
 1

Spatial Computing: the TOTA Approach

Marco Mamei, Franco Zambonelli

DISMI - Università di Modena e Reggio Emilia
Via Allegri 13, 42100 Reggio Emilia – ITALY

mamei.marco@unimore.it, franco.zambonelli@unimore.it

Abstract. Spatial abstractions promise to be basic necessary ingredients for
a novel “spatial computing” approach to distributed systems development
and management, suitable to tackle the complexity of modern distributed
computing scenarios and promoting self-organization and self-adaptation.
In this paper, we analyze the key concepts underlying spatial computing
and show how they can be organized around a sort of “spatial computing
stack”, in which a variety of apparently very diverse mechanisms and
approaches can be properly framed. Following, we present our current
research work on the TOTA middleware as a representative example of a
general-purpose approach to spatial computing. In particular, we discuss
how TOTA can be exploited to support the development and execution of
self-organizing and self-adaptive spatial computing applications.

1. Introduction

During the nineties, most researches in distributed computing have focused on the
“network of workstations” scenario [CouDK94]. However, in the past few years, a
number of novel scenarios have emerged including: (i) micro-networks, i.e., networks of
low-end computing devices typically distributed over a geographically small area (e.g.,
sensor networks [Est02], smart dusts [Pis00] and spray computers [Zam04]); (ii)
ubiquitous networks, i.e., networks of medium-end devices, distributed over a
geographically bounded area, and typically interacting with each other via short/medium
range wireless connections (pervasive computing systems and smart environments
[GelSB02] and cooperative robot teams); (iii) global networks, characterized by high-end
computing systems interacting at a world-wide scale (the physical Internet, the Web, P2P
networks [RipIF02] and multiagent systems ecologies [Kep02].

Despite clear dissimilarities in structure and goals, one can recognize some key
common characteristics distinguishing the above scenarios from more traditional ones:
• Large Scale: the number of nodes and, consequently, the number of components

involved in a distributed application is typically very high and, due to decentralization,
hardly controllable. It is not possible to enforce a strict control over their
configuration (consider e.g., the nodes of a P2P network) or to directly control them
during execution (consider e.g., the nodes of a sensor network distributed in a
landscape).

 2

• Network dynamism: the activities of components will take place in network whose
structure derives from an almost random deployment process, likely to change over
time with unpredictable dynamics. This may be due to factors such as environmental
contingencies, failures (very likely e.g., in sensor networks and pervasive computing
systems), and mobility of nodes (as e.g. in robot teams and in networks of smart
appliances). In addition, at the application level, software components can be of an
ephemeral or temporary nature (as e.g. the peers of a P2P network).

• Situatedness: The activities of components will be strongly related to their location in
either a physical or a virtual environment. On the one hand, situatedness can be at the
very core of the application goal (as e.g. in sensor networks and pervasive computing
systems devoted to improve our interaction with the physical world). On the other
hand, situatedness can relate to the fact that components can take advantage of the
presence of a structured virtual environment to organize the access to distributed
resources (as e.g., in P2P data sharing networks).

The first two characteristics compulsory require systems to exhibit – both at the network
and at the application level – properties of self-organization and self-adaptation (or
generally, “self-*” properties). In fact, if the dynamics of the network and of the
environment compulsory require dynamic adaptation, the impossibility of enforcing a
direct control over each component of the system implies that such adaptation must occur
without any human intervention, in an autonomic way. The last characteristic calls for an
approach that elects the environment, its spatial distribution, and its dynamics, to primary
design dimensions. In any case, the three aspects are strictly inter-related, in that the
enforcement of self-* properties cannot abstract from the capability of the system to
become “context-aware”, i.e., to have components perceive the local properties of the
environment in which they are situated and adapt their behavior accordingly.

In the past few years, a variety of solutions exploiting specific self-* properties to
solve specific application problems for large-scale systems in dynamic networks are being
proposed [Dim04]. The question of whether it is possible to devise a single unifying
conceptual approach, applicable with little or no adaptations to a variety of application
problems and to scenarios as diverse as P2P networks and local networks of embedded
sensors, is still open.

In this paper, we identify the important role that will likely be played in that process
by spatial abstractions, and by their adoption as building blocks for a novel general-
purpose “spatial computing” approach for distributed system development and
management. A spatial computing approach – by abstracting the network as a continuum
space and by having application level activities expressed in terms of sensing the
properties of space and navigating in it – can effectively deal with network dynamics in
large scale systems, can facilitate the integration of variety of self-* properties in
distributed systems, and also suit systems whose activities are situated in an environment.

