

Spatial Computing: an Emerging Paradigm for
Autonomic Computing and Communication

Franco Zambonelli, Marco Mamei

DISMI - Università di Modena e Reggio Emilia
Via Allegri 13, 42100 Reggio Emilia – ITALY

franco.zambonelli@unimore.it, mamei.marco@unimore.it

Abstract. Emerging distributed computing scenarios call for novel
“autonomic” approaches to distributed systems development and
management. In this position paper we analyze the distinguishing
characteristics of those scenarios, discuss the inadequacy of traditional
paradigms, and elaborate on primary role of “space” in modern
distributed computing. In particular, we show that spatial abstractions
promise to be basic necessary ingredients for a novel “spatial computing”
paradigm, acting as a unifying framework for autonomic computing and
communication. On this base, we propose a preliminary “spatial
computing stack” to frame the key concepts and mechanisms of spatial
computing. Eventually, we try to sketch a research agenda in the area.

1. Introduction

In the past few years, a variety of novel distributed computing scenarios have emerged
that, although apparently very different from each other, share some key characteristics.
By considering scenarios as diverse as P2P networks, multi-agent ecologies, pervasive
computing systems, sensor networks, and robot swarms, one can easily recognize that
[ZamP04]: (i) they all involve distributed computational and communication activities
taking place in decentralized networks with a very large number of components and (ii)
with a highly dynamic structure; (iii) components are embedded in some external dynamic
environment, whether physical or computational, and their activities are influenced by
their position in that environment.

The large size and the dynamics of the network, as well as the unpredictability
induced by environmental dynamics, make traditional approaches to distributed systems
management – involving humans-in-the-loop and typically assuming the capability of
centralized control – fall short. Novel approaches supporting autonomous self-
configuration and self-adaptation of activities in response to network and environmental
dynamics are required.

A variety of solutions exploiting specific forms of self-organization and self-
adaptation to solve specific application problems are being proposed (see [Dim04] for a
comprehensive overview). The question of whether it is possible to devise a single
unifying conceptual framework, applicable with little or no adaptations to scenarios as
diverse as P2P networks and local networks of embedded sensors, is still open.

In this position paper, without having the ambition of providing a definitive answer to

the above question, we will try to identify the important role that will likely be played in
that process by spatial abstractions. In addition to the fact that spatial abstractions
naturally suit systems whose activity are situated in some environment, the key point is
that a spatial computing model can facilitate the integration of autonomic feature in
distributed systems. In particular: (i) the central role of the network is substituted by an
abstraction of space, built over the network in an autonomous and adaptive way; (ii) all
application-level activities are abstracted as taking place in such space; (iii) autonomic
behavior emerge form both the capability of the system of dynamically adapting the
structure of the space as well as from the capability of application-level components of
sensing, acting in, and navigating that space.

This paper is organized as follow. Section 2 outlines the key characteristics of modern
scenarios and discusses the inadequacy of traditional approaches. Section 3 introduces
“Spatial Computing” and discusses its basic concepts and advantages, and its relations
with autonomic computing and communications. Section 4 proposes a “Spatial
Computing Stack”, as a framework to organize and understand the basic abstractions and
mechanisms involved in spatial computing. Section 5 sketches a rough research agenda in
the area and concludes.

2. Modern Distributed Systems Scenarios and the Need for Novel
Approaches

A variety of modern distributed computing scenarios exhibit characteristics challenging
traditional approaches to network and distributed systems management.

2.1 Key Characteristics
Such scenarios include (i) micro-scale ones, i.e., networks of low-end computing devices
typically distributed over a geographically small area (e.g., sensor networks [Est02],
smart dusts [Pis00] and spray computers [Zam04]); (ii) medium-scale scenarios, i.e.,
networks of medium-end devices, distributed over a geographically bounded area, and
typically interacting with each other via short/medium range wireless connections
(pervasive computing systems and smart environments [GelSB02] and cooperative robot
teams); (iii) global-scale scenarios, characterized by high-end computing systems
interacting at a world-wide scale (the physical Internet, the Web, P2P networks [RipIF02]
and multiagent systems ecologies [Kep02].

Despite clear dissimilarities in structure and goals, one can also easily recognize some
key common characteristics:
• Large Scale: the number of nodes in all the above types of networks and

consequently the number of components involved in a distributed application is
typically very high and, due to decentralization, hardly controllable. It is not possible
neither to enforce a strict control over the configuration of components (consider e.g.,
the nodes of a P2P network) nor to directly control each of them during execution
(consider e.g., the nodes of a sensor network distributed in a landscape).

