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Abstract

Pervasive and mobile computing call for suitable middleware and programming models
to support the activities of complex software systems in dynamic network environments.
In this paper we present TOTA (“Tuples On The Air”), a novel middleware and pro-
gramming approach for supporting adaptive context-aware activities in pervasive and
mobile computing scenarios. The key idea in TOTA is to rely on spatially distributed tu-
ples, adaptively propagated across a network on the basis of application-specific rules,
for both representing contextual information and supporting uncoupled interactions
between application components. TOTA promotes a simple way of programming that
facilitates access to distributed information, navigation in complex environments, and
achievement of complex coordination tasks in a fully distributed and adaptive way,
mostly freeing programmers and system managers form the need to take care of low-
level issues related to network dynamics. This paper includes both application examples
to clarify concepts and performance figures to show the feasibility of the approach.
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1 Introduction

Computing is becoming intrinsically pervasive and mobile [46, 22]. Computer-based systems
are going to be embedded in all our everyday objects and in our everyday environments.
These systems will be typically communication enabled, and capable of interacting with each
other in the context of complex distributed applications, e.g., to support our cooperative
activities [4], to monitor and control our environments [16], and to improve our interactions
with the physical world [31]. Also, since most of the embeddings will be intrinsically mobile,
as a car or a human, distributed software processes and components (from now on, we adopt
the term “agents” to generically indicate the active components of a distributed application)
will have to effectively interact with each other and orchestrate their activities despite the
network and environmental dynamics induced by mobility.

The above scenario introduces peculiar challenging requirements in the development of
distributed software systems: (i) since new agents can leave and arrive at any time, and
can roam across different environments, applications have to be adaptive, and capable of
dealing with such changes in a flexible and unsupervised way; (ii) the activities of the
software systems are often contextual, i.e., strictly related to the environment in which
the systems execute (e.g., a room or a street), whose characteristics are typically a priori
unknown, thus requiring to dynamically enforce context-awareness; (iii) the adherence to
the above requirements must not clashes with the need of promoting a simple programming
model possibly requiring light supporting infrastructures.

Unfortunately, current practice in distributed software development, as supported by
currently available middleware infrastructures, is unlikely to effectively address the above
requirements: (i) application agents are typically strictly coupled in their interactions (e.g.,
as in message-passing models and middleware), thus making it difficult to promote and
support spontaneous interoperation; (ii) agents are provided with either no contextual in-
formation at all or with only low-expressive information (e.g., raw local data or simple
events), difficult to be exploited for complex coordination activities; (iii) due to the above
shortcomings, the result is usually an increase in both application and supporting environ-
ment complexity.

The approach we propose in this paper builds on the lessons of uncoupled coordination
models like event-based [23] and tuple-based ones [18], and aims at providing agents with
effective contextual information that can facilitate both the contextual activities of applica-
tion agents and the definition of complex distributed coordination patterns. Specifically, in
the TOTA (“Tuples On The Air”) middleware, all interactions between agents take place in
a fully uncoupled way via tuple exchanges. However, there is not any notion like a central-
ized shared tuple space. Rather, tuples can be “injected” into the network from any node
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and can propagate and diffuse across the network accordingly to tuple-specific propagation
patterns. The middleware takes care of propagating the tuples and of adapting their dis-
tributed shape in reaction to the dynamic changes that can occur in the network (as due
by, e.g., mobile or ephemeral nodes). Agents can exploit a simple API to define and inject
new tuples in the network and to locally sense nearby tuples and associated events (e.g.,
arrival and dismissing of tuples). This allows agents to plan and execute their context-aware
activities.

As we will try to show in this paper, TOTA promotes a simple yet flexible approach to
programming distributed applications. The approach is suitable for a variety of applications
scenarios in the area of pervasive and mobile computing, and achieves flexibility without
sacrificing the need for a light-weight supporting environment and for acceptable perfor-
mances and limited overheads. In addition, the fact that TOTA distributed tuples can be
considered as sorts of virtual force fields or as sorts of chemical gradients (adopting a natural
metaphor) enables to directly enforce in TOTA those phenomena of biological and physi-
cal self-organization that are increasingly finding useful applications in modern distributed
systems scenarios, such as ant foraging, flocking, self-aggregation, etc. [38, 15, 11].

The remainder of this paper is organized as follows. Section 2 motivates our work, by
introducing a case study scenario (that will also act as a working example thorough the
paper) and by discussing the inadequacy of traditional approaches to pervasive and mobile
computing programming. Section 3 introduces the TOTA approach, by discussing its key
underlying concepts and assumptions, and by sketching its current implementation. Section
4 goes into details about the programming of TOTA applications, showing how to define
distributed tuples and how to program agents that use the TOTA API and such tuples.
Section 5 evaluates TOTA in terms of performances and overheads. Section 6 discussed
related work. Section 7 concludes and outlines open issues.

2 Motivations and Case Study

To sketch the main motivations behind TOTA, we introduce a simple case study scenario
and try to show the inadequacy of traditional approaches in this context.

2.1 Case Study Scenario

Let us consider a big museum, and a variety of tourists moving within it. We assume
that each of them is provided with a wireless-enabled computer assistant (e.g., a PDA or a
smart phone hosting some sort of user-level software agents). Also, it is realistic to assume
the presence, in the museum, of a densely distributed network of computer-based devices,
associated with rooms, corridors, art pieces, alarm systems, climate conditioning systems,
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etc. Such devices, other than providing users with wireless connectivity, can be exploited
for both the sake of monitoring and control and for providing tourists (i.e., their agents)
with information helping them to achieve their goals, e.g., properly orienting themselves in
the museum, finding specific pieces of arts, or coordinating their activities and movements
with other tourists in a group.

In any case, whatever specific service has to provided to tourists in the above scenario, it
should meet the requirements identified in the introduction. (i) Adaptivity: tourists move
in the museum and are likely to come and go at any time. Art pieces can be moved around
the museum during special exhibitions or during restructuring works. Thus, the topology
of the overall computational network can change with different dynamics and for different
reasons, all of which have to be faced at the application level without (or with very limited)
human intervention. (ii) Context-awareness: as the environment (i.e., the museum map and
the location of art pieces) may not be known a priori (tourists can be visiting the museum
for the first time), and it is also likely to change in time (due to restructuring and temporary
exhibitions), application agents should be dynamically provided with contextual information
helping their users to move in the museum and to coordinate with each other without relying
on any a priori information; (iii) Simplicity: users’ PDAs, as well as embedded computer-
based devices, may have limited battery life and limited hardware and communication
resources. This may require a light supporting environment and the need for applications
to achieve their goal with limited computational and communication efforts.

We emphasize the above sketched scenario exhibits characteristics that are typical of a
larger class of pervasive and mobile computing scenarios. While it is trivial to directly extend
the case from a museum to a campus or a city, it is also worth noting that traffic management
systems [30], warehouse management systems [47], mobile and self-assembling robots [44,
37], sensor networks [22], exhibit very similar characteristics and issues. Therefore, also all
our considerations are of a more general validity, besides the addressed case study.

2.2 Inadequacy of Traditional Approaches

Most coordination models and middleware used so far in the development of distributed
applications appear inadequate in supporting coordination activities in pervasive computing
scenarios. Current proposals can be roughly fitted in one of the following three categories:
(i) direct communication models, (ii) shared data-space models and (iii) event based mod-
els.

In direct communication models, a distributed application is designed by means of a
group of agents that are in charge of communicating with each other in a direct and explicit
way, e.g., via message-passing or in a client-server way. Modern message-oriented middle-
ware systems like, e.g., Jini [7] and most agent-oriented frameworks (e.g., FIPA-compliant
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ones [14]), support such a direct communication model. One problem of this approach is
that agents, by having to interact directly with each other, can hardly sustain the openness
and dynamics of pervasive computing scenarios: explicit and expensive discovery of com-
munication partners – typically supported by some sort of directory services – has to be
enforced. Also, agents are typically placed in a “void” space: the model, per se, does not
provide any contextual information, agents can only perceive and interact with (or request
services to) other agents, without any higher contextual abstraction. In the case study
scenario, to get information about other tourists or art pieces, tourists have to somehow
lookup them and directly ask them the required information. Also, to orchestrate their
movements, tourists in a group must explicitly keep in touch with each other and agree on
their respective movements via direct negotiation. These activities require notable compu-
tational and communication efforts and typically end up with ad-hoc solutions – brittle,
inflexible, and non-adaptable – for a contingent coordination problem.

Shared data-space models exploit localized data structures in order to let agents gather
information and interact and coordinate with each other. These data structures can be
hosted in some centralized data-space (e.g., tuple space), as in EventHeap [26], or they can
be fully distributed over the nodes of the network, as in MARS [18] and Lime [20]. In
these cases, agents are no longer strictly coupled in their interactions, because tuple spaces
mediate interactions and promote uncoupling. Also, tuple spaces can be effectively used
as repositories of local, contextual information. Still, such contextual information can only
represent a strictly local description of the context that can hardly support the achievement
of global coordination tasks. In the case study, one can assume that the museum provides
a set of data-spaces, storing information related to nearby art pieces as well as messages
left by the other agents. Tourists can easily discover what art pieces are nearby them and
get information about. However, to locate a farther art piece, they should query either a
centralized tuple space or a multiplicity of local tuple spaces, and still they would have to
internally merge all the information to compute the best route to the target. Similarly,
each tourist in a group can build an internal representation of the other tourists positions
by storing tuples about their presence and by accessing several distributed data-spaces.
However, the availability of such information does not free them from the need of negotiating
with each other to orchestrate their movements. In other words, despite the availability of
some local contextual information, a lot of explicit communication and computational work
is still required to the application agents to effectively achieve their tasks.

In event-based publish/subscribe models, a distributed application is modeled by a set of
agents interacting with each other by generating events and by reacting to events of interest
[23]. Typical infrastructures rooted on this model include Siena [19], Jini Distributed Events
[7], and recent proposals based on structured overlays [12]. Without doubt, an event-based
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model promotes both uncoupling (all interactions occurring via asynchronous and typically
anonymous events) and a stronger context-awareness: agents can be considered as embedded
in an active environment able of notifying them about what is happening which can be of
interest to them (as determined by selective content-based subscription to events). In the
case study example, a possible use of this approach would be to have each tourist notify
its movements across the building to the rest of the group. Notified agents can then obtain
an updated picture of the current group distribution in a simpler and less expensive way
than required by adopting shared data spaces. However, the fact that tourists can be made
aware of the up-to-date positions of other tourists in an easier way, does not eliminate the
need for them to explicitly coordinate with each other to orchestrate their movements.

From our viewpoint, the common general problem of the above interaction models is
that they are typically used to gather/communicate only a general purpose, not expressive,
description of the context. This general purpose representation tends to be strongly sepa-
rated from its usage by the agents, forcing them to execute complex algorithms to elaborate,
interpret and decide what to do with that information. On the contrary, if contextual infor-
mation were represented in a more expressive and possibly application-specific way, agents
would be much more facilitated in adaptively deciding what to do. For example, in the case
study, if tourists required to meet somewhere in the museum were able to perceive in the
environment something like a “red carpet” leading to the meeting room, it would become
trivial for them achieve the task by exploiting such an expressive contextual information:
just walk on the red carpet.

3 The Tuples On The Air Approach

The definition of TOTA is mainly driven by the above considerations. It gathers concepts
from both tuple space approaches [18] and event-based ones [19, 23] and extends them to
provide agents with a unified and flexible mechanism to deal with both context representa-
tion and agents’ interaction.