The remainder of this paper elaborates on spatial computing and is organized as
follows. Section 2 introduces the basic concepts underlying spatial computing and
discusses their relations with self-* properties. Section 3 proposes a framework around
which to organize the basic abstractions and mechanisms involved in spatial computing.
Section 4 presents our current research work on the TOTA middleware, as a
representative example of a general-purpose approach to spatial computing. Section 5
concludes by sketching a rough research agenda in the area.

 3

2. Spatial Computing

The key principles underlying spatial computing are that:
(i) the central role of the network – a discrete system of variously interconnected nodes

– evolves into a concept of space – i.e., an abstraction of a metric continuum built
over the network;

(ii) all application-level activities are abstracted as taking place in such space, and rely
on the capability of application components of locally perceiving (and possibly
influencing) the local properties of space;

In particular, in spatial computing, any type of networked environment is hidden below
some of virtual metric n-dimensional space, mapped as an overlay over the physical
network. The nodes of the network are assigned a specific area of the virtual space, and
are logically connected to each other accordingly to the spatial neighborhood relations.
Accordingly, each and every entity in the network, being allocated in some nodes of the
network, is also automatically situated in a specific position in space.

In this way, components in the network become “space-aware”. On the one hand, they
perceive their local position in space as well as the local properties of space (e.g., the
locally available data and services) and possibly change them. On the other hand, the
activities of components in that space are related to some sort of “navigation” in that
space, which may include moving themselves to a specific different position of space or
moving data and events in space according to “geographical” routing algorithms. The
primary way to refer to entities in the network is thus by “position”, i.e., any entity is
characterized by being situated in a specific position in the physical space.

The above characteristics notably distinguish spatial computing from traditional
distributed computing models. In transparent distributed computing models [CouDK94,
ChiC91], components are identified by logical names, applications abstract from the
presence of a distributed environment, and only a priori known interaction patterns can be
effectively supported. This makes them unable to deal with large-scale systems and with
network dynamics. In network-aware models [Wal97], components are typically aware of
executing in a network and are identified by their location in it (e.g.., the IP). This enables
dealing also with applications executing in large-scale networks, but still call for an
explicit and complex handling of dynamic changes in the network or in the position of
components. Neither of the two promotes suitable abstractions of environment.

Spatial computing overcomes the above limitations in a very effective way:
• Large scale: the size of a network does not influence the models or the mechanisms,

which are the same for a small network and for a dramatically large one.
• Network dynamics: the presence of a dynamic network is not directly perceived by

components, being hidden behind a stable structure of space that is maintained
despite network dynamism.

• Situatedness: the abstraction of space is a conceptually simple abstraction of
environment, which also perfectly matches the needs of those systems whose
activities are strictly intertwined with a physical or computational environment.

In addition, as discussed in the following sub-section, spatial computing promotes and
support self-* computing.

 4

3.1 Self-* Properties in Spatial Computing
Self-* properties, including the capability of a distributed system of self-configuring its
activity, self-inspecting and self-tuning its behavior in response to changed conditions, or
self-healing it in the presence of faults, are necessary for enabling spatial computing and,
at the same time, are also promoted by the adoption of a spatial computing model.

On the one hand, to enable a spatial computing model, it is necessary to envision
mechanisms to build the appropriate overlay spatial abstraction and to have such spatial
abstraction be coherently preserved despite network dynamics. In other words, this
requires the nodes of a network to be able to autonomously connect with each other, set
up some sort of common coordinate systems, and self-position themselves in such space.
In addition, this requires the nodes of the network to be able to self-reorganize their
distribution in the virtual space so as to (i) make room for new nodes joining the network
(i.e., allocate a portion of the virtual space to these nodes); (ii) fill the space left by nodes
that for any reason leave the network; (iii) re-allocate the spatial distribution of nodes to
react to node mobility. It is also worth outlining that, since the defined spatial structure
completely shields the application from the network, it is also possible for a system to
dynamically tune the structure of the space so as enforce some sorts of self-management
of the network, transparently to the higher application levels. As an example, load
unbalances in the network can be dynamically dealt, transparently from the application
level, by simply re-organizing the spatial structure so as to have overloaded nodes occupy
a more limited portion of the space.