• Network dynamism: the activities of components will take place in network whose
structure derives from an almost random deployment process, and that is likely to
change over time with unpredictable dynamics. Factors that may contribute to
dynamically change the network topology include environmental contingencies or

failure of components (very likely e.g., in sensor networks and pervasive computing
systems) and mobility of nodes (as e.g., in robot teams and in network of smart
appliances). In addition, at the application level, software components can be of an
ephemeral or temporary nature (consider e.g. the peers of a P2P network).

• Situatedness: The activities of components will be strongly related to their location in
either a physical or a virtual computational environment. On the one hand,
situatedness can be at the very core of the application (e.g. in sensor networks and in
pervasive computing systems the very goal is to exploit the physical location of nodes
and their capabilities to collect environmental data and to improve our interaction with
the physical world). On the other hand, situatedness can relate to the fact that
components can take advantage of their environment to organize the access to
distributed resources (as e.g., in P2P data sharing networks).

The first two characteristics (large size and network dynamism) compulsory call for self-
organizing and self-adapting approaches, enabling those systems to exhibit – both at the
network and at the application level – autonomic behavior. In fact, if the dynamics of the
network and of the environment compulsory require dynamic adaptation, the
impossibility of enforcing a direct control over each component of the system implies that
such adaptation must occur without any human intervention. The last characteristic,
situatedness, calls for an approach that elects the environment, its spatial distribution, and
its dynamics, to primary design dimensions, aspects which have been mostly disregarded
by traditional approaches. In any case, the capability of self-organization and self-
adaptation cannot abstract from the capability of the system of becoming “context-
aware”, i.e., of letting components to perceive the local properties of the space in which
they are situated, and to act and adapt their behavior on this basis.

Summarizing: all presented scenarios of distributed computing share very similar
characteristics and all require novel approaches promoting both autonomic behavior and
an explicit modeling of situatedness. On this base, one could imagine that a single
general-purpose distributed computing and communication paradigm, suitable for a
variety of scenarios and enabling to face a variety of problems in a uniform way can be
conceived. Unfortunately, traditional distributed computing paradigm appears not suitable
to this purpose.

2.2 Inadequacy of Traditional Approaches
Early researches in parallel and distributed computing promoted a transparent

distributed computing paradigm, in which the presence of an underlying network was
totally hidden from application components [ChiC91]. The key motivation was that, to
avoid the complexities inherent in having to deal with a distributed environment, it was
necessary to hide distribution and enable components to execute and interact with each
other as if they were all executing on a single, centralized, node. Figure 1a summarizes
this by outlining that a component can interact with another one by simply “naming” it
and disregarding its actual position.

Unfortunately, a transparent approach to distributed computing is totally unsuitable
for modern scenarios. First, promoting transparency is very costly and can hardly scale to
large-scale systems, in that it requires the presence of complex global naming services. In
addition, transparent – i.e., “by name” – interactions can be effectively supported only in
the presence of static interaction patterns and closed systems, definitely not in the

presence of network dynamics. Finally, a transparent distributed computing paradigm
does not provide an appropriate abstraction to deal with the situatedness of components in
a distributed environment: under this paradigm, the distributed environment does not
exist.

a)

Send(msg, Alice)

I know who you are!

No matter where you are!
Send(msg, Alice)

I know who you are!

No matter where you are! b)

I know who you are!

I know where you are!

Send(msg, Alice@yoursite)

I know who you are!

I know where you are!

Send(msg, Alice@yoursite)

c)

No matter who you are!

I know where you are!

Send(msg, someplace)

z

x
y

No matter who you are!

I know where you are!

Send(msg, someplace)

z

x
y

Figure 1. Interactions in: (a) a transparent distributed computing model; (b) a
network-aware distributed computing model; (c) a spatial computing model.

The limitations of transparent distributed computing became evident in the mid 90’s,

with the advent of the Internet and of world-wide distributed computing. Such global
scenarios outlined the need for network-aware computing models, in which application
components were made aware of the distributed and decentralized nature of their
operational environment [Wal97]. The assumption in network-aware computing is to
make all interactions rely on the explicit knowledge of the network allocation – i.e., the IP
– of components and resources. Figure 1b summarizes this with regard to the interaction
between two distributed components: an interaction relies on the knowledge on the local
name of a component on a specific network node.