In TOTA, we propose relying on distributed tuples both for representing application-
specific contextual information and for enabling uncoupled interaction among distributed
application agents. Unlike traditional shared data space models, tuples are not associated
to a specific node (or to a specific data space) of the network. Instead, tuples are injected
in the network and can autonomously propagate and diffuse in the network accordingly to
specified patterns. Thus, TOTA tuples form sorts of spatially distributed data structures
able to act not only as messages to be transmitted between application components but,
more generally, as distributed contextual information.

To support this idea, TOTA is composed of a peer-to-peer network of possibly mobile
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nodes, each running a local instance of the TOTA middleware. Each TOTA node holds
references to a limited set of neighboring nodes and can communicate directly only with
them. The structure of the network, as determined by the neighborhood relations, is auto-
matically maintained and updated by the nodes to support dynamic changes, whether due
to nodes’ mobility or to nodes’ insertions or failures.

The specific nature of the network scenario determines how each node can find its
neighbors. In a network scenario without long-range routing protocols being provided or
accounted for, it is rather easy to identify the node’s neighborhood with the network local
topology. For example, in a “bare” mobile ad-hoc wireless network, the neighborhood is
identified by the nodes within the range of the wireless link. In this case, which is the one of
more interest to this paper, TOTA has to recognize events at the network level to keep an
up-to-date list of the in-range nodes. In a network scenario with an established long-range
routing protocol (e.g., an Internet overlay), the definition of the node’s neighborhood is
less trivial. We can imagine however that in such case the term is not related to the real
reachability of a node (routing masks network topology), but rather on its addressability
(a node can communicate directly with another only if it knows the other node’s address).
In this case, TOTA can either download from a well-known server the list of addresses
representing its neighbors or it can start an expanding ring search to detect close nodes [2].

Upon the distributed space identified by the dynamic network of TOTA nodes, each
agent on a node is capable of locally producing tuples and letting them diffuse through the
network (see Fig. 1). Tuples are injected in the system from a node, spread hop-by-hop
according to tuple-specific propagation rules, and can be locally accessed by other agents
on other nodes in an associative way (i.e., via pattern-matching on tuples).

TOTA distributed tuples are characterized by a content C, a propagation rule P, and
a maintenance rule M:

T=(C,P,M)

The content C is an ordered set of typed fields representing the information carried on
by the tuple, and upon which an agent can rely to access tuples via pattern-matching.

The propagation rule P determines how the tuple should be distributed and propagated
across the network. This includes determining the “scope” of the tuple (i.e., the distance at
which such tuple should be propagated and possibly the spatial direction of propagation)
and how such propagation can be affected by the presence or the absence of other tuples
in the system. In addition, the propagation rules can determine how the tuple’s content
C should change. Tuples are not necessarily distributed replicas: by assuming different
values in different nodes, tuples can be effectively used to build a distributed overlay data
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Figure 1: (left) The general scenario of TOTA: the environment is a peer-to-peer net-
work; application agents lives on it and can inject tuples in the network (e.g., the agent on
the darker node); tuples propagate in the network according to specific propagation rules,
possibly changing their content while propagating. (right) Upon changes in the network
topology (e.g., the darker node has moved), maintenance rules for tuples can update the
tuples’ distributed structures to account for the changed conditions.

structure expressing some kind of contextual and spatial information. So, unlike traditional
event based models, propagation of tuples is not driven by a publish-subscribe schema, but
it is directly encoded in tuples’ propagation rule and, unlike events, tuples can change their
content during propagation.

The maintenance rule M determines how a tuple distributed structure should react to
events occurring in the environment or simply to passing time. On the one hand, mainte-
nance rules can preserve the proper spatial structure of tuples (as specified by the propaga-
tion rule) despite network dynamics. To this end, the TOTA middleware supports tuples
propagation actively and adaptively: by constantly monitoring the network local topology
and the income of new tuples, the middleware automatically re-propagates/re-shapes tuples
as soon as appropriate conditions occur. For instance, when new nodes get in touch with a
network, TOTA automatically checks the propagation rules of the already stored tuples and
eventually propagates the tuples to the new nodes. Similarly, when the topology changes
due to nodes’ movements, the distributed tuple structure automatically changes to reflect
the new topology. On the other hand, tuples (i.e., their content and their distributed struc-
ture) can be made variable with time, for instance to support temporary tuples or tuples
that slowly “evaporates”.

As an example, the tuple shown in Fig. 1 has the following characteristics; (i) the
content C is a single integer value initialized at zero in the node of injection; (ii) the
propagation rule P spreads the tuple across the network by increasing the integer value
at each network hop; (iii) the maintenance rule M takes care of preserving the original
propagation structure upon dynamic network reconfigurations.
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Clearly, it is possible to exploit tuples for which P=null, in which case the tuple is only
locally stored in the source node (as in a standard tuple space model); tuples for which
M=null, in which case the structure of the tuples remains unchanged after the initial
propagation; or tuples in which the maintenance rule specifies to delete the tuple while it
is propagating, in which case the tuple simply represents a volatile event.

3.1 The Case Study in TOTA

Let us consider again the museum case study. We recall that we assume that the museum
is enriched with a reasonably dense number of fixed wireless devices, e.g., associated with
museum rooms and corridors as well as with art pieces, and that tourists are provided with
wireless enabled PDAs to access in a wireless way these embedded devices.

All these devices are expected to locally run the TOTA middleware and, by connecting
with each other in an ad-hoc network, to form a distributed network of TOTA nodes. In
particular, all TOTA devices are connected to close ones only, based on short range radio
connectivity. This also implies a rough form of localization for users: their position is
implicitly reflected by their access point to the TOTA network. However, this does not
exclude the presence of more sophisticated localization tools [25], as discussed in the next
subsection.

Moreover, we make the additional assumption that the rough topology of the ad-hoc
TOTA reflects the museum topology. This means that there are not network links between
physical barriers (like walls). To achieve this property, we can assume that either the devices
are able to detect and drop those network links crossing physical barriers (e.g., relying on
signal strength attenuation or some other sensor installed on the device). Alternatively,
the property can be achieved by assuming that the museum building is pre-installed with
a network backbone – reflecting its floor-plan topology – to which other wireless devices
connect. This assumption goes in the the direction of having the network to map the
physical space in the building and, thus, of having the process of propagating a tuple in the
TOTA network to result in a configuration coherent with the building plan.

From the actual application point of view, we concentrate on two representative prob-
lems: (i) how tourists can gather and exploit information related to art pieces they want
to see; (ii) how they can be supported in planning and coordinating their movements with
other, possibly unknown, tourists (e.g., to avoid crowd or queues, or to meet together at a
suitable location).

With regard to the first problem, TOTA enables a tourist to discover the presence and
the location of a specific art piece in a very simple way, and based on two alternative
solutions.

As a first solution, each art piece in the museum can propagate a tuple having as a
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content the art piece description, its location, and an integer value that, via a propagation
rule that increase it at each hop, can represent the distance of the tuple from its source (i.e.,
from the art piece itself, see Fig. 2 “Art-Piece Tuple”). Any tourist, by simply checking
its local TOTA tuple space, can thus discover the presence of such an art piece. Then,
by simply following the tuple backwards (i.e., by following downhill the gradient of the
“distance” field), it can easily reach the room where the art piece is located without having
to rely on any a priori global information about the museum plan.

Alternatively, we could consider that art pieces do not propagate a priori any tuple, but
they can sense the arrival of sorts of query tuples propagated by tourists – describing in
their content the art piece the tourists are looking for. Art pieces can then be programmed
to react to these events by propagating backward to the requesting tourists a tuple con-
taining their own location information. In particular, query and answer tuples could be
defined as depicted in Fig. 2 “Query Tuple” and “Answer Tuple”, where Answer Tuple
can propagate following the “distance” field of the associated Query Tuple downhill. It is
worth noting, that, since TOTA can maintain (via a proper maintenance rule) the tuple
distributed structure coherent despite node movements, the Query Tuple creates a gradient
leading to its source even if the source moves. Thus, the answer tuple can reach a tourist
even if he is in movement (see Fig. 3(a-b)).

With regard to the motion coordination domain, we focus on a “meeting” service whose
aim is to help a group of tourists to dynamically find each other and meet in a room of
the museum. Different policies can be though related to how and where a group of tourists
should meet. Here we assume that tourists prefer to meet in that room that minimizes the
global effort of meeting, that is room representing their “center of gravity”. To this purpose,
each tourist involved in the meeting can inject and propagate the tuple described in Fig.
2 “Meeting Tuple”, to act as a sort of virtual gravitational field of himself. Then, each
tourist in the group can start perceiving all such tuples and can start following downhill
the resulting global gravitational field (i.e., moving following the gradient of the tuple with
the higher “distance” field). This process leads all the tourists to gradually “fall” towards
each other until they eventually meet in their center of gravity (see Fig. 3(c)). All of
this, again, without having tourists to rely on any a priori agreement or on any knowledge
about the museum plan. It is also interesting to notice that, if meeting tuples are properly
programmed to maintain their distributed shapes coherent with the actual positions of
their sources (i.e., of tourists), then the resulting gravitational fields will be dynamically
re-shaped as tourists move, which ensure convergence of the process in general and also in
presence of unexpected problems (e.g., a tourists in the group that follows different routes
because of crowd in some rooms).
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Art-Piece Tuple

C = (description, location, distance)

P = (propagate to all peers hop by hop, increasing ‘‘distance’’ field

by one at every hop)

M = (update the distance field, if the museum topology changes)

Query Tuple

C = (description , distance)

P = (propagate to all peers hop by hop, increasing the ‘‘distance’’ field

by one at every hop)

M = (delete the tuple after a time-to-live period)

Answer Tuple

C = (description, location, distance)

P = (propagate following downhill the ‘‘distance’’ field of the associated

query tuple. Increment its own ‘‘distance’’ value by one at every hop)

M = (delete the tuple after a time-to-live period)

Meeting Tuple

C = (tourist_name, distance)

P = (propagate to all peers hop by hop, increasing the ‘‘distance’’ field

by one at every hop)

M = (update the distance field upon tourist movements)

Figure 2: High-level description of the tuples involved in the museum case study. Art-Piece
Tuple is the tuple pro-actively injected by an art piece to notify other agents about itself.
Query Tuple and Answer Tuple are the tuples used by an agent to look for specific art
pieces, and used by art-pieces to reply. Meeting Tuple is the tuple injected by the agents
in the meeting application.
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(a) (b)

(c)

Figure 3: (a) An agent propagating a Query Tuple to look for a specific information. (b)
A suitable art-piece may react to the query by injecting an Answer Tuple that propagates
following downhill the Query Tuple. (c) Meeting application: for ease of drawing, the figure
shows two agents move toward the leftmost agent that does not move; in general, the three
agents would all move toward each other and eventually meet somewhere in between.
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3.2 The Concept of Space in TOTA

The type of context-awareness promoted by TOTA is strictly related to spatial-awareness.
In fact, the overlay distributed data structures spread in the network in the form of TOTA
tuples intrinsically enrich the network with some notion of space.

In the simplest case, a tuple increasing one of the fields of its content as it gets propagated
(as the Art-Piece Tuple and the Meeting Tuple in the examples above) defines a sort of
“structure of space” representing the network distances from the source. This kind of
structures enforce spatial awareness in application agents. In the museum case study, this
has been exploited to guide tourists’ movements as well as to route messages between
tourists and art-pieces according to their current location.