On the other hand, the so defined spatial structure can be exploited by application
level components to organize their activities in space in an autonomous and adaptive way.
First of all, it is a rather assessed fact that “context-awareness” and “contextual activity”,
i.e., the capabilities of a component to perceive the properties of the operational
environment and of influencing them, respectively, are basic ingredients to enable any
form of adaptive self-organization and to establish the necessary feedback promoting self-
adaptation. In spatial computing, this simply translates in the capability of perceiving the
local properties of space, which in the end reflect some specific characteristics of either
the network or of some application-level characteristics and of changing them. Second,
one should also recognize that the vast majority of known phenomena of self-organization
and self-adaptation in nature (from ant-foraging to reaction-diffusion systems, just to
mention two examples in biology and physics) are actually phenomena of self-
organization in space, emerging from the related effect of some “component” reacting to
some property of space and, by this reaction, influencing at its turn the properties of
space. Clearly, a spatial computing model makes it rather trivial to reproduce in
computational terms such types of self-organization phenomena, whenever they may be
of some use in a distributed system.

1.1 Examples of Spatial Computing Approaches
The shift towards spatial computing is an emerging trend in diverse scenarios.

As an example, consider a sensor network scenario with a multitude of wireless
sensors randomly deployed in a landscape to perform some monitoring of environmental
conditions [Est02]. There, all activities of sensors are intrinsically of a spatial nature.
First, each sensor is devoted to local monitoring a specific portion of the physical space
(that it can reach with its sensing capabilities). Second, components must coordinate with

 5

each other based on their local positions, rather than on their IDs, to perform activities
such as detecting the presence and the size of pollution clouds, and the speed of their
spreading in the landscape. All of this implies that components must be made aware of
their relative positions in the spatial environment by self-constructing a virtual
representation of the physical space [NagSB03]. Moreover, they can take advantage of
“geographical” communication and routing protocols: messages and events flow towards
specific position of the physical/virtual space rather than towards specific nodes, thus
surviving in an self-adaptive way the possible dismissing of some nodes [RaoP03].

Another example in which spatial concepts appear in a less trivial way is world-wide
P2P computing. In P2P computing, an overlay network of peers is built over the physical
network and, in that networks, peers act cooperatively to search specific data and
services. In first generation P2P systems (e.g., Gnutella [RipIF02]), the overlay network
is totally unstructured, being built by having peers randomly connect to a limited number
of other peers. Therefore, in these networks, the only effective way to search for
information is message flooding. More recent proposals [Rat01] suggest structuring the
network of acquaintances into specific regular “spatial shapes”, e.g., a ring or an N-
dimensional torus. When a peer connects to the networks, it occupies a portion of that
spatial space, and networks with those other peers that are neighbors accordingly to the
occupied position of space. Then, data and services are allocated in specific positions in
the network (i.e., by those peers occupying that position) depending on their
content/description (as can be provided by a function hashing the content into specific
coordinates). In this way, by knowing the shape of the network and the
content/description of what data/services one is looking for, it is possible to effectively
navigate in the network to reach the required data/services. That is, P2P networks define a
spatial computing scenario in which all activities of application components are strongly
related to self-positioning themselves and navigating in an abstract metric space. It is also
worth outlining that recent researches promote mapping such spatial abstractions over the
physical Internet network so as to reflect the geographical distribution of Internet nodes
(i.e., by mapping IP addressed into geographical physical coordinates [Row04]) and,
therefore improve efficiency.

In addition to the above examples, other proposals in areas such as pervasive
computing [Bor04] and self-assembly [MamVZ04] explicitly exploit spatial abstractions
(and, therefore, a sort of spatial computing model) to organize distributed activities.

3. Framing Spatial Computing

Let us now have a more systematic look at the basic mechanisms that have been
exploited so far in distributed computing to promote self-* properties in distributed
systems. We will show that most of these mechanisms can be easily interpreted and
mapped into very similar spatial concepts, and that they can be framed in a unifying
flexible framework.

3.1. A Spatial Computing Stack
In this section, we introduce the “space-oriented” stack of levels (see Figure 1) as a

framework for spatial computing mechanisms. In each level of the stack, by introducing a
new paradigm rooted on spatial concepts, it is possible to interpret a lot of proposed self-*

 6

approaches, in different scenarios, in terms of mechanisms to manage and exploit the
space (see Table 1). On this basis, it is likely that a simply unifying model for self-*
distributed computing – leading to a single programming model and methodology and –
can be actually identified.