Network-aware computing is suitable for large-scale network systems. First, it enables
to explicitly take into account the costs involved in distributed interactions. Second, it
involves local naming services which can scales well. However, network-aware
computing does not provide at hand solutions to deal with network dynamics. If the
structure of the network can dynamically change, and if nodes (and software components
over them) can be of an ephemeral nature (i.e., intermittently available) a network-aware
computing model requires to handle explicitly the exceptions caused by nodes
unavailability. This naturally complicates the system’s execution and management and
also increases the costs and complexity of discovery services. Also, as far as situatedness
is concerned, the only actual environmental abstraction reduces to be the network itself,
an abstraction which is quite low level and does not easily enable modeling the logical
relations between the network components.

3. Spatial Computing

To overcome the limitations of network-aware computing without losing its advantages it
is necessary to identify a general-purpose model that:
• Hides the complexities intrinsic in dealing with a dynamic network.

• Provides suitable and conceptually simple environmental abstractions.
• Preserves an explicit awareness of the distribution of the scenarios.

3.1 Key Concepts in Spatial Computing
To this end, the key idea underlying spatial computing is to:
• Make the concept of “network” – a discrete system of variously interconnected

nodes – evolve into a concept of “space” – i.e., a metric continuum.
• Let distributed components be aware of their surrounding space and to let them

perceive (and possibly influence) the local properties of space.
• Rely on such spatial perception for all management-level and application-level

activities.
In particular, in spatial computing, any type of networked environment is hidden below
some of virtual metric n-dimensional space, mapped as an overlay over the physical
network. The nodes of the network are assigned a specific area of the virtual space, and
are logically connected to each other accordingly to the spatial neighborhood relations.
Accordingly, each and every entity in the network, being allocated in some nodes of the
network, is also automatically situated in a specific position in space. In this way,
components in the network are no longer “network-aware” but rather “space-aware”. On
the one hand, components perceive their local position in space as well as the local
properties of space (e.g., the locally available data and services) and possibly change
them. On the other hand, the activities of components in that space are related to some
sort of “navigation” in that space, which may include moving themselves to a specific
different position of space or moving data and events in space according to
“geographical” routing algorithms. The primary way to refer to entities in the network is
by “position”, i.e., any entity is characterized by being situated in a specific position in
the physical space. In other words, the concept of “names” loses its primary role. This is
summarized in Figure 1c: an entity interacts to another entity by sending data to a position
in space.

Spatial computing models appear very suitable for the identified key characteristics of
modern distributed computing scenarios:
• Large size: the size of a network does not influence the models or the mechanisms,

which are the same for a small network and for a dramatically large one.
• Network dynamics: since the presence of the network is not directly perceived by

components, the fact that it can be of a highly dynamic nature is irrelevant. The
network is hidden behind a stable structure of space that is maintained despite
network dynamism.

• Situatedness: the abstraction of space is a conceptually simple abstraction of
environment, which also perfectly matches the needs of those systems, such as
pervasive computing systems and sensor networks, whose activities are strictly
intertwined with the physical space.

3.2 Examples of Spatial Computing Approaches
We do not claim to have invented the spatial computing paradigm from scratch. Rather,
we consider spatial computing as an emerging trend that is, more or less explicitly,
making its appearance in diverse scenarios.

As an example, consider a sensor network scenario with a multitude of wireless
sensors randomly deployed in a landscape to perform some monitoring of environmental
conditions [Est02]. There, all activities of sensors are intrinsically of a spatial nature.
First, each sensor is devoted to local monitoring a specific portion of the physical space
(that it can reach with its sensing capabilities). Second, components must coordinate with
each other based on their local positions, rather than on their IDs, to perform activities
such as detecting the presence and the size of pollution clouds, and the speed of their
spreading in the landscape. All of this implies that components must be made aware of
their relative positions in the spatial environment by re-constructing a virtual
representation of the physical space [NagSB03]. Moreover, they can take advantage of
“geographical” communication and routing protocols in which messages, data, and
events, flow towards specific position of the physical/virtual space [RaoP03].