In addition, TOTA also allows dealing with spatial concepts in a much more flexible
way. Although at the primitive level the TOTA space corresponds to the network space,
and spatial distances are measured in terms of hops between nodes, it is also possible
to enforce more physically-grounded concepts of space. This may be required by several
pervasive computing scenarios in which application agents need to interact with and acquire
awareness of the physical space and of physical distances.

In order to enforce some physically-grounded concept of space, some kinds of physical
localization mechanism must be provided to detect positions of users and of TOTA nodes
[25]. These could include GPS-like localization mechanisms to determine the absolute lo-
cation of an agent, according to some external reference frame [36]; as well as RADAR-like
mechanisms to determine the relative location of an agent with respect to other agents.
[45].

Once such localization mechanisms are available, the propagation and maintenance rules
for TOTA tuples can rely on such localization information. For instance, one can bound
the propagation of a tuple to a portion of physical space simply by having its propagation
rule check – as the tuple propagates from node to node – the local spatial coordinates and
decide whether to further propagate the tuple or not. As another example, one can have
a tuple that updates its content (e.g., by increasing an integer value in it) not at each hop
but rather each time it has propagated for a certain amount of meters.

Clearly, the kind of localization mechanism available can influences how nodes can ex-
press and use spatial information. GPS-like mechanism are more suitable at defining “abso-
lute” regions. For example, they allow to easily create tuples that propagate across a region
defined by means of the coordinates of its corners (e.g. propagate in the square area defined
by (0,0) and (100,100)). RADAR-like mechanism are more suitable at defining “relative”
regions, where for example tuples are constrained to travel north form the source or within
a specified distance. Further details on these concepts will follow later on.

Other than the network and the physical space, one could think at mapping the nodes
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of a TOTA network in any sort of logical or virtual space, and of defining propagation
rules and maintenance rules accordingly. On the one hand, if a map is available for a
physical region, properly associating physical coordinates with logical places such as streets,
buildings, rooms, then one could think at defining tuple propagation rules accordingly to
such available logical information (e.g., propagate the tuple only within the current building
and increasing the integer value in the content at each new room). On the other hand, if
some sort of structured overlay space is defined over a network, such as structured DHTs
for P2P computing [41, 10], then one could think of relying on such a virtual space for tuple
propagation.

3.3 The TOTA Middleware

From the architectural point of view, the TOTA middleware supporting the above tuple
model is constituted by three main parts (see Fig. 4): (i) the TOTA API is the main inter-
face between the application agents and the middleware. It provides functionalities to let
application agents inject new tuples in the system, retrieve tuples, and place subscriptions
to tuple-related and network-related events in the event interface. (ii) The EVENT INTER-
FACE is the component in charge of asynchronously notifying the application agents about
subscribed events, like the income of a new tuple or about the fact a new node has been
connected/disconnected to the node’s neighborhood. (iii) The TOTA ENGINE is in charge
of maintaining the TOTA network by storing the references to neighboring nodes and of
managing tuples’ propagation by opening communication sockets to send and receive tuples.
This component is in charge of receiving tuples injected from the application level, send-
ing them to neighbor nodes according to their propagation rules, and update/re-propagate
them accordingly to their maintenance rules. To this end, this component continuously
monitors network reconfiguration, the income of new tuples, and possibly external events.

The TOTA ENGINE also contains a local tuple space in which to store the tuples that
reached that node during their propagation. Since tuples propagated in different nodes are
not independent but part of a distributed data structure, the TOTA ENGINE needs a mean
to uniquely identify tuples in the system. The tuple content cannot be used for this purpose
(because it can change during the propagation process and because there may be several
tuples with the same content), each tuple is marked with an id (invisible at the application
level) that is used by the TOTA middleware during tuple propagation and update to trace
the tuple. Tuple ids are generated by combining a unique number relative to each node
(e.g., the MAC address) together with a progressive counter for all the tuples injected by
the node. Moreover, such tuple id allows a fast (hash-based) accessing schema to the tuples.

From the implementation point of view, we developed a Java prototype of TOTA running
on laptops and on HP IPAQs 36xx equipped with 802.11b wireless card, Familiar LINUX

14



Figure 4: The TOTA middleware architecture.

[1] and J2ME-CDC (Personal Profile) [5]. IPAQs connect locally in the MANET mode
(i.e., without requiring access points) creating the skeleton of the TOTA network. Tuples
propagate through multicast sockets to all the nodes in the one-hop neighborhood. The
use of multicast sockets has been chosen to improve the communication speed by avoiding
802.11b unicast handshake. By considering the way in which tuples are propagated, TOTA
is very well suited for this kind of broadcast communication. We think that this is a very
important feature, because it allows implementing TOTA also on really simple devices (e.g.,
mote sensors [40]) that cannot be provided with sophisticate communication mechanisms.
As an additional note, and given the intricacies in accessing network events from Java, the
current implementation relies on polling at the TCP level to get events related to network
connections and disconnections and to maintain an up-to-date perspective on the TOTA
network.

Overall, the memory occupancy of the bare TOTA middleware is slightly less than 4KB
of memory. This suggests that TOTA is lightweight enough to be hosted on even small
devices such as micro sensors. Especially in consideration of the fact that the current im-
plementation is fully Java-based and un-optimized, and even better results can be expected
for an optimized C implementation.

Since we own only 16 IPAQs and some laptops on which to run the system, and because
the effective testing of TOTA would require a much larger network, we have also imple-
mented an emulator to analyze TOTA behavior in presence of hundreds of nodes. The
emulator, developed in Java, enables examining TOTA behavior in a MANET scenario,
in which nodes topology can be rearranged dynamically either by a drag and drop user
interface or by autonomous nodes’ movements. The strength of our emulator is that, by
adopting well-defined interfaces between the emulator and the application layers, the same
code “installed” on the emulated devices can be installed on real devices. This allows to test
applications first in the emulator, then to upload them directly in a network of real devices
(see Fig. 5). Moreover, it enables also to run the emulator in a kind of “mixed” mode where
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Figure 5: The TOTA emulator. (left) A snap-shot of the emulator. The snap-shot shows the
2D representation of the TOTA network. Moreover, a GUI pops-up when double clicking
on a node, e.g., node P39. (right) The same code running on the emulator can be uploaded
into the IPAQ, and it can make available the same GUI.

one or more real IPAQs are mapped into specific nodes of the emulator. In this mode, all
the IPAQ communication is diverted into the simulation, providing the illusion that the
real IPAQ is actually embedded into the simulated network and can communicate with its
simulated neighbors. This enables to test interesting scenarios applications in which a user
with an IPAQ can interact either with both real network peers and emulated ones, and can
pretend being immersed in a very large-scale network.

It is worth outlining that we also managed to integrate the TOTA emulator with a
lot of publicly available third-party simulators, enabling us to test the effectiveness of our
abstractions in much diverse scenario including robotics [9], urban traffic control [3], and
non-player-character control in video-games [6].

4 TOTA Programming

To develop applications upon TOTA, one has to know:

1. What are the primitive operations to interact with the middleware (i.e., what is the
TOTA API);

2. How to specify tuples, their propagation and maintenance rules;

3. How to exploit the above to code context-aware and coordinated activities.
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public void inject (TotaTuple tuple);

public Vector read (TotaTuple template);

public Vector readOneHop (TotaTuple template);

public Tuple keyrd (TotaTuple template);

public Vector keyrdOneHop (TotaTuple template);

public Vector delete (TotaTuple template);

public void subscribe (TotaTuple template, ReactiveComponent comp, String rct);

public void unsubscribe (TotaTuple template, ReactiveComponent comp);

Figure 6: The TOTA API.

4.1 TOTA API

TOTA is provided with a simple set of primitive operations to interact with the middleware
(see code in Fig. 6).

The inject primitive is used to inject in the TOTA network the tuple passed as parameter.
Once injected, the tuple starts propagating accordingly to its propagation rule, embedded
in the definition of the tuple itself, and will automatically maintain its distributed shape
according to tuples maintenance rules and transparently to applications.

The read primitive accesses the local TOTA tuple space and returns a collection of
the tuples locally present in the tuple space and matching the template tuple passed as
parameter. A template is a tuple in which some of the content field can be left uninitialized
(null).

In addition to this basic reading primitive, the readOneHop primitive returns a collection
of the tuples present in the tuple spaces of the node’s one-hop neighborhood and matching
the template tuple. The keyrd and keyrdOneHop methods are analogous of the former two,
but instead of performing a pattern matching on the basis of the tuple content, they look
for tuples with the same middleware-level ID of the tuple passed as argument via a fast
hash-based mechanism. These two methods are useful to evaluate the local shape of a tuple
(i.e., for evaluating gradients of specific values in the content of tuples).

The delete primitive extracts from the local middleware all the tuples matching the
template and returns them to the invoking agent. Here it is important to note that the
effect deleting a tuple from the local tuple space may be different depending on both the
maintenance rule for the tuple and the invoking agent. In particular, if a tuple has a
maintenance rule specifying to preserve its distributed structure in reaction to events then:
(i) deleting it from the source node induces a recursive deletion of the whole tuple structure
from the network; on the opposite (ii) deleting it from a different node may have no effect,
in that the tuple will be re-propagated there if the maintenance rule specifies so.

The subscribe and unsubscribe primitives are defined to handle events. These primitives
rely on the fact that any event occurring in TOTA (including: arrivals of new tuples,
connections and disconnections of peers) can be represented as a tuple. Thus, the subscribe
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public class ToyAgent implements AgentInterface {

private TotaMiddleware tota;

/* agent body */

public void run() {

/* create a tuple and inject it (FooTuple extends TotaTuple) */

FooTuple foo = new FooTuple("Hello World!", "Franco");

tota.inject(foo);

/* define a template tuple (FooTemplTuple extends TotaTuple) */

FooTemplTuple t = new FooTempTuple(null, "Franco");

/* read local tuples matching the template */

Vector v = tota.read(t);

/* subscribe to changes in tuples matching t*/

tota.subscribe(t,this,"");

}

/* code of the reaction to the subscrption */

public void react(String reaction, String event){

System.out.println(event);

}}

Figure 7: This Toy Agent performs three simple actions: it injects a “Hello World” tuple,
it looks for another tuple in its tuple space, finally it subscribes to a tuple and react to the
income of that tuple, by simply printing out a string.

primitive associates the execution of a reaction method in the agent in response to the
occurrence of events matching the template tuple passed as first parameter. Specifically,
when a matching event occurs, the middleware invokes on the agent a special react method
and passes to it, as parameters, the reaction string (to specify which subscription has been
triggered) and the matching event. The unsubscribe primitive removes all the matching
subscriptions. It is worth noting that, despite the fact that all the TOTA read methods are
non-blocking, it is very easy to realize blocking operations using the event-based interface:
an agent willing to perform a blocking read has simply to subscribe to a specific tuple and
wait until the corresponding reaction is triggered to resume its execution.

Fig. 7, coding a toy application agent, can be of use to clarify the above concepts and
to show the basic usage of TOTA primitives.

4.2 Programming Distributed Tuples

Other than the TOTA API, a suitable programming model is required to build TOTA
distributed tuples. Distributed tuples have been designed by means of objects: the object
state models the tuple content, the tuple’s propagation has been encoded by means of a
specific propagate method, while maintenance rule can be implemented by properly coding
an additional react method. In addition, the init method initializes the tuple as it arrives
on a node by providing it the reference to the local TOTA middleware. This leads to the
definition of the abstract class TotaTuple, providing a general framework for programming
tuples (see code in Fig. 8).
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abstract class TotaTuple {

protected TotaInterface tota;

/* instance variables represent tuple fields */

/* this method inits the tuple, by giving a reference

to the current TOTA middleware */

public void init(TotaInterface tota) {

this.tota = tota;

}

/* this method codes the tuple actual actions */

public abstract void propagate();

/* this method enables the tuple to react

to happening events */

public void react(String reaction, String event)

{

}}

Figure 8: The main structure of the TotaTuple class.