The “physical level” deals on how components start interacting – in a dynamic and
spontaneous way – with other components in the systems. This is a very basic expression
of self-organizing behavior which is a pre-requisite to support more complex forms of
autonomy and of self-organization at higher levels. To this end, the basic mechanism
exploited is broadcast (i.e. communicate with whoever is available). Radio broadcast is
used in sensor networks and in pervasive computing systems, and different forms of
TCP/IP broadcast (or of dynamic lookup) are used as a basis for the establishment of
overlay networks in wide area P2P computing. Whatever the case, this physical level can
be considered as in charge of enabling a component of a dynamic network application to
get into existence and to start interacting with each other.

Figure 2. A Spatial Computing Stack.

The “structure level” is the level at which a spatial structure is built and maintained

by components existing in the physical network. The fact that a system is able to create a
stable spatial structure capable of surviving network dynamics and adapting the working
conditions of the network is an important expression of self-organizing and self-adapting
behavior per se. However, such spatial structure is not a goal for the application, and it is
instead used as the basic spatial arena to support higher levels activities.

The various mechanisms that are used at the structure level in different scenarios are –
again – very similar to each other. Sensor networks as well as self-assembly systems
typically structure the space accordingly to their positions in the physical space, by
exploiting mechanisms of geographical self-localization. Pervasive computing systems, in
addition to mechanisms of geographical localization, often exploit logical spatial
structures reflecting some sorts of abstract spatial relationships of the physical world (e.g.,

Physical Level

Communication Services in
an Unstructured Network

Structure
Level

Provisioning of a Structured
(Adaptive) Space Abstraction

Mechanism of Spatial
Localization and Self-inspection

Navigation
Level

Services to Navigate in the
Spatial Abstraction

Mechanism of Local Spatial
Local Sensing and Effecting

Application
Level Self-* Spatial Computing

Applications

Mechanisms to get into
existence in a network

 7

rooms in a building) [Bor04]. Global scale systems, as already anticipated, exploits
overlay networks built over a physical communication network.

The “navigation level” regards to the basic mechanisms that components exploit to
orient their activities in the spatial structure and to sense and affect the local properties of
space. If the spatial structure has not any well-defined metric, the only navigation
approaches are flooding and gossiping. However, if some sort of metric structure is
defined at the structure level (as, e.g., in the geographical spatial structures of sensor
networks or in metric overlay networks) navigation approaches relate in following the
metrics defined at the structure level. For instance, navigation can imply the capability of
components to reach specific points (or of directing messages and data) in the space based
on simple geometric considerations as in, e.g., geographical routing [BosM01].

Starting from the basic navigation capability, is also possible to enrich the structure of
the space by propagating additional information to describe “something” which is
happening in that space, and to differentiate the properties of the space in different areas.
One can say that the structure of space may be characterized by additional types of spatial
structures propagating in it, and that components may direct their activities based on
navigating these additional structures. In other words, the basic navigation capabilities
can be used to build additional spatial structures with different navigation mechanisms.
Typical mechanisms exploited at these additional levels are computational fields and
pheromones. Despite the different inspiration of the two approaches (physical versus
biological), we emphasize that they can be modeled in a uniform way, e.g., in terms of
time-varying properties defined over a space [MamZ03]. The basic expression of self-
organization that arises here derives from the fact that the structures propagated in the
space – and thus the navigation activity of application components – are updated and
maintained to continuously reflect the actual structure and situation of the space.

 At the “application level”, navigation mechanisms are exploited by application
components to interact and organize their activities. Applications can be conveniently
built on the following self-organizing feedback loop: (i) having components navigate in
the space (i.e., discriminating their activities depending on the locally perceived structure
and properties of the space) and (ii) having components, at the same time, modifying
existing structure due to the evolution of their activities.

Depending on the types of structures propagated in the space, and on the way
components react to them, different phenomena of self-organization can be achieved and
modeled. For example, processes of morphogenesis (as needed in self-assembly, modular
robots and mobile robotics), phenomena mimicking the behavior of ant-colonies and of
flocks, phenomena mimicking the behavior of granular media and of weakly correlated
particles, as well as a variety of social phenomena, can all be modeled in terms of:
• entities getting to existence in a space;
• having a position in a structured space and possibly influencing its structure;
• capable of perceiving properties spread in that space;
• capable of directing their actions based on perceived properties of such space and

capable of acting in that space by influencing its properties at their turn.