Another example in which spatial concepts appear in a less trivial way is world-wide
P2P computing. In P2P computing, an overlay network of peers is built over the physical
network and, in that networks, peers act cooperatively to search specific data and
services. In first generation P2P systems (e.g., Gnutella [RipIF02]), the overlay network
is totally unstructured, being built by having peers randomly connect to a limited number
of other peers. Therefore, in these networks, the only effective way to search for
information is message flooding. More recent proposals [Rat01, RowD01] suggest
structuring the network of acquaintances into specific regular “spatial shapes”, e.g., a ring
or an N-dimensional torus. When a peer connects to the networks, it occupies a portion of
that spatial space, and networks with those other peers that are neighbors accordingly to
the occupied position of space. Then, data and services are allocated in specific positions
in the network (i.e., by those peers occupying that position) depending on their
content/description (as can be provided by a function hashing the content into specific
coordinates). In this way, by knowing the shape of the network and the
content/description of what data/services one is looking for, it is possible to effectively
navigate in the network to reach the required data/services. That is, P2P networks define a
spatial computing scenario in which all activities of application components are strongly
related to positioning themselves and navigating in an abstract metric space. It is also
worth outlining that recent researches promote mapping such spatial abstractions over the
physical Internet network so as to reflect the geographical distribution of Internet nodes
(i.e., by mapping IP addressed into geographical physical coordinates [Row04]) and,
therefore improve efficiency.

In addition to the above examples, other proposals in areas such as pervasive
computing [Bor04] and self-assembly [MamVS04] explicitly exploit spatial abstractions
(and, therefore, a sort of spatial computing model) to organize distributed activities.

3.3 Autonomic Features in Spatial Computing
Autonomic features, including the capability of a distributed system of self-configuring its
activity, self-inspecting and self-tuning its behavior in response to changed conditions, or
self-healing it in the presence of faults, are necessary for enabling spatial computing and,
at the same time, are also intrinsically promoted by the adoption of a spatial computing
model.

On the one hand, to enable a spatial computing model, it is necessary to envision
mechanisms to build the appropriate overlay spatial abstraction and to have such spatial

abstraction be coherently preserved despite network dynamics. In other words, this
requires the nodes of a network to be able to autonomously connect with each other, set
up some sort of common coordinate systems, and self-position themselves in such space.
In addition, this requires the nodes of the network to be able to self-reorganize their
distribution in the virtual space so as to (i) make room for new nodes joining the network
(i.e., allocate a portion of the virtual space to these nodes); (ii) fill the space left by nodes
that for any reason leave the network; (iii) re-allocate the spatial distribution of nodes to
react to node mobility. It is also worth outlining that, since the defined spatial structure
completely shields the application from the network, it is also possible for a system to
dynamically tune the structure of the space so as enforce some sorts of autonomic
management of the network, transparently to the higher application levels. As an
example, load unbalances in the network can be dynamically dealt, transparently from the
application level, by simply re-organizing the spatial structure so as to have overloaded
nodes occupy a more limited portion of the space.

On the other hand, the so defined spatial structure can be exploited by application
level components to organize their activities in space in an autonomous and adaptive way.
First of all, it is a rather assessed fact that “context-awareness” and “contextual activity”,
i.e., the capabilities of a component to perceive the properties of the operational
environment and of influencing them, respectively, are basic ingredients to enable any
form of adaptive self-organization and to establish the necessary feedback promoting self-
adaptation. In spatial computing, this simply translates in the capability of perceiving the
local properties of space, which in the end reflect some specific characteristics of either
the network or of some application-level characteristics and of changing them. Second,
one should also recognize that the vast majority of known phenomena of self-organization
and self-adaptation in nature (from ant-foraging to reaction-diffusion systems, just to
mention two examples in biology and physics) are actually phenomena of self-
organization in space, emerging from the related effect of some “component” reacting to
some property of space and, by this reaction, influencing at its turn the properties of
space. Clearly, a spatial computing model makes it rather trivial to reproduce in
computational terms such types of self-organization phenomena, whenever they may be
of some use in a distributed system.

4. Framing Spatial Computing

Let us now have a detailed look at the basic mechanisms that have been exploited so far
in distributed computing to promote self-organization and autonomic behavior. We will
show that most of these mechanisms can be easily interpreted and mapped into very
similar spatial concepts, and that they can be framed in a unifying flexible framework.

4.1. A Spatial Computing Stack
As shown in Figure 2, we frame these mechanisms according to a “space-oriented” stack
of levels. For each level, we can recognize that different mechanisms, exploited in
different scenarios, can serve similar purposes and aim at providing similar “spatial
services” (see Table 1). In other words, by introducing a new paradigm rooted on spatial
concepts, it is possible to interpret a lot of proposed self-organizing and autonomic
approaches in terms of mechanisms to manage and exploit the space. On this basis, it is

likely that a simply unifying model for autonomic computing and communication –
leading to a single programming model and methodology and – can be actually identified.