We emphasize that TOTA tuples do not own internal threads, but their code – for
initialization, propagation, and maintenance – is actually executed by the middleware, i.e.,
by the TOTA ENGINE. However, since tuples must somehow remain active even after the
initial propagation, to enable the enforcement of the maintenance rule, the solution adopted
by TOTA is to have tuples place subscriptions to the TOTA EVENT INTERFACE while
propagating (i.e., to place such subscriptions from within the propagate method). Thus,
when an event requiring maintenance of a tuple occurs (e.g., when a new peer connects to
the network and the tuple must propagate to this newly arrived peer), the react method is
triggered to wake up the tuple and maintain it.

In general, a programmer can create new tuples by sub-classing the TotaTuple class and
by specifying its own content, propagation rule, and maintenance rule.

Defining the content simply implies identifying the instance variables. A general con-
structor method relying on Java reflection enables then to create a tuple by passing it an
array of objects that are cast to the correct Java type. This relaxes programmers form the
need of defining a constructor (they simply have to invoke that of the superclass) and also
enables the creation of template tuples with uninitialized values (which are used in pattern
matching).

The correct writing of proper propagation and maintenance rules, instead, may not be
trivial. To facilitate this task, TOTA makes available a whole tuples’ class hierarchy (see
Fig. 9). The classes in the hierarchy already include propagation and maintenance rules
suitable for a vast number of circumstances, and make it very easy to create by inheritance
custom classes with application-specific propagation and maintenance rules (other than with
application-specific content).

The key classes in the hierarchy include: StructureTuple, MessageTuple, HopTuple, Met-
ricTuple and SpaceTuple. In the following, we are going to describe in detail these classes
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Figure 9: Some key classes of the TOTA tuples’ class hierarchy.

public final void propagate() {

if(decideEnter()) {

boolean prop = decidePropagate();

changeTupleContent();

this.makeSubscriptions();

tota.store(this);

if(prop)

tota.move(this);

}}

Figure 10: The propagate method in the StructureTuple class

showing how they can be effectively exploited to create application-specific classes.

4.2.1 StructureTuple

The only child of the TotaTuple class is the class StructureTuple. This class is mainly a
template to better support the definition of further tuple classes.

The StructureTuple implements the superclass method propagate in order to enforce a
breadth first expanding ring propagation method (i.e., a tuple that floods the network).
However, it does so with a structured schema that is at the core of the whole tuples’ class
hierarchy (see code in Fig. 10). The so structured propagate method is made final: it
cannot be overloaded, and all tuple classes have to follow its template to implement specific
propagation rules, by overloading the methods by which it is composed.

The StructureTuple class does not implement any specific maintenance rule. For in-
stance, if the topology of the network changes, the tuple local values are left unmodified.
Tuples of this kind can in any case be of some use in applications where the network in-
frastructure is relatively static and thus there is not the need to constantly update and
maintain the tuple distributed structure. However, what matter in the StructureTuple class
is that it also facilitate the definition of maintenance rules by specifying how tuples should
subscribe to events during propagation in order to later support their own maintenance.

The StructureTuple defines the propagate method around the following four methods:
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decideEnter, decidePropagate, changeTupleContent, makeSubscriptions. In addition, it ex-
ploits two private methods of the TOTA API, i.e., store and move. The procedure for
propagation is as follow:

• When a tuple arrives in a node (either because it has been injected or it has been
sent from a neighbor node) the middleware executes the decideEnter method. This
returns true if the tuple can enter the local node and actually execute there, false
otherwise. The standard implementation (breadth first expanding ring) returns true
if the middleware does not already contain that tuple.

• If the tuple is allowed to enter, the method decidePropagate is run. It returns true if
the tuple has to be further propagated, false otherwise. The standard implementation
of this method returns always true, realizing a tuple’s that floods the network being
recursively propagated to all the peers.

• The method changeTupleContent changes the content of the tuple, and can be used
to define how the tuple content should change during propagation. The standard
implementation of this method does not change the tuple content.

• The method makeSubscriptions allows the tuple to place subscriptions in the TOTA
middleware. As stated before, in this way the tuple can react to specific events (net-
work events or events occurring in the local tuple space) and enforce maintenance rules
that are to be coded in the react method of the tuple. The standard implementation
does not subscribe to anything.

• After that, the tuple is stored in the local TOTA tuple space by executing the
tota.store(this) method. Without this method, the tuple would propagate across the
network without leaving anything of itself behind, and no distributed data structure
would ever be formed.

• Then, if the decidePropagate method returned true, the tuple is propagated to all the
neighbors via the tota.move(this) primitive. With this method, the tuple will reach
neighbor nodes, where the propagation procedure starts again. It is worth noting that
the tuple will reach the neighbor nodes with the content changed by the last run of
the changeTupleContent method.

Programming a TOTA tuple to create a distributed data structure basically reduces
inheriting from the above class to overload the four methods specified above to customize the
tuple behavior. For instance, different conditions can be evaluated to decide if a propagated
tuple should enter a node (decideEnter), if it should further propagate (decidePropagate),
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or if it should change its content and how (changeTupleContent). And one can even query
the local tuple space to evaluate these conditions. We also emphasize that the presence of
both the decideEnter and decidePropagate methods derive from the fact that the decision
of whether a tuple should propagate from a node A to a node B can be sometimes based on
conditions known at the node A, in which case one can evaluate the condition within the
decidePropagate method, but in other cases it can be based on conditions known only at
the destination node B, in which case one can evaluate the condition within the decideEnter
method.

Let us now present an example of how one can define a new tuple class by inheriting
from the basic StructureTuple class. The NotMaintainedGradient class (see code in Fig. 11)
defines tuples that flood the whole network and have an integer hop-counter that is increased
by one at every hop. To code this one has basically to: (i) place the integer hop counter
in the object state, representing the tuple content; (ii) overload changeTupleContent, to
let the tuple change the hop counter at every propagation step; (iii) overload decideEnter
so as to allow the tuple to enter in a node not only if in the node there is not the tuple
yet – as in the base implementation – but also if there is the tuple with an higher hop-
counter. This allows to enforce the breadth-first propagation assuring that the hop-counter
truly reflects the hop distance from the source. We emphasize that one could also think at
overloading the decidePropagate method to bound the propagation of the tuple and confine
it to a limited number of network hops from the source (or, even better, one can subclass
from NotMaintainedGradient to define such a BoundedNotMaintainedGradient class).

With reference to the case study, it is clear that Art-Piece tuples could be properly
represented by instances of the NotMaintainedGradient class, where the integer value defines
a gradient that – when followed downhill – leads to the source of the tuple, i.e., to the
location of the art piece.

However, the NotMaintainedGradient class has no specific maintenance rules: the local
instances of the distributed tuple are left unchanged whatever happens in the network and
whatever time passes. Clearly, this may not be acceptable for applications in dynamic
networks (as it can be the case of the case study). This is why the TOTA class hierarchy
considers the need for making available specific tuple classes coding suitable maintenance
rules.

4.2.2 MessageTuple

The MessageTuple class is used to create tuples that act as sort of messages that are not
stored in the local tuple spaces but just flow in the network.

The basic structure is the same as StructureTuple, but a maintenance rule is specified
(by properly overloading the makeSubscriptions and the react methods) to erase the tuple

22



public class NotMaintainedGradient extends StructureTuple {

public int hop = 0;

public boolean decideEnter() {

NotMaintainedGradient prev =(NotMaintainedGradient)tota.keyrd(this);

return (prev == null || prev.hop > (this.hop + 1));

}

protected void changeTupleContent() {

super.changeTupleContent();

hop++;

}}

Figure 11: The NotMaintainedGradient class defines a tuple that floods the network and
have an integer hop-counter that is increased by one at every hop.

public class MessageTuple extends StructureTuple {

private int LEASE = 54;

public void makeSubscriptions() {

/* get current time */

SensorTuple st = new SensorTuple(new Object[] {"CLOCK",null});

st = (SensorTuple)tota.keyrd(st);

int currentTime = st.value;

/* create a tuple representing a future event */

st = new SensorTuple(new Object[] {"CLOCK",new Integer(currentTime+LEASE)});

tota.subscribe(st,(ReactiveComponent)this,"ERASE");

}

public void react(String reaction, String event) {

if(reaction.equals("ERASE")) {

tota.delete(this);

}}}

Figure 12: The MessageTuple class defines a tuple that floods the network with an integer
value and delete itself after some time has passed, to act as a sort of message that spread
in the network.
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after some time passed. The code of the MessageTuple class is in Fig. 12. It is worth
noticing that TOTA takes care of wrapping low-level data (such as the system clock) into
suitable local SensorTuple. This is useful to provide a uniform access to all the resources
and information.

We emphasize it is not possible to define such kinds of not persistent tuples by simply
removing the tota.store() method from the basic propagation template (as from Fig. 10).
In fact, it is necessary to temporarily store locally tuples, to prevent backward propagation
of tuples. A tuple can be deleted only after the tuple “wave-front” has passed. Clearly,
setting the optimal time before deletion is not trivial. If the tuple propagates in a breadth
first manner in a nearly regular planar network, such time can simply be set to greater
than the time required for the tuple “wave-front” to proceed two-hops away. However, if
the tuple is intended to propagate in specific directions and/or the network topology has
large “holes” leading to circular paths, a short LEASE time can lead to message tuples that
endlessly circulate in the network. For this reason, MessageTuples should consider worst
case LEASE time or, even better, should consider confining the propagation distance of a
tuples to ensure that propagation will eventually stop.

Message tuples could be fruitfully applied as a communication mechanism. Subclasses of
MessageTuple can be defined to embed specific routing policies in their propagation rule (as
in Smart Messages approach [16]). To make an example, one can define by inheritance from
MessageTuple a DownhillTuple class, defining tuples that propagate by following downhill
the gradient left by other tuples. Specifically, a DownhillTuple tuple follows downhill another
tuple whose content is an integer value typically increasing with the distance from the source
(e.g. a NotMaintainedGradient tuple). To code this tuple one has basically to overload the
decideEnter method to let the tuple enter only if the value of the tuple being followed (e.g.
NotMaintainedGradient) in the node is less that the value on the node from which the tuple
comes from (see Fig. 13).

By combining these tuples with StructureTuple, it is easy to realize publish-subscribe
communication mechanisms, in which StructureTuple creates subscriptions paths, to be fol-
lowed by MessageTuple implementing events. For instance, this kind of interaction pattern
is that we already proposed for the case study: a tourist can propagate queries for art pieces
in the form of “Query Tuple” defined starting from StructureTuple, while art pieces can react
to such queries by injecting an “Answer Tuple” defined starting from DownhillTuple.