 8

4.2 Multiple Spaces and Nested Spaces
In general, different scenarios and different application problems may require different
perceptions of space and different spatial structures. For instance, a world-wide resource-
sharing P2P network over the Internet may require – for efficiency reason – a 2-D spatial
abstraction capable of reflecting the geographical distribution of Internet nodes over the
earth surface. On the other hand, a P2P network for social interactions may require a
spatial abstraction capable of aggregating in close regions of the virtual space users with
similar interests. Also, one must consider that in the near future, the different network
scenarios we have identified will be possibly part of a unique huge network (consider that
IPv6 addressing will make it possible to assign an IP address to each and every square
millimeter on the earth surface). Therefore, it is hard to imagine that a unique flat spatial
abstraction can be effectively built over such a network and satisfy all possible
management and application needs.

 MICRO NETWORKS
Nano Networks, Sensor
Networks, Smart Dust, Self-
Assembly, Modular Robots

UBIQUITOUS NETWORKS
Home Networks, MANETs,
Pervasive Environments, Mobile
Robotics

GLOBAL NETWORKS
Internet, Web, P2P networks,
multiagent systems

“Application”
Level
(exploiting the
spatial
organization to
achieve in a self-
organizing and
adaptive way
specific app.
goals)

Spatial Queries
Spatial Self-Organization and
Differentiation of Activities
Spatial Displacement
Motion Coordination & pattern
formation

DATA: environmental data

Discovery of Services
Spatial Displacement
Coordination and Distribution of
Task and Activities
Motion coordination & pattern
formation

DATA: local resources and
environmental data

P2P Queries as Spatial Queries in
the Overlay
Motion Coordination on the
Overlay
Pattern formation (e.g., for
network monitoring)

DATA: files, services, knowledge

“Navigation”
Level
(dealing with the
mechanism
exploited by the
entities living in
the space to
direct activities
and movements
in that space)

Flooding
Gossiping (random navigation)
Geographical Routing (selecting
and reaching specific physical
coordinates)
Directed Diffusion (navigation
following sorts of computational
fields)
Stigmergy (navigation following
pheromone gradients)

Computational fields
Multi-hop routing based on
Spanning Trees
Pattern-matching and Localized
Tuple-based systems

Flooding
Gossiping (random navigation)
Metric-based (moving towards
specific coordinates in the
abstract space)
Gossiping (random navigation)
Stigmergy (navigation following
pheromone gradients distributed
in the overlay network)

“Structure”
Level
(dealing with
mechanisms and
policies to
adaptively shape
a metric space
and let
components find
their position in
that space)

Self-localization (beacon-based
triangulation)

Self-localization (Wi-Fi or RFID
triangulation)
Definition and Maintenance of a
Spanning Tree (as a sort of
navigable overlay)

Establishment and Maintenance
of an Overlay Network (for P2P
systems)
Referral Networks and e-
Institutions (for multiagent
systems)

“Physical”
Level
(dealing with the
mechanism to
interact)

Radio Broadcast
Radar-like localization

Radio Broadcast
RF-ID identification

TCP broadcast – IP identification
Directed TCP/UDP messages
Location-dependent Directory
services

Table 1. Spatial Mechanisms in Modern Distributed Computing Scenarios

 9

With this regard, the adoption of the spatial computing paradigm does not prescribe at
all to adopt the same set of mechanisms and the same type of spatial structure for all
networks and for applications. Instead, being the spatial structure a virtual one, it is
possible to conceive both (i) the existence, over the same physical network, of multiple
complimentary spatial abstraction independently used by different types of applications;
and (ii) the existence of multiple layers of spatial abstractions, built one over the other in
a multi-layered system.

With regard to the former point, in addition to the example of the different types of
P2P networks calling for different types of spatial abstractions, one could also think at
how different problems such as Internet routing, Web caching, virtual meeting points,
introduce very different problems and may require the exploitation of very different
spatial concepts.