The lowest “physical level” is about how components start interacting – in a dynamic
and spontaneous way – with other components in the systems. This is a very basic
expression of autonomic behavior which is a pre-requisite to support more complex forms
of autonomy and of self-organization at higher levels. To this end, the basic mechanism
exploited is broadcast (i.e. communicate with whoever is available). Radio broadcast is
used in sensor networks and in pervasive computing systems, and different forms of
TCP/IP broadcast (or of dynamic lookup) are used as a basis for the establishment of
overlay networks in wide area P2P computing. Whatever the case, this physical level can
be considered as in charge of enabling a component of a dynamic network application to
get into existence in it and to start interacting with the other components.

Figure 2. A Spatial Computing Stack.

The “structure level” is the level at which some sort of spatial structure is built and

maintained by components existing in the physical network. As already outlined, the fact
that a system is able to create a stable spatial structure capable of surviving network
dynamics and adapting the working conditions of the network is an important expression
of autonomic behavior per se. However, such spatial structure is not a goal for the
application, and it is instead used as the basic spatial arena to support higher levels of
organization of activities.

The various mechanisms that are used at the structure level in different scenarios are –
again – very similar to each other. Sensor networks as well as self-assembly systems
typically structure the space accordingly to their positions in the physical space, by
exploiting mechanisms of geographical self-localization. Pervasive computing systems, in
addition to mechanisms of geographical localization, often exploit logical spatial
structures reflecting some sorts of abstract spatial relationships of the physical world (e.g.,
rooms in a building) [Bor04]. Global scale systems, as already anticipated, exploits

Physical Level

Communication Services in
an Unstructured Network

Structure
Level

Provisioning of a Structured
(Adaptive) Space Abstraction

Mechanism of Spatial
Localization and Self-inspection

Navigation
Level

Services to Navigate in the
Spatial Abstraction

Mechanism of Local Spatial
Local Sensing and Effecting

Application
Level Autonomic Spatial

Computing Applications

Mechanisms to get into
existence in a network

overlay networks built over a physical communication network. Although early
approaches (e.g., Gnutella) give no metric structure to such overlay space, more recent
approaches (as already anticipated) typically exploit metric overlay spaces and aims at
making the spatial overlay match the spatial distribution of Internet nodes. A possibility
which is currently under-investigated relates to the possibility – at the structure level – of
dynamically adapting the structure of the space (and not simply of preserving a stable
structure) to reflect and adapt to changing working conditions in the network.

The “navigation level” concerns the basic mechanisms that components exploit to
orient their activities in the spatial structure and to sense and affect the local properties of
space (i.e. mechanism to actually “use” the available spatial structure). If the spatial
structure has not any well-defined metric, the only navigation approaches are flooding
and gossiping. However, if some sort of metric structure is defined at the structure level
(as, e.g., in the geographical spatial structures of sensor networks or in metric overlay
networks) navigation approaches typically relate in following the metrics defined at the
structure level. For instance, navigation can imply the capability of components to reach
specific points (or of directing messages and data) in the space based on simple geometric
considerations as in, e.g., geographical routing.

Starting from the basic navigation capability, is also possible to enrich the structure of
the space by propagating additional information to describe “something” which is
happening in that space, and to differentiate the properties of the space in different areas.
One can say that the structure of space may be characterized by additional types of spatial
structures propagating in it, and that components may direct their activities based on
navigating these additional structures. In other words, the basic navigation capabilities
can be used to build additional spatial structures with different navigation mechanisms.
Typical mechanisms exploited at these additional levels are computational fields and
pheromones. Despite the different inspiration of the two approaches (physical versus
biological), we emphasize that they can be modeled in a uniform way, e.g., in terms of
time-varying properties defined over a space [MamZ03]. The basic expression of self-
organization that arises here derives from the fact that the structures propagated in the
space – and thus the navigation activity of application components – are updated and
maintained to continuously reflect the actual structure and situation of the space.

 At the “application level”, navigation mechanisms are exploited by application
components to interact and organize their activities. Applications can be conveniently
built on the following self-organizing feedback loop: (i) having components navigate in
the space (i.e., discriminating their activities depending on the locally perceived structure
and properties of the space) and (ii) having components, at the same time, modifying
existing structure due to the evolution of their activities.