At this point, based on the examples reported so far, it should also start becoming
clear how TOTA can be exploited to effectively enforce naturally-inspired phenomena of
self-organization. On the one hand, TOTA tuples can be exploited to define sorts of virtual
force fields emanating from a source or sorts of diffusing chemical gradients. In the latter
case, one could also exploit maintenance rules similar to that defined for the MessageTuple
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public class DownhillTuple extends MessageTuple {

public int oldVal = 9999;

NotMaintainedGradient trail;

/* note that in the creation of the tuple one must pass the

reference to the trail tuple to be followed */

public boolean decideEnter() {

super.decideEnter();

int val = getGradientValue();

if(val < oldVal) {

oldVal = val;

return true;

}

else

return false;

}

/* this method returns the minimum hop-value of the

NotMaintainedGradient tuples matching the tuple to be

followed in the current node */

private int getGradientValue() {

Vector v = tota.read(trail);

int min = 9999;

for(int i=0; i<v.size(); i++) {

NotMaintainedGradient gt = (NotMaintainedGradient)v.elementAt(i);

if(min > gt.hop)

min = gt.hop;

}

return min;

}}

Figure 13: The DownhillTuple class defines tuples that propagate by following downhill
the trial left by another tuple. Specifically, a DownhillTuple tuple follows downhill another
tuple whose content is an integer value typically increasing with the distance from the source
(e.g., NotMaintainedGradient).

class to enforce slow propagation and slow evaporation of tuples, as it occur in real chemical
diffusion. On the other hand, TOTA tuples can be defined that propagate by being some-
what “attracted” by the virtual force fields (or chemical gradients) defined by other tuples.
These two mechanisms are at the basis of most phenomena of self-organization in natural
and physical systems, such as ant-foraging, self-aggregation, flocking in birds [38, 15, 11].

However, to complete the picture, TOTA tuples must be provided with the capability
of adaptively maintaining a coherent distributed structure in response to the dynamics of
the underlying network environment.

4.2.3 HopTuple

The HopTuple class inherits from StructureTuple to define distributed data structures that
are able to self-maintain their propagated structure to reflect dynamic changes in the net-
work topology (see Fig. 14, as well as Fig. 1), there included changes in the network
positioning of the injecting node.

Similarly to the class NotMaintainedGradient in Fig. 11, the HopTuple defines an integer
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(a) (b)

Figure 14: HopTuples self-maintain despite topology changes. (a) The tuple on the gray
node must change its value to reflect the new hop-distance from the source Px. (b) If the
source detaches, all the tuples must auto-delete to reflect the new network situation.

hop counter as content, and it overloads the decideEnter method so as to allow the entrance
in a node only if the tuple is not already there and if it does not have a lower hop-count.
This allows to enforce the breadth-first propagation assuring that the hop-counter truly
reflects the hop distance from the source [28]. Moreover, HopTuple overloads the empty
makeSubscription method of the StructureTuple class to react to any change in the network
topology so that – whenever needed – the react method can update the hop counter and
have it always reflect the current hop-distance from the source.

To give readers an idea of how the self-maintenance algorithm works, we provide here
an informal description. Let us consider a HopTuple distributed tuple structure. Given one
of its local tuples instances X on a node, we call another local tuple Y on another node a
supporting tuple of X if: Y belongs to the same distributed tuple structure of X; Y is at
one-hop distance from X; and the hop-counter value of Y is equal to that of X minus one.
With such a definition, a supporting tuple of X is a tuple that could have created X during
its propagation. Moreover, we define X being in a safe-state if it has at least a supporting
tuple, or if it is in the source node that firstly injected the tuple (i.e. hopvalue = 0). The
basic idea of the algorithm is that a tuple that is not in a safe-state should not be there,
since no neighbor tuples could have created it. Therefore, each local tuple must subscribe
to the removal of other tuples of its type in its one-hop neighborhood. Upon a removal,
each tuple reacts by checking if it is still in a safe-state. In the case a tuple is not in a
safe state, it erases itself from the local tuple space. This eventually causes a cascading
deletion of tuples until a safe-state tuple can be found, or all the tuples in that connected
sub-network are deleted. On the contrary, in the case a tuple is in a safe-state, the removal
triggers a reaction in which the tuple propagates to that node in order to fix the distributed
tuple structure.

Readers can refer to [29] for a detailed description of the complete algorithm and of its
stabilization properties. What we emphasize here is that, as complex as this algorithm and
its coding can be, users do not have to worry: they can simply exploit the algorithm by
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inheriting from the HopTuple class.
The self-maintained tuple structures defined by the HopTuple class are of fundamen-

tal importance to support adaptive context-aware activities in dynamic network scenarios,
which are the main target scenarios of TOTA. On the one hand, they enable application
agents injecting tuples in the networks to fully disregard the actual structure and dynamics
of the underlying network. Once the tuple is injected, its maintenance rules ensure that
the distributed tuple structure will always reflect the intended propagation pattern. This
moves away from the agent the burden of maintaining the tuple shape up-to-date. On the
other hand, an agent locally perceiving a tuple is ensured that what it perceives reflects the
current situation, and thus is a “live” representation of the context.

Indeed, all the examples presented above should have better exploited tuple derived
from the HopTuple class, in order to tolerate network dynamics and dynamic movement of
the source.

Let us consider the meeting tuple in the case study (see Fig. 2-“Meeting Tuple”).
This can be directly realized via the HopTuple class, so that whenever a user moves in the
museum, the propagated meeting tuple (which express its presence and its distance) will
always be perceived by other agents as reflecting the current position of the user (with some
slight delay due to the delay in propagation of the tuples and of its dynamic updates). What
is important to note here is that if all users decide to exploit meeting tuples to meet with
each other by following downhill the sensed meeting tuples, the resulting meeting process
would be adaptive, and would resemble a natural process of self-aggregation [11].

To better clarify the power and expressiveness of such self-maintained tuples, let us dis-
cuss another example. A FlockingTuple class can be created by inheritance from HopTuple,
to define distributed data structures in which an integer in the content of the tuples has a
minimum at a specific distance (RANGE) from the injecting agent. Coding such a tuple is
trivial (see Fig. 16), since one has simply to (i) place in the object state an integer repre-
senting the flock value and (ii) overload the changeTupleContent to let the tuple assume the
intended shape. Note that the “hop” variable is maintained in the super-class HopTuple.

The name of the FlockingTuple class comes from the fact it can be employed to realize
an interesting application forcing a group of agents to maintain a specific regular formation,
mimicking that process of adaptive self-organization that is the flocking of birds. Flocks
of birds stay together, coordinate turns, and avoid colliding each other by following a very
simple algorithm [15]. Their coordinated behavior can be explained by assuming that each
bird tries to maintain a specified separation from the nearest birds and to match nearby
birds’ velocity. To implement such a coordinated behavior with TOTA, we can have each
agent generate a FlockingTuple assuming the minimal value at a distance expressing the
intended spatial separation between agents. The final shape of the resulting distributed
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Figure 15: (left) Ideal shape of the flock tuple. (right) When all the agents follow other
agents’ tuples they collapse in a regular grid formation.

public class FlockingTuple extends HopTuple {

private int RANGE = 3;

public int value = RANGE;

protected void changeTupleContent() {

super.changeTupleContent();

if(hop <= RANGE)

value --;

else

value ++;

}}

Figure 16: A FlockingTuple creates a data structure that has a minimum at a specific
distance (RANGE) from the injecting agent.

tuple resembles the function depicted in Fig. 15-left. FlockingTuples are always updated to
reflect peers’ movements. To coordinate movements, peers have simply to locally perceive
the generated tuples and follow them downhill. The result is a globally coordinated move-
ment in which peers maintain an almost regular grid formation (see Fig. 15-right). For
instance, in the case study, one can think of exploiting this mechanism to orchestrate in a
fully distributed way the movememt of security guards while monitoring the museum.

More in general, all natural phenomena of adaptive self-organization relying on the
diffusion of some sort of field gradient (chemical, physical, or simply perceptual, as in
the case of birds) can be easily mimicked in TOTA by defining self-maintained tuples with
specifically conceived content and propagation rules. There, the natural endeavor of physical
and chemical fields of continuously reflecting the properties of the surrounding physical
space (which contributes making such phenomena adaptive and robust) translates in the
capability of self-maintained TOTA tuples of continuously reflecting the structure of the
underlying network.

As an additional note, also in the case of HopTuple sub-classes one can think of bounding
the propagation of tuples to a limited number of hops, by simply overriding the decideProp-
agate method. This does not affect the algorithm for self-maintainance, which continue
performing its work in the sub-part of the network in which the tuple is intended to be
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Figure 17: MetricTuple and SpaceTuple tuples create a shared coordinate system, centered
in the node that injected the tuple.

propagated.

4.2.4 MetricTuple and SpaceTuple

All the above presented tuple classes rely on propagation patterns directly related to the
underlying network structure, i.e., based on network hops. However, in several application
scenarios, possibly even in our case study, it may be helpful to ground tuple propagation on
more physically grounded concepts of space (e.g., meters) rather than on network distances.

The MetricTuple and SpaceTuple classes of the TOTA class hierarchy tackle this problem
to support propagation and maintenance of TOTA tuples based on the actual localization
of TOTA nodes. In particular, both these tuple classes define three float numbers (x,y,z) as
a content, representing the physical coordinates in a 3D reference space. Once one of these
tuples is injected in the network, the (x,y,z) tuple is set to (0,0,0), and the tuple propagates
by having its content change so that so that the (x,y,z) tuple always reflects the coordinates
of the local node in a coordinate system centered where the tuple was first injected (see Fig.
17). In other words, these tuples define a coordinate system centered around the source
node.

The current implementation of MetricTuple and SpaceTuple tuples supports both the
presence of GPS-like localization and of RADAR-like localization (see also Subsection 3.2).

The implementation of these tuples in the presence of GPS-like localization is straight-
forward. Once injected, the tuple will store the injecting node GPS coordinates and will
initialize its content to (0,0,0). Upon reaching a new node, it will change the content to the
GPS coordinates of the new node translated back by the injecting node coordinates. Tuple

29



Figure 18: MetricTuple and SpaceTuple tuples create the shared coordinate system, by
having each node change the content of the tuples on the basis of the coordinates provided
by the RADAR-like device.

maintenance proceeds similarly: when a node moves (let us for now assume this is not the
source node), the tuple locally changes its content by accessing the new GPS information
locally available to the node that has moved.

The implementation of MetricTuple and SpaceTuple tuples, given the availability of a
RADAR-like localization, is more complicated. Here the goal is to create a tuple class that
combines the local coordinate systems, as made available by RADAR-like devices, into a
shared coordinate system, with the center in the node that injected the tuple. To explain
how this can be achieved let us consider Fig. 18. The tuple (0,0,0) travels from P1 to P2 and
it changes its content there. Specifically, it subtracts from its old value the coordinates of P1
as sensed by the RADAR-like device in P2. Thus (0−(−100), 0−(−20), 0−0) = (100, 20, 0).
It is worth noting that, in the figure, all the private coordinate systems are aligned. So
combining them is just a matter of adding the coordinates. However, this perfect alignment
is unlikely to happen and slightly more complex (geometric) combination will be required.
Further propagation hops (from P2 to P3, and form P2 to P4) proceed analogously. Tuple
update proceeds similarly: once these tuples have been propagated, if a node moves (and
given this is not the source node), only its tuple local value is affected, while all the others
are left unchanged. In fact, the others physical positions with respect to the source do not
change. Upon a movement MetricTuple and SpaceTuple tuples read the RADAR localization
and adjust their values accordingly (see Fig. 19).

