures 
over dynamic networks; (ii) an API to be exploited by application agents to sense and 
effect the local properties of space and to navigate in the spatial structure. In particular, 
TOTA exploits sorts of potential fields to be propagated in space to implement in a simple 
and modular way a variety of overlay spatial abstractions, and it has been successfully 
experienced to achieve self-organization and self-adaptation in a variety of distributed 
applications. This by no means imply that we have already found an appropriate solution 
to all the above mentioned research issues.  
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