Depending on the types of structures propagated in the space, and on the way
components react to them, different phenomena of self-organization can be achieved and
modeled. For example, processes of morphogenesis (as needed in self-assembly, modular
robots and mobile robotics), phenomena mimicking the behavior of ant-colonies and of
flocks, phenomena mimicking the behavior of granular media and of weakly correlated
particles, as well as a variety of social phenomena, can all be modeled in terms of:
• entities getting to existence in a space;
• having a position in a structured space and possibly influencing its structure;
• capable of perceiving properties spread in that space;

• capable of directing their actions based on perceived properties of such space and
capable of acting in that space by influencing its properties at their turn.

Still, the ultimate goal of a uniform modeling approach capable of effectively capturing
the basic properties of self-organizing computing, and possibly leading to practical and
useful general-purpose modeling and programming tools, is far from close.

4.2 Multiple Spaces and Nested Spaces
In general, different scenarios and different application problems may require different
perceptions of space and different spatial structures. For instance, a world-wide resource-
sharing P2P network over the Internet may require – for efficiency reason – a 2-D spatial
abstraction capable of reflecting the geographical distribution of Internet nodes over the
earth surface. On the other hand, a P2P network for social interactions may require a
spatial abstraction capable of aggregating in close regions of the virtual space users with

 MICRO SCALE
Nano Networks, Sensor
Networks, Smart Dust, Self-
Assembly, Modular Robots

MEDIUM SCALE
Home Networks, MANETs,
Pervasive Environments, Mobile
Robotics

GLOBAL SCALE
Internet, Web, P2P networks,
multiagent systems

“Application”
Level
(exploiting the
spatial
organization to
achieve in a self-
organizing and
adaptive way
specific app.
goals)

Spatial Queries
Spatial Self-Organization and
Differentiation of Activities
Spatial Displacement
Motion Coordination & pattern
formation

DATA: environmental data

Discovery of Services
Spatial Displacement
Coordination and Distribution of
Task and Activities
Motion coordination & pattern
formation

DATA: local resources and
environmental data

P2P Queries as Spatial Queries in
the Overlay
Motion Coordination on the
Overlay
Pattern formation (e.g., for
network monitoring)

DATA: files, services, knowledge

“Navigation”
Level
(dealing with the
mechanism
exploited by the
entities living in
the space to
direct activities
and movements
in that space)

Flooding
Gossiping (random navigation)
Geographical Routing (selecting
and reaching specific physical
coordinates)
Directed Diffusion (navigation
following sorts of computational
fields)
Stigmergy (navigation following
pheromone gradients)

Computational fields
Multi-hop routing based on
Spanning Trees
Pattern-matching and Localized
Tuple-based systems

Flooding
Gossiping (random navigation)
Metric-based (moving towards
specific coordinates in the
abstract space)
Gossiping (random navigation)
Stigmergy (navigation following
pheromone gradients distributed
in the overlay network)

“Structure”
Level
(dealing with
mechanisms and
policies to
adaptively shape
a metric space
and let
components find
their position in
that space)

Self-localization (beacon-based
triangulation)

Self-localization (Wi-Fi or RFID
triangulation)
Definition and Maintenance of a
Spanning Tree (as a sort of
navigable overlay)

Establishment and Maintenance
of an Overlay Network (for P2P
systems)
Referral Networks and e-
Institutions (for multiagent
systems)

“Physical”
Level
(dealing with the
mechanism
necessary to get
into existence in
a network)

Radio Broadcast
Radar-like localization

Radio Broadcast
RF-ID identification

TCP broadcast – IP identification
Directed TCP/UDP messages
Location-dependent Directory
services

Table 1. Spatial Mechanisms in Modern Distributed Computing Scenarios

similar interests. Also, one must consider that in the near future, the different network
scenarios we have identified will be possibly part of a unique huge network (consider that
IPv6 addressing will make it possible to assign an IP address to each and every square
millimeter on the earth surface). Therefore, it is hard to imagine that a unique flat spatial
abstraction can be effectively built over such a network and satisfy all possible
management and application needs.

With this regard, the adoption of the spatial computing paradigm does not prescribe at
all to adopt the same set of mechanisms and the same type of spatial structure for all
networks and for applications. Instead, being the spatial structure a virtual one, it is
possible to conceive both (i) the existence, over the same physical network, of multiple
complimentary spatial abstraction independently used by different types of applications;
and (ii) the existence of multiple layers of spatial abstractions, built one over the other in
a multi-layered system.