To key difference between MetricTuple and SpaceTuple tuples relates to what happens
when the source moves. For MetricTuple tuples, the origin of the coordinate system origi-
nated from the injected tuple is anchored to the source node, and when the source moves all
the coordinates in the propagated tuple structure will be updated. This of course can lead
to performance problems: if the source is highly mobile, this will imply a continuous update
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Figure 19: Self-maintenance in MetricTuple and SpaceTuple tuples. Since the tuple on P3
does not change position with respect to the tuple source, it does not change its content.
P2 updates its content on the basis of the new RADAR reading.

of the whole distributed tuple structure. For this reason, the maintenance rule of Metric-
Tuple tuples comes with a threshold value that defines a minimal distance of movement
of the source before an update of the distributed tuple structure is triggered. SpaceTuple
tuples solves this problem in a more radical way: for these tuples, the origin of the tuple
coordinate system is anchored with the initial position of injection, so that if the source
moves the distributed tuple structures remain the same, and only the source node will have
to update its local coordinate values.

Let us now show two examples of tuple classes derived from the above: (i) DistanceTuple
and (ii) FlockMetricTuple.

A DistanceTuple is a tuple that holds as a variable in its content the spatial distance
from the source (which can be easily computer from the (x,y,z) tuple. DistanceTuple, since
it inherits from MetricTuple, always represents the distance from the source, even when the
source moves. However, if the same tuple would have inherited from SpaceTuple, then it
would have expressed the distance from the initial injection point (see code in Fig. 20).

The FlockMetricTuple tuple class encodes the already described flocking tuple (see Fig.
15-left), and can be used for the same purpose. However, in this case, the minimum of the
flock fiend can be set to a specific physical distance, rather than to a network-hop distance
(see code in Fig. 21).

Clearly, starting from the above tuple classes, it is trivial to derive classes that enforce
the same propagation and maintenance rules but rely on different coordinate system (e.g,
polar or geographic coordinate system).
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public class DistanceTuple extends MetricTuple {

public int value = 0;

protected void changeTupleContent() {

super.changeTupleContent();

value = (int)Math.sqrt((x*x)+(y*y)+(z*z));

}}

Figure 20: A DistanceTuple is a tuple that holds the spatial distance from the source.

public class FlockMetricTuple extends MetricTuple {

private int a = 30;

public int value = 0;

protected void changeTupleContent() {

super.changeTupleContent();

int d = (int)Math.sqrt((x*x)+(y*y)+(z*z));

/* d^4 - 2a^2d^2 is a kind of Mexican-hat

function suitable for flocking */

value = (d*d*d*d) - 2*(a*a)*(d*d);

}}

Figure 21: A FlockMetricTuple encodes in its shape the flock-field described in Fig. 15-left.

4.3 Programming Agents

The last step involved in programming TOTA applications is coding the agents that use the
TOTA API and that create the instances of TOTA tuples to achieve the needed application
goals.

For the sake of simplicity, and without loss of generality, we detail how to program the
agents involved in the museum case study to gather contextual information and to enforce
the meeting process.

4.3.1 Gathering Contextual Information

The first approach proposed in Subsection 3.1 considers that art-piece agents (i.e, agents
residing on art pieces) propagate in the network a tuple describing themselves, and that
tourist agents can simply query the local tuple space to discover the presence of art-piece
and their estimated location.

The code for these two agents is in Fig. 22 and in Fig. 23 respectively. What we can
see is that it is extremely simple for the programmer to exploit the TOTA class hierarchy
to define tuples with some specific content, e.g., as those necessary to describe a piece of
art in the MyGradient class, and then to use the TOTA API to inject tuples (as in the art
agent) or to use the tuple class as a template to locally retrieve tuples (as in the tourist
agent).

In these examples, the MyGradient class inherits from NotMaintainedGradient, which
does not implement maintenance rules. Alternatively, if one foresee dynamics in the museum
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public class ArtAgent1 implements AgentInterface {

private TotaMiddleware tota;

public void run() {

/* create and inject the description */

MyGradient description = new MyGradient(new Object [] {"Monna Lisa", "Da Vinci", "1492", "Room X"});

tota.inject(description);

}}

class MyGradient extends NotMaintainedGradient {

// define the tuple content

public String title, author, location;

public int year;

public MyGradient (Object[] o) {super(o);}

}

Figure 22: ArtAgent first solution.

public class TouristAgent1 implements AgentInterface {

private TotaMiddleware tota;

public void run() {

/* create a template to query the local tuple space */

/* the template match all art pieces by Da Vinci */

MyGradient template = new MyGradient(new Object[] {null, "Da Vinci", null, null});

/* query the local tuple space

Vector v = tota.read(template);

/* at this point, the user agent can analyze all tuples he has

got in return and decide what to visit, also based on

information about distances of the art pieces.

In the code below, the agent displays the title of all found

art pieces closer than 2 hops */

for(int i=0; i<v.size(); i++) {

MyGradient mg = (MyGradient)v.elementAt(i);

if (mg.hop<=2) System.out.println (mg.title);

}}}

Figure 23: TouristAgent first solution.

structure or possible movements of the art-piece (due to, e.g., organization of temporary
exhibitions), one could have simply defined the MyGradient class by extending the HopTuple
one, to get advantage of its self-maintenance properties.

The same example can be easily translated to work in different scenarios, e.g., for out-
door. A tourist visiting a town could exploit the same approach to discover the presence of
monuments, churches, or whatever, by locally querying for tuples distributed in the town.
To this end, the only modification suggested for the code of art piece agents is that of ex-
ploiting, instead of the NotMaintainedGradient or HopTuple classes, the SpaceTuple class.
This enables tourist agents to analyze physical distances, which is definitely more suited in
outdoor scenarios. In addition, for such outdoor scenario, it can make sense to bound the
propagation of art piece tuples to, say, a few kilometers (why should a tourist care of a very
far away monument?).

Beside the spreading of rather static information related to art pieces and monuments,
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the same example can by applied nearly as it is to spread and retrieve information about
any relevant situation currently occurring somewhere in an environment: the presence of
policemen, the emergence of a traffic jam, a road show going to begin.

The second approach sketched in Subsection 3.1 considers that art-pieces agents do
not propagate tuples, but are instead programmed to sense the income of query tuples
propagated by tourists and to react by propagating backward to the requesting tourists
their location information. Although such a solution induces slower response times to
tourist, it has the advantage of limiting the spreading of tuples in the network, and may
thus be suggested for the retrieving of non-critical contextual information.

Such second approach is coded by the ArtAgent2 and the TouristAgent2 classes presented
in Fig. 24 and Fig. 25, respectively.

Each art-piece agent is identified by a description representing the art piece it stands
for. It subscribes to the tuples querying for the art-pieces they represent, i.e., to the income
of any tuple MyGradient matching its own description. The reaction to such an event
is to inject a MyDownhillTuple, which simply inherits from DownhillTuple to specify a
content with the same structure of that of MyGradient. Such MyDownhillTuple propagates
by simply following backward the query tuple to reach the tourist agent which issued the
request.

A tourist agents, by its side, performs just two simple operations: it injects in the net-
work a tuple of class MyGradient, filling it with a partial content describing the art piece the
user is looking for. Then the agent subscribes to the income of all the MyDownhillTuple tu-
ples (which are assumed to describe an art piece and its location) having the partial content
formerly specified in the query (“Monna Lisa”). The associated reaction displayReaction is
executed on receipt of such tuple to print out the full content of the received event tuple in
the user interface.

Also for this second solution, we can consider the use of MetricTuple tuples for outdoor.
Also, we emphasize that since MyDownhill tuples are self-maintained, the answer to a query
can reach a tourist even while in movement.

In addition, for both the proposed solutions, it may make sense to adopt temporary
tuples, i.e., tuples with a limited time-to-live (as already specified in Subsection 4.2.2 and
accordingly to the maintenance rules of Fig. 12), so as to avoid leftovers of no longer
meaningful tuples.

4.3.2 Meetings and Motion Coordination

With regard to the meeting application, the algorithm followed by MeetingAgents (see code
in Fig. 26) is very simple: agents have to determine the farthest peer, and then move
(better: suggest their user where to go) by following downhill that peer’s presence tuple.
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public class ArtAgent2 implements AgentInterface {

private TotaMiddleware tota;

private Object description[];

/* agent body */

public void run() {

/* subscribe to the query */

description = new Object[] {"Monna Lisa", "Da Vinci", "1492", "Room X"}

MyGradient tempquery = new MyGradient(description);

tota.subscribe(tempquery,this,"answerQuery");

}

/*code of the reaction, here it injects the

answer tuple. The answer will be coded by a

MyDownhillTuple following the query.*/

public void react(String reaction, String event) {

MyDownhillTuple answer = new MyDownhillTuple(description);

tota.inject(answer);

}}

Figure 24: ArtAgent second solution.

public class TouristAgent2 implements AgentInterface {

private TotaMiddleware tota;

private Object descriptiontemplate [];

/* agent body */

public void run() {

/* inject the query */

descriptiontemplate = new Object [] {"Monna Lisa", null, null, null};

MyGradient query = new NMGradient(descriptiontemplate);

tota.inject(query);

/* subscribe to the answer: the answer will be

conveyed in a MyDownhillTuple */

MyDownhillTuple answer = new MyDownhillTuple(descriptiontemplate);

tota.subscribe(answer,this,"DISPLAY");

}

/* code of the reaction that simply prints out the result */

public void react(String reaction, String event) {

if(reaction.equals("DISPLAY")) {

gui.show(answer);

}}}

Figure 25: TouristAgent second solution.
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In this way agents will meet in their center of gravity (i.e., the room between them). To
this end, each agent injects a MeetingGradient tuple, inherited from HopTuple and enriched
with a description of the user, to notify other agents about its location. Then, it will read
the MeetingGradients injected by the other agents, extract the one corresponding to the
farther agent and display the direction to go to follow the tuple downhill. The result is in
an orchestrated movement of tourists, all of which will eventually be guided to a proper
location for the meeting, without requiring agents to know anything a priori about the
topology of the museum and the location of other users.

Starting form this simple example, and always exploiting similar kind of tuples a variety
of other patterns of coordination can be enforced to orchestrate the activity of tourist. For
example, a tourist guide could inject a tuple similar to the MeetingGradient to be easily
reachable by tourists (that could follow the tuple downhill to reach the guide). As another
example, the guides themselves could try to follow each other tuples uphill in order to stay
as far as possible from each other, and thus improve the coverage of the museum. As an
additional example, TOTA could be used to easily implement self-organized load balancing
of crowd within the museum. To this end, we can assume that, for each room, a Crowd tuple
is spread across the museum with a field whose value represents to the number of people
in that room. Following this Crowd tuple downhill, tourists could try to stay away form
crowd and queues while visiting the museum. Further details on these and other motion
coordination examples can be found in [31].

In conclusion, all such patterns can be easily extended to other application scenarios
(e.g., outdoor) and to robots or computer-enriched objects other than to humans.

5 Experimental Evaluation

The effectiveness of the TOTA approach is of course related to the costs, performances, and
overheads, involved in propagating and maintaining TOTA distributed tuples. To this end,
we need to:

• analyze and evaluate the costs involved in propagating and deleting tuples across a
network;

• evaluate the impact of self-maintenance algorithms on a network, which also strictly
affects the scalability of the approach;

• analyze the impact on TOTA nodes of the various operations in which they are in-
volved during the execution of TOTA applications.
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class MeetingGradient extends HopTuple {

String username;

public MeetingGradient (Object[] o) {super(o);}

}

public class MeetingAgent extends Thread implements AgentInterface

{

private TotaMiddleware tota;

public void run() {

/* inject the own meeting tuple to

participate the meeting */

MeetingGradient mt = new MeetingGradient(new Object [] {"MyName"});

tota.inject(mt);

while(true) {

/* read all other agents’ meeting tuples via a null template */

MeetingGradient coordinates = new MeetingGradient(new Object [] {null});

Vector v = tota.read(coordinates);

/* evaluate the gradients via a proper getDestination method,

and select the peer to which the gradient goes downhill */

Point destination = getDestination(v);

/* suggest the user to move downhill following

meeting tuple via an appropriate user interface*/

gui.show(destination);

}}}

Figure 26: Agent example: MeetingAgent

5.1 Tuple Propagation and Deletion

Tuple propagation is the key operation in TOTA, together with tuple deletion (which after
all is a simply a different form of propagation).