With regard to the latter point, one can consider two different possibilities. Firstly, one
can think at exploiting a first-level spatial abstractions (and the services it provides) to
offer a second-level spatial abstraction enriching it with additional specific characteristics.
For examples, one can consider that a spatial abstraction capable of mapping the nodes of
the Internet into geographical coordinates can be exploited, within a campus, to build an
additional overlay spatial abstraction mapping such coordinates into logical location (e.g.,
the library, the canteen, the Computer Science department and, within it, the office of
Prof. Zambonelli). Such additional spatial abstraction could then be used to build
semantically-enriched location dependent services. Secondly, one could think at
conceiving a hierarchy of spatial abstractions that provides different levels of information
about the space depending on the level at which they are observed, the same as the
information we get on a geographical region are very different depending on the scaling
of the map on which we study it. As an example, we can consider that the spatial
abstraction of a wide-area network can map a sensor network – connected to the large
network via a gateway – as a “point” in that space, and that the distributed nature of the
sensor networks (with nodes having in turn a specific physical location in space) becomes
apparent only when some activity takes place in that point of space (or very close to it).

4. TOTA: a Middleware Approach to Spatial Computing

The ambitious goal of a uniform modeling approach capable of effectively capturing
the basic properties of self-organizing computing, and possibly leading to practical and
useful general-purpose modeling and programming tools, is far from close. Earlier in this
paper we have strongly advocated the generality, flexibility, and modularity of a spatial
computing approach. Although we have do not have the ultimate proof that spatial
computing can be effectively put to practice and fulfill all its promises, our experience in
spatial computing with the TOTA [MamZ04] middleware can support in part our claims.

The TOTA middleware (short for “Tuples On The Air”), gathers concepts from both
tuple space approaches [Cab03, MamZL04] and event-based ones [Car01, Jini] and
extends them to provide applications with simple and flexible mechanisms to create, self-
maintain, and exploit at the application level a variety of spatial structures, implemented
by means of distributed tuples. Unlike traditional shared data space models, tuples are not
associated to a specific node (or to a specific data space) of the network. Instead, tuples
are injected in the network and can autonomously propagate and diffuse in the network

 10

accordingly to a specified pattern.
To support this idea, the typical scenario of a TOTA application is that of a peer-to-

peer network of possibly mobile nodes, each running a local version of the TOTA
middleware. Each TOTA node holds references to a limited set of neighboring nodes and
can communicate directly only with them.

Upon the distributed space identified by the dynamic network of TOTA nodes, each
component is capable of locally storing tuples and letting them diffuse through the
network. Tuples are injected in the system from a particular node, and spread hop-by-hop
accordingly to their propagation rule. In fact, a TOTA tuple is defined in terms of a
“content”, and a “propagation rule”. T=(C,P). The content C is an ordered set of typed
fields representing the information carried on by the tuple. The propagation rule P
determines how the tuple should be distributed and propagated across the network. This
includes determining the “scope” of the tuple (i.e. the distance at which such tuple should
be propagated and possibly the spatial direction of propagation) and how such
propagation can be affected by the presence or the absence of other tuples in the system.
In addition, the propagation rules can determine how the content of a tuple should change
while it is propagated. Tuples are not necessarily distributed replicas: by assuming
different values in different nodes, tuples can be effectively used to build a distributed
data structure expressing contextual and spatial information. So, unlike traditional event
based models, propagation of tuples is not driven by a publish-subscribe schema, but it is
encoded in tuples' propagation rule and, unlike an event, can change its content during
propagation (see figure 3).

Distributed tuples must be maintained coherent despite network dynamism. To this
end, the TOTA middleware supports tuples propagation actively and adaptively: by
constantly monitoring the network local topology and the income of new tuples, the
middleware automatically re-propagates tuples as soon as appropriate conditions occur.
For instance, when new nodes get in touch with a network, TOTA automatically checks
the propagation rules of the already stored tuples and eventually propagates the tuples to
the new nodes. Similarly, when the topology changes due to nodes' movements, the
distributed tuple structure automatically changes to reflect the new topology.

 11

High-level
interaction and
coordination

Application
Components

Navigation
Direction

Physical Level

TX

TX

TX
TX TX

TX
TX

TX

TX

Strucutre Level

TOTA Middleware

TX
Tuple

Tuple Sources

Tuple Propagation

Application Level

Navigation Level

Figure 3: The General Scenario of TOTA in the spatial computing stack: at the
physical level there is the network, communication is broadcast of messages
encoding TOTA tuples. At the structure level, the space is represented by means of
the TOTA distributed tuples. At the navigation level spatial structures can provide
basic navigation directions. At the Application level complex coordination tasks can
be achieved.