With regard to the former point, in addition to the example of the different types of
P2P networks calling for different types of spatial abstractions, one could also think at
how different problems such as Internet routing, Web caching, virtual meeting points,
introduce very different problems and may require the exploitation of very different
spatial concepts.

With regard to the latter point, one can consider two different possibilities. Firstly, one
can think at exploiting a first-level spatial abstractions (and the services it provides) to
offer a second-level spatial abstraction enriching it with additional specific characteristics.
For examples, one can consider that a spatial abstraction capable of mapping the nodes of
the Internet into geographical coordinates can be exploited, within a campus, to build an
additional overlay spatial abstraction mapping such coordinates into logical location (e.g.,
the library, the canteen, the Computer Science department and, within it, the office of
Prof. Zambonelli). Such additional spatial abstraction could then be used to build
semantically-enriched location dependent services. Secondly, one could think at
conceiving a hierarchy of spatial abstractions that provides different levels of information
about the space depending on the level at which they are observed, the same as the
information we get on a geographical region are very different depending on the scaling
of the map on which we study it. As an example, we can consider that the spatial
abstraction of a wide-area network can map a sensor network – connected to the large
network via a gateway – as a “point” in that space, and that the distributed nature of the
sensor networks (with nodes having in turn a specific physical location in space) becomes
apparent only when some activity takes place in that point of space (or very close to it).

In any case, although we have strongly advocated the flexibility and modularity of a
spatial computing paradigm, whether and how it could be put to practice and could fulfill
its promises is an open research issue.

5. Research Agenda

Spatial computing, by abstracting the execution of distributed applications around spatial
concepts (localization and navigation in some sorts of metric space), and by exploiting the
same set of spatial abstractions to perform adaptive network management activities,
promises to be an effective paradigm for modern distributed computing scenarios.

In any case, besides the considerations made in this paper, much formal and practical

work is needed to asses the potentials of spatial abstractions in distributed computing, and
to verify whether they can actually pave the way to a sound and general-purpose
engineered approach to autonomic computing and communication. In particular:
• Is the research for a unifying model fueled by enough application problems? In other

words, is there a compulsory need for a unifying approach to promote a uniform
autonomic treatment of a variety of problems in different scenarios? Or is instead the
current way of doing (i.e., researching specific special-purpose autonomic solutions to
specific problems in specific scenarios) the most economic and effective one?

• If the research of a unifying modes is worth (as we believe), is the proposed spatial
computing stack meaningful and useful? Here, we have proposed it as a preliminary
attempt to frame some basic concepts, and we are well aware that not everything fits
perfectly in it. Nevertheless, our opinion is that, once all the layers will be properly
defined, they will support a better engineering of such systems, promoting separation
of concerns and clearly identifying the duties of the different levels.

• Beside the fact that spatial computing seems promising, can really all (or at least a
large portion of) conceivable autonomic features – from the network management
level up to the application level – be effectively expressed and implemented in such
terms? With regard to network management, earlier in this paper we have sketched a
rough idea on how spatial computing could be of some use to adaptively promote load
balancing in a network. However, could issues such as QoS management, service
personalization, emergence of pathological congestion patterns, take any advantage of
a spatial computing approach? With regard to the application level, a variety of
application problems requiring self-organizing and adaptive behavior deals with
concepts that can be hardly intuitively mapped into spatial concepts. Consider, for
instance, phenomena of adaptive division of labor or phenomena or adaptive
evolution. For these problems, would exploring some sorts of spatial mapping to face
them still be useful and practical? Would it carry advantages?

• If a unifying model spatial computing model can be found, can it be translated into a
limited set of general-purpose and manageable protocols, tools, and programming
abstractions? Also, can it lead to the identification of a sound methodology for
developing and deploying autonomic features in modern distributed systems?

All the above issues need to be investigated, complemented by researches aimed at better
understanding and framing the behavior of self-organizing and self-adaptive systems.

To conclude, we simply point out that our research group is currently involved in the
development of a middleware called TOTA [MamZ04]. TOTA, suitable for both large-
scale wide-area networks and local ad-hoc networks of small computing devices, defines
(i) a set of network-level services to build and self-maintain spatial overlay structures
over dynamic networks; (ii) an API to be exploited by application agents to sense and
effect the local properties of space and to navigate in the spatial structure. In particular,
TOTA exploits sorts of potential fields to be propagated in space to implement in a simple
and modular way a variety of overlay spatial abstractions, and it has been successfully
experienced to achieve self-organization and self-adaptation in a variety of distributed
applications. This by no means imply that we have already found an appropriate solution
to all the above mentioned research issues.