In general, the multi-hop algorithm for propagating or deleting a tuple is something in-
herently scalable, from the individual nodes’ viewpoint. In fact, each node has to propagate
a tuple (or propagate deletion requests) only to its immediate neighbors. Thus, whatever
the size of the network, the effort on TOTA nodes is constant. The issue of scalability for
maintaining the coherence of tuples’ distributed structures and for sustaining the propaga-
tion of tuples in intensive applications will be discussed later on.

The time costs involved in propagating or deleting a tuple derive form several contribu-
tions. Let us focus on the basic operation of a generic StructureTuple traveling from a node
to another neighbor node. The total cost Tu involved in such a process accounts for several
contributions: Tu = Trcv + Tprop + Tsend + Ttravel. Trcv is the time to receive, deserialize the
tuple and have it ready to execute the propagate method. Tprop is the time taken by a tuple
to run its propagate method on a node. Tsend is the time required to serialize and send the
tuple content. Ttravel is the time to letting the stream of data arrive on the other node.

These values as measured in our PDA implementation of TOTA are reported in Fig.
27.

In an ideal case, if the above were the only costs to be accounted for, a tuple would
propagate at a distance of X hops in a X · Tu time. However, in practice, the propagation
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Propagation time on a WiFi PDA (IPAQ 400 Mhz)
Tprop 99.7 ms
Tsend 67.2 ms
Ttravel 0 ms
Trcv 21.2 ms
Tu 188.1 ms

Figure 27: Time costs in a PDA.

time tends to be greater. In fact, tuple propagation does not happen always in a perfect
expanding ring manner (a general problem of flooding in ad-hoc networks, see e.g. the
studies reported in [24]). The correction of imbalances and of backward propagations in
tuple propagation requires some extra operations (and thus extra time) that are difficult to
extract and analyze.

To assess these costs, we performed several experiments both with our TOTA emulator
and with a network of real PDAs. On the one hand, we first simulated a network with 200
nodes connected in a MANET. A randomly selected node injects several TOTA tuples in
the network. The time taken by the tuples to reach a distance of x-hop away from the source
has been recorded and averaged together over a large set of experiments. The results are
depicted in Fig. 28(a) (where we assume a reference Tu = 1). On the other hand, we set up
a real MANET consisting of 16 PDAs connected with each other so as to obtain a network
with a diameter of 3 hops. Then, we propagated tuples in there measuring delays. The real
time to propagate a tuple in the PDA network, averaged over a number of experiments,
is reported in Fig. 28(b). In both the experiments, it is easy to see that the number of
operations required is slightly greater than the ideal model, though still inherently linear
with the number of hops. The same results hold in the case of the tuple deletion process.

To get the real meaning of these results, one can consider that for a network of nodes
with a wireless radius of 20m (that could be the typical radius of WiFi in a cluttered
environment), the physical speed for tuple propagation would be around 75 m/s, i.e., 270
Km/h. Such a speed enables to effectively adopt TOTA in scenarios involving humans,
robots, as well as cars in urban traffic, all of which exhibiting speeds notably slower than
that of tuples, and thus making the delay at which they would perceive information (in the
form of tuples being propagated) mostly negligible.

5.2 Self-Maintenance Algorithms

Analyzing and evaluating the performances of the self-maintenance algorithms is a bit more
complex, but it is nevertheless very important to assess the feasibility of our approach and
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Figure 28: (a) Time required to propagate and delete a TOTA tuple in simulation experi-
ments. (b) Time required to propagate a TOTA tuple in a MANET of real PDAs.

its scalability.
In the following of this subsection, we evaluate self-maintenance algorithms for the

different classes of the TOTA hierarchy of Fig. 9, with a specific emphasis on the self-
maintenance algorithm of the HotTuple class.

In any case, we emphasize that our results apply only to the algorithms already im-
plemented in the classes of the TOTA hierarchy, which we expect to be re-usable in the
vast majority of cases. Subclassing from them to implement different self-maintenance algo-
rithms is always possible, but may introduce totally different behaviours and performances.

5.2.1 Overhead and Scalability

Let us now focus on the problem of verifying how the performances and the overhead
induced by tuple maintenance algorithms affects the nodes of the network, and whether
such performances and overhead are independent of the network size and, thus, are scalable.

StructureTuple tuples are not maintained: once propagated, they do not add any further
burden to the system.

MessageTuple tuples have a maintenance rule consisting of a reaction that deletes the
tuple after some time has passed. This reaction affects all the nodes in which the tuple
propagates, possibly even far nodes, but only once. So, it does not introduces critical
performance issues.
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The issue of self-maintenance is instead critical for HopTuple tuples. Consider a tuple of
this class propagated to the whole system, and assume that a change in the network topology
occurs somewhere requiring the execution of some maintenance operations. Then, should
such operations affect the whole network (even far nodes) that would make not feasible
to generally adopt such tuples in the presence of dynamic networks. On the contrary,
if maintenance operations are confined within a locality from where the triggering event
occurred, then events at distant nodes do not accumulate with each other, and distant
nodes are not affected by events occurring somewhere else. In this case, the impact of the
self-maintenance algorithm would be independent of the system size and, thus scalable.

Establishing by analysis how the HopTuple self-maintenance algorithm impacts on the
network is very complex, also because the actions performed by it strongly depends on the
network topology [29] (see Fig. 14). Thus, to assess the impact, we exploited the TOTA
emulator and performed a large number of experiments to measure the scope of maintenance
operations.

To perform the experiments, we run several simulations varying the node density and
their initial position. In particular, we run six sets of experiments where we randomly
deployed 200, 250, 300, 350, 400, 450 nodes in the same area; thus obtaining an increasing
node average density and a shrinking network diameter. All the experiments were repeated
a large number (over 100) of times with different initial network topologies and the results
were averaged together. Specifically, we conducted two classes of experiments.

Experiment 1: In this experiment, we wanted to verify the number of operations
required to fix a HopTuple tuple when the movements of random nodes change the network
topology.

In a first set of experiments, a randomly chosen node injects a HopTuple in the network.
After that, randomly chosen nodes start moving independently (following a random way-
point motion pattern) perturbing the network. In particular, a randomly picked node moves
randomly for a distance equals to 1 wireless radius. This movement changes the network
topology by creating and disrupting links. The number of messages sent between nodes
to adjust the TOTA tuple, according to the new topology, is recorded. Specifically, we
evaluate the average number of messages exchanged by nodes located at x-hop away from
the moving node. Then, we average these numbers over a large set of topology changes.
The results of this experiment are in Fig. 29(a).

The experiments reported in Fig. 29(b) have been conducted in the same manner.
This time, however, nodes move for a distance of 1/4 wireless radius. This second set of
experiments is intended to show what happens for small topology reconfigurations (wider
reconfigurations can be depicted as a chain of these smaller ones).

In a third set of experiments, nodes are not free to move independently from one other.
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Figure 29: The number of maintenance operation for HopTuple tuples decreases sharply
with the hop distance when topology reconfigurations are caused by: (a) random node
movements for 1 wireless radius. (b) random node movements for 1/4 wireless radius. (c)
a group of nodes moving for 1 wireless radius.

They are grouped with some of their neighbors and once a node moves all the nodes belong-
ing to the group move solidally. More specifically, in the reported experiment, a randomly
selected node moves for a distance of 1 wireless radius and all the nodes directly connected
to it (i.e. in its one-hop neighborhood) move together. This case is particularly significant
in that it can represent the situation in which a group of devices, carried by a person or
in a car, moves together because physically bounded. The results of this experiment are in
Fig. 29(c). We repeated this experiment with also larger groups of nodes (i.e when a node
is going to move, all the nodes within 2 or even 3 hops move together) always obtaining
analogous results.

Looking at these figures, the most important consideration we can make is that, when a
node moves and the network topology changes consequently, a lot of update operations are
required near the area where the topology changes, while only few operations are required
far away from it. This implies that, even if the network and the tuple being propagated
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have no well-defined boundaries, the operations to keep their shape consistent are strictly
confined within a locality scope. This result is even more significant if compared to the
average network diameter (averaged over the various experiments). It is easy, in fact, to
see that the number of operations required to maintain a TOTA tuple falls close to zero
well before the average diameter of the network, thus confirming the quality of our results.
This fact supports the idea that the operations to fix distant concurrent topology changes
do not add up, making the approach scalable.

Experiment 2: This array of experiments is similar to the previous one, but this time
only the source node that injected the HopTuple tuple moves altering the network topology.
This is a worst-case scenario, because when the node that injected the tuple (source node)
moves, major changes are expected in the data structure shape. In Fig. 30(a) the source
node moves randomly of a distance of 1 wireless radius. In Fig. 30(b) it moves of 1/4
wireless radius.

Looking at the figures (especially the one related to small movements), it is again possible
to see that the number of operations slightly decreases with the distance from the topology
change, but such number remains relevant even at high distances. This implies that sce-
narios where the nodes that inject HopTuple tuples are highly mobile, self-maintenance can
introduce a rather big overhead on the system. For this reason, for highly mobile source
nodes, it may be worthwhile limiting the propagation distance of tuples.

Finally, determining if MetricTuple and SpaceTuple self-maintenance operations are con-
fined is rather easy. In subsection 4.2.4 we described that a MetricTuple’s maintenance op-
erations are confined to the only node that moved for all the nodes apart from the source,
while it spreads across the whole network if the source moves. So MetricTuples must be
used carefully, maybe with custom rules in their propagation rules limiting a-priori their
scope, or by triggering update operations only if the source node moves by at least a cer-
tain amount (e.g. trigger update only if the source moves at least 1m). The answer for a
SpaceTuple, instead, is affirmative since maintenance is strictly locally confined.

All the above considerations are good hints for the feasibility of the model, showing that
it can scale to different application scenarios.

5.2.2 Time

Let us now focus on the related issue of verifying the time required by the network to fix
the structure of distributed tuples after some events occurred.

Considering again the tuples in the hierarchy, StructureTuple and MessageTuple tuples
are not maintained. SpaceTuple tuples are maintained with only one-hop-bounded oper-
ations, so they always maintain with a delay equals to 1Tu. MetricTuple tuples either
maintain with one-hop-bounded operations, and so with a delay of 1Tu, or if the source
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Figure 30: The number of maintenance operations for HopTuple tuples slightly decreases
with the distance from the source even in the worst-case scenario when the source moves.
(a) The source node moves for 1 wireless radius. (b) The source node moves for 1/4 wireless
radius.

moves, they are repropagated and thus, in this case, timing evaluation falls in the previous
subsection case.