The TOTA middleware supports the spatial computing stack introduced in section 4.
In fact, from the application components’ point of view, executing and interacting
basically reduces to create distributed spatial structures in the network (inject tuples),
navigate such spatial structures (sense tuples in a neighborhood), and act accordingly to
some application-specific policy.

To clarify and ground the discussion we introduce the following exemplary pervasive
computing case study application: tourists with wireless PDAs visit a museum provided
with an embedded computer network. We suppose that the PDAs and the embedded
devices run the TOTA middleware and that they connect with each other forming a multi-
hop mobile wireless network. In the following subsections, working on this case study
application, we will detail how TOTA deals with all the levels in the spatial computing
stack.

 12

4.1. Physical Level
The physical level deals with how components find and start communicating with each

other. At this level, the specific nature of the network scenario has an important role.
Since our primary focus is pervasive computing, we mainly consider a wireless network
scenario without long-range routing protocols available (like in a “bare” mobile ad-hoc
network). In such scenario, it is easy to identify the node's neighborhood with the network
local topology (e.g. all the nodes within 10m, for a Bluetooth network). In this case, a
TOTA node detects in-range nodes via one-hop message broadcast.

Turning the attention to the case study, each PDA detects neighbor devices, by
broadcasting and receiving “here I am” messages. Such discovery operations is executed
periodically to take into account the possible movements of users. Upon injecting a tuple,
the TOTA middleware broadcasts the tuple to its current neighbors. There, the tuple will
be recursively broadcasted hop-by-hop to travel across the network, accordingly to its
propagation rule.

To support our experiments, we developed a first prototype of TOTA running on HP
IPAQs 36xx equipped with 802.11b wireless card, Familiar LINUX and J2ME-CDC
(Personal Profile). IPAQs connect locally in the MANET mode (i.e. without requiring
access points) creating the skeleton of the TOTA network. Tuples are being propagated
through multicast sockets to all the nodes in the one-hop neighborhood. The use of
multicast sockets has been chosen to improve the communication speed by avoiding
802.11b unicast handshake. By considering the way in which tuples are propagated,
TOTA is very well suited for this kind of broadcast communication. We think that this is
a very important feature, because it will allow in the future implementing TOTA also on
really simple devices (e.g. micro mote sensors [Pis00]) that cannot be provided with
sophisticate communication mechanisms.

It is important to remark that, despite our focus to wireless networks and pervasive
computing, the TOTA mechanisms are general and independent from the underlying
physical network. For example, in an Internet scenario (where a long-range routing
protocol is available), TOTA identifies the neighborhood of a node with the nodes whose
IP address is known (a node can communicate directly with another, only if it knows the
other node's address). To realize neighbors discovery, TOTA can either download from a
well-known server the list addresses representing its neighbors or it can start an
expanding-ring search to detect close nodes [RipIF02]). Given that, the multi-hop
propagation of a tuple proceeds as previously described.

4.2. Structure Level
TOTA tuples create a “structure of space” in the network. At the basic level, once a

tuple is injected from a node and propagates across the network, it creates a source-
centered spatial structure identifying some spatial features relative to the source.

For example, a tuple incrementing one of its fields as it gets propagated identifies a
spatial structure defining the network distances from the source. This kind of structure of
space provides spatial awareness to application agents. In fact, an agent is both able to
infer its approximate distance from the source (in terms of hops – i.e. network link range),
and the direction of the source by looking at where the gradient of the tuple descends.

Moreover, TOTA allows to combine different tuples to create more complex spatial
representations. A particularly significant example of these mechanisms is the creation of

 13

shared coordinate systems in the network on the basis of mere connectivity. Localization,
in general, can rely on the (geometrically intuitive) fact that the position of a point on a
surface can be uniquely determined by measuring its distance from at least three non-
aligned reference points (“beacons”), via a process of “triangulation” [NagSB03].
Implementing such localization mechanism in TOTA is rather easy. (i) A leader election
algorithm can elect three beacons nodes. (ii) Each beacon “arbitrarily” locates at specific
coordinates (without external location information the coordinate system can only be
internally coherent [NagSB03]). (iii) Each beacon injects a TOTA tuple, increasing its
content hop-by-hop and marked with the beacon coordinates. As previously pointed out,
this tuple allows other nodes to estimate their distance from the beacon. (iv) After at least
three beacons had propagated their ranging tuples, nodes can apply a triangulation
algorithm to infer their coordinates. Moreover, since TOTA tuples self-maintain, the
coordinate system remains up to date and coherent despite network dynamism. If upon a
node movement the topology of the network changes, the tuples maintenance triggers an
update in the coordinate system, making the latter robust.