References

[Bor04] C. Borcea, “Spatial Programming Using Smart Messages: Design and Implementation”,
24th Int.l Conference on Distributed Computing Systems, Tokio (J), May 2004.

[ChiC91] R. S. Chin, S. T. Chanson, “Distributed Object-Based Programming Systems”, ACM
Computing Surveys, 23(1), March 1991.

[Dim04] G. Di Marzo, A. Karageorgos, O. Rana, F. Zambonelli (Eds.), Engineering Self-organizing
Systems: Nature Inspired Approaches to Software Engineering, LNCS No. 2977, Springer
Verlag, May 2004.

[Est02] D. Estrin, D. Culler, K. Pister, G. Sukjatme, “Connecting the Physical World with Pervasive
Networks”, IEEE Pervasive Computing, 1(1):59-69, 2002.

[GelSB02] H.W. Gellersen, A. Schmidt, M. Beigl, “Multi-Sensor Context-Awareness in Mobile
Devices and Smart Artefacts”, Mobile Networks and Applications, 7(5): 341-351, Oct. 2002.

[Kep02] J. Kephart, “Software Agents and the Route to the Information Economy”, Proceedings of
the National Academy of Science, 99(3):7207-7213, May 2002.

[MamZ03] M. Mamei, F. Zambonelli, “Co-Fields: a Unifying Approach to Swarm Intelligence”, 3rd
Workshop on Engineering Societies in the Agents’ Word, LNCS No. 2677, April 2003.

[MamZ04] M. Mamei, F. Zambonelli, “Programming Pervasive and Mobile Computing
Applications with the TOTA Middleware”, 2nd IEEE Conference on Pervasive Computing and
Communications, Orlando (FL), IEEE CS Press, March 2004.

[NagSB03] R. Nagpal, H. Shrobe, J. Bachrach, “Organizing a Global Coordinate System from
Local Information on an Ad Hoc Sensor Network”, 2nd International Workshop on Information
Processing in Sensor Networks, Palo Alto (CA), April, 2003.

[Pis00] K. Pister, “On the Limits and Applicability of MEMS Technology”, Defense Science
Study Group Report, Institute for Defense Analysis, Alexandria (VA), 2000.

[RaoP03] A. Rao, C. Papadimitriou, S. Ratnasamy, S. Shenker, I. Stoica. “Geographic Routing
Without Location Information”. ACM Mobicom Conference. San Diego (CA), USA, 2003.

[Rat01] S. Ratsanamy,, P. Francis, M. Handley, R. Karp, ”A Scalable Content-Addressable
Network”, ACM SIGCOMM Conference 2001, Aug. 2001.

[RipIF02] M. Ripeani, A. Iamnitchi, I. Foster, “Mapping the Gnutella Network”, IEEE Internet
Computing, 6(1):50-57, Jan.-Feb. 2002.

[RowD01] A. Rowstron, P. Druschel, “Pastry: Scalable, Decentralized Object Location and Routing
for Large-Scale Peer-to-Peer Systems”, 18th IFIP/ACM Conference on Distributed Systems
Platforms, Heidelberg (D), Nov. 2001.

[Row04] A. Rowstron et al., “PIC: Practical Internet Coordinates”, 24th International Conference on
Distributed Computing Systems, IEEE CS Press, Tokyo (J), May 2004.

[Wal97] J. Waldo et al., “A Note on Distributed Computing”, Mobile Object Systems, LNCS No.
1222, Feb. 1997.

[Zam04] F. Zambonelli, M.P. Gleizes, R. Tolksdorf, M. Mamei, Spray Computers: Frontiers of
Self-organization“, 1st International Conference on Autonomic Computing, IEEE CS Press,
New York (I), May 2004.

[ZamJW03] F. Zambonelli, N. Jennings, M. Wooldridge, “Developing Multiagent Systems: the
Gaia Methodology”, ACM Transactions on Software Engineering and Methodology,
12(3):410-470, July 2003.

[ZamM02] F. Zambonelli, M. Mamei, “The Cloak of Invisibility: Challenges and Applications”,
IEEE Pervasive Computing, 1(4):62-70, Oct.-Dec. 2002.

[ZamP04] F. Zambonelli, V. Parunak, “Towards a Paradigm Change in Computer Science and
Software Engineering”, The Knowledge Engineering Review, Vol. 18, 2004.