Then, let us focus the attention on HopTuple tuples only. We consider the same exper-
imental set up of the previous sub-section. In this set of experiments, however, instead of
counting the number of operations required to fix the tuple, we measured the time taken.
In particular, for a given network reconfiguration (caused by moving nodes), we recorded
the time at which a node performs the last operation to fix the tuple. These times are
grouped by the hop distance from the moving node and averaged together. These oper-
ations have been repeated several (more then 100) times and all the outcomes have been
averaged together to obtain the results depicted in Fig. 31 and Fig. 32. In the former
set of experiments, randomly selected nodes move for a distance equals to 1 wireless radius
(see Fig. 31(a)) and 1/4 wireless radius (see Fig. 31(b)). In the latter set of experiments,
the source node moves for a distance equals to 1 wireless radius (see Fig. 32(a)) and 1/4
wireless radius (see Fig. 32(b)).

In all the reported experiments in Fig. 31 and Fig. 32 it is possible to see that the
time to complete maintenance operations has a rough bell-shaped behavior. It has a low
value near the topology problem. This is because, the tuples close the the topology change
are the first to be maintained (so they complete maintenance in short time). Then it
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Figure 31: The time required to fix a HotTuple tuple. (a) Randomly selected nodes move
of 1 wireless radius. (b) Randomly selected nodes move of 1/4 wireless radius.

(a)

(b)

Figure 32: The time required to fix a HotTuple tuple in the worst-case. (a) The source node
moves of 1 wireless radius. (b) The source node move of 1/4 wireless radius.
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increases with the hop-distance, since it requires time to the local algorithm to propagate
information across the network to delete and update those tuples that must be maintained.
Even further it decreases. This is because maintenance tend to remain confined near to
the network topology change. This implies that farther nodes do not even take part in the
maintenance process (they do not even perceive that the tuple has been maintained). In our
experiment, these node are counted as performing maintenance in 0 time. This, of course,
notably reduces the average time to fix the tuple and thus it creates the descending part of
the bell-shaped plot.

Looking at these results, we can make the following considerations:

• When a random node moves (see Fig. 31) the delay in maintaining the tuple, in the
worst case (top of the bell-shaped plot), is close to the delay that would be needed to
propagate the tuple there. However, using the self-maintenance algorithm, operations
are localized, so the time needed to maintain the tuple tend to drop close to 0 as the
distance from the topology change increases. This confirms the general scalability of
tuple maintenance.

• When the source node that injected the tuple moves (see Fig. 32), some transient
instabilities can arise that incur in big delays in tuple maintenance. In particular,
whenever a source node move faster than the time required to fix the tuple shape,
the maintenance operations temporarily fail – topology reconfigurations happen faster
than then time taken to fix them and the tuple structure remains unstable. However,
from the practical viewpoint, this only causes some loss of accuracy in the perception
of the unstable tuple structure by other nodes. In any case, when the source stops or
simply slow down, the self-maintenance algorithms are in any case able to recover the
correct tuple configuration.

5.3 Accounting

In every peer-to-peer system relying on cooperation among the nodes of the network, the
computational and communication load on a node has to account both for the load in-
troduced by the processes on that node and for that introduced to support other peers’
operations (e.g., forwarding other peers’ messages). In TOTA, this implies that the load on
a node is caused by both the execution of the local agents’ operations and by the execution
of the operations required to propagate and maintain distributed tuples.

To evaluate the impact on a node of the burden of propagating and maintaining tuples
on behalf of other nodes, we performed experiments in challenged scenarios. In particular,
and to evaluate the impact on a real node, we exploited our TOTA emulator in the “mixed-
mode”: TOTA running on a real IPAQ was virtually embedded in a large (200 nodes)
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(a) (b)

Figure 33: (a) Internal agent operations vs. TOTA operations. (b) API operations vs.
pattern matching

network of simulated TOTA nodes, a portion of which (10%) mobile. Then, to challenge
the scenario, we installed an agent on every node of the network (there included the real
IPAQ), each of which executing a TOTA-intensive application. In particular, each agent
continuously and alternatively injected a HopTuple, read another tuple, and deleted the
previously injected tuple.

We examined the trace of operations taking place on the IPAQ with a profiling tool [8]
and averaged different traces. On the basis of these traces, we counted how many operations
were initiated by the agent on the node and how many by neighbors nodes. The resulting
ratio is in Fig. 33(a). There, it appears that even in such a challenged scenario only a bit
more than half of the costs on a node are due to supporting other nodes’ activities. In the
vast majority of practical scenarios (e.g., in the case study), where a more limited number of
tuples possibly with a confined propagation scope are injected by nodes and less frequently,
the burden on a node would be much more limited.

It is also worth interesting to analyze by what actual activities the above costs are
induced. Looking at Fig. 33(b), one can see that the costs of accessing the local tuple
space to perform pattern-matching (which takes place both when the local agents performs
read operations and when tuples coming from other nodes are to be propagated) are the
most important ones. Given that the current tuple space implementation (and thus the
pattern-matching) is implemented in Java and not particularly optimized, this leaves room
for further improvements and reduction of the actual load on TOTA nodes.

6 Related Work

A number of recent proposals address the problem of defining supporting environments for
the development of adaptive, dynamic, context-aware distributed applications, suitable for
pervasive and mobile computing, and sharing some characteristics with TOTA.
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Smart Messages [16], rooted in the area of active networks, is an architecture for com-
putation and communication in large networks of embedded systems. Communication is
realized by sending “smart messages” in the network, i.e., messages which include code
to be executed at each hop in the network path. Smart Messages shares with TOTA the
general idea of putting intelligence in the network by letting messages (or tuples) execute
hop-by-hop small chunk of code to differentiate their behavior as they propagate. The main
difference is that, in Smart Messages, messages tend to be used as sorts of light-weight mo-
bile agents, in charge of roaming across the network to perform specific tasks rather than, as
in TOTA, to support context-awareness and adaptive coordination at the application level.
A recent proposal of the Smart Messages research group, though, goes in that directions
by exploiting smart messages to enforce spatial-awareness and adaptive programming of
spatially-situated activities [17], in a way similar to that of TOTA.

The L2imbo model, proposed in [21], is based on the notion of distributed tuple spaces
augmented with processes (bridging agents) in charge of moving tuples from one space
to another. Bridging agents can also change the content of the tuple being moved, for
example to provide format conversion between tuple spaces. The main differences between
L2imbo and TOTA are that in L2imbo, tuples are conceived as “separate” entities and
their propagation is mainly performed to let them being accessible from multiple tuple
spaces. In TOTA, tuples form distributed data structure and their “meaning” is in the
whole data structure rather than in a single tuple. Because of this conceptual difference,
tuples’ propagation is defined for every single tuple in TOTA, while is defined for the whole
tuple space in L2imbo.

Lime [39] exploits transiently shared tuple spaces as the basis for interaction in dynamic
network scenarios. Each mobile device, as well as each network node, owns a private tuple
space. Upon connection with other devices or with network nodes, the privately owned
tuple spaces can merge in a federated tuple space, to be used as a common data space to
exchange information. TOTA defines a more flexible model than that of Lime. It is possible,
via specific propagation rules, to have tuples distributed only in a local neighborhood,
so as to achieve the same functionalities of the locally shared tuple spaces of Lime. In
addition, propagation rules enable more elaborated forms of information sharing other than
simple local merging of information. Similar considerations may apply with regard to other
proposals for shared distributed data structures (e.g., the XMIDDLE middleware [32]), as
well as to the recent extension of Lime for sensor networks [20].

EgoSpaces [27] builds as a sort of additional middleware layer over Lime. It is explicitly
targeted at facilitating the acquisition of contextual information in dynamic scenarios (i.e.,
MANETs). There, each node in the network can specify an interest for some contextual
information, together with the scope of that interest (e.g., all gas stations within 10 miles).
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The middleware is then in charge to build a distributed data structure (i.e., a shortest
path tree) spanning all the peers within the scope of the interest. This data structure will
then be used to route back to the node the contextual information that can be collected
from the other nodes in the network. Such an approach may be very powerful for locally
gathering contextual information without strict locality constraint and without requiring
any centralized service (all nodes cooperate to provide the information in a distributed
way). Although very interesting, we think that this proposal lacks flexibility, in that it is
purely focused on information acquisition, and pays little or no attention to the problem
of coordinating the activities of application components. In our opinion, TOTA is more
flexible: the possibility of programming propagation rules makes it possible to express
complex coordination patterns other than information gathering only.

The ObjectPlaces middleware [43] shares very similar goals to that of EgoSpaces, al-
though adopting a different architectural approach. ObjectPlaces, at its base, relies on an
architecture of nearly independent tuple spaces, in which tuples have the form of objects
and can be locally access via object-matching. However, and this is where the relation with
EgoSpaces and TOTA comes in, ObjectPlaces enables associating to any object stored in a
local tuple space a sort of distributed data structure, called “view”. Such distributed data
structure propagates around the object in the network and define a sort of field enabling
to detect where an object is, i.e., in which direction and at what distance in the network.
ObjectPlaces, while being quite flexible in the definition of how to build and propagate
such distributed data structures, lacks the power and flexibility of the TOTA programming
approach.

An area in which the problem of achieving effective context-awareness and adaptive
coordination has been addressed via an approach similar to that of TOTA is Amorphous
Computing [35, 13]. The particles constituting an amorphous computer have the basic
capabilities of propagating and sensing sorts of field-like distributed data structures (similar
to TOTA tuples). In particular, particles can transfer an activity state towards directions
described by the gradients of these data structures, so as to make coordinated patterns of
activities emerge in the system independently of the specific structure of the network. Such
mechanism can be used, among other possibilities, to drive particles’ movements and to
let the amorphous computer self-assemble in a specific shape [45], as well as to orchestrate
the activities in groups of mobile robots [44]. Although being focused on very specific
application scenarios, all these approaches share with TOTA the idea of using distributed
data structures to drive agents actions.

48



7 Conclusions and Future Work

TOTA promotes programming pervasive and mobile applications by relying on distributed
tuples spread over a network, to be used by application agents both to extract contextual
information and to coordinate with each other. As we have tried to show in this paper,
also with the help of application examples, TOTA suits the needs of modern pervasive and
mobile computing scenarios in that: (i) distributed tuple structures enable representing
contextual information in an expressive, yet simple to be gathered, way; (ii) dynamic co-
ordination patterns can be easily enforced in a self-organizing and self-adaptive way; (iii)
the TOTA middleware, while being light-weight, effectively supports network dynamics by
automatically reshaping tuples’ distribution accordingly to the dynamics of the network
and of applications.

At the same time, we are aware of a number of current limitations of TOTA that may
somewhat limit its degree of applicability and that require further studies. First, proper ac-
cess control models must be defined to rule accesses to distributed tuples and their updates,
and to protect privacy of data and of actions. Indeed, security and privacy are challenging
issue for the whole area of pervasive and mobile computing, and we are confident several
emerging proposals in the area of mobile ad-hoc networks [33] and pervasive computing [42]
will be easily portable to TOTA. Second, we think it would be necessary to enrich TOTA
with mechanisms and policies to compose tuples with each other, so as to enable the expres-
sion of unified distributed data structures from the emanation of multiple sources. This may
be needed to integrate correlated information (e.g., global load information [34]), avoid the
spreading of an excessive number of independent tuples in the systems, and enable agents to
gather with a single read operation more information than currently available in individual
TOTA tuples. Third, there is a lack of general methodologies, enabling engineers both to
map their application-specific coordination problems into a proper definition of tuples and
of their distributed shapes and to properly model/predict the overall behavior of the sys-
tem under network and environmental dynamics. The increasing availability of systematic
studies in the area of biologically and physically distributed computing [11, 48], in which
the exploited coordination models are mostly based on the diffusion of virtual chemical
gradients or virtual force fields (and thus directly corresponding to the model enforced by
TOTA), will help paving the way for the identification of such methodologies.
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