A shared coordinate system provides a powerful spatial structure in a network and
allows to realize complex navigation and coordination tasks (see later).

In addition, although at the primitive level the space is the network space and distances
are measured in terms of hops between nodes, TOTA allows to exploit a much more
physically-grounded concept of space.

This may be required by several pervasive computing scenarios in which application
agents need to interact with and acquire awareness of the physical space. For instance,
one can bound the propagation of a tuple to a portion of physical space by having the
propagation procedure - as the tuple propagates from node to node - to check the local
spatial coordinates, so as to decide whether to further propagate the tuple or not. In order
to bound agents' and tuples' behavior to the physical space, nodes must be provided with
some kind of localization mechanism [HigB01]. From our perspective, such mechanisms
can be roughly divided into two categories:
• A GPS-like localization mechanism provides absolute spatial information (e.g. it

provides latitude and longitude of a node in the network). An actual GPS (Global
Positioning System) getting spatial coordinates from satellites naturally belongs to
this category. Beacon-based signal triangulation (coupled with beacons actual
physical location) is anther example of this category (nodes get their coordinates in
an absolute coordinate-frame defined by the beacons [NagSB03])

• A RADAR-like localization mechanism provides local information (e.g. relative
distances and orientations between nodes). An actual radar or sonar device belongs
to this category (radio and sound waves reflected by neighbor devices enable to infer
their distance and orientation). A videocamera installed on a node can serve the
same purpose (processing the image coming from the camera, a node can infer
where other nodes are). Also network roundtrip-time and signal-strength attenuation
may serve this purpose.

The kind of localization mechanism being available strongly influences how nodes can
express and use spatial information. GPS-like mechanism are more suitable at defining
“absolute” regions. For example, they allow to easily create tuples that propagate across a
region defined by means of the coordinates of its corners (e.g. propagate in the square
area defined by (0,0) and (100,100)). RADAR-like mechanism are more suitable at

 14

defining “relative” regions, where for example tuples are constrained to travel north form
the source or within a specified distance.

It is fair to report that a similar idea has been developed and exploited in the context of
a recently proposed language to program a vast number of devices dispersed in an
environment [Bor04]. The idea of this programming language is to identify a number of
spatial regions relevant for a given application and to access the devices through the
mediation of these regions (e.g. for all the devices on the “hill” do that). In [Bor04], the
definition of the regions is performed adopting GPS devices and distributed data
structures similar to TOTA tuples.

Other than the network and the physical space, one could think at mapping the peers of
a TOTA network in any sort of virtual space. This space must be supported by an
appropriate routing mechanism allowing distant peers to be neighbors in the virtual space.
Such virtual spaces are particularly useful and enable the definition of advanced
application such as content-based routing, as in CAN [Rat01]. TOTA concretely supports
the definition of these kinds of applications. Also in this case it is fair to report that
similar principles have been used in the Multilayered Multi Agent Situated System
(MMASS) model [BanMV04]. In MMASS agents' actions take place in a multilayered
environment. Each layer provides agents with some contextual information supporting
agents' activities. The MMASS environment is thus a hierarchy of virtual spaces built
upon one another, where lower layers provide the routing infrastructure for upper ones.

4.3. Navigation Level
TOTA defines a set of API to allow application components to sense TOTA tuples in

their one-hop neighborhood and to locally perceive the space defined by them.
Navigation in the space consists in having agents act on the basis of the local shape of
specific tuples.

As a first simple example we can consider physical navigation. Turning the attention to
our case study, it is clear that a PDA injecting a hop-increasing tuple in the network,
becomes immediately reachable by other users. Users, in fact, can move following the
gradient of the tuple downhill, to reach the tuple source. Moreover, since the tuple shape
is maintained despite network dynamism, users can reach the source of a tuple even if it
moves.

Navigation is not related to physical movement only. TOTA allows to relate the
propagation of a tuple to other tuples already propagated (e.g. a tuple can propagate
following another tuple). This can be at the basis of the routing algorithm detailed in the
following [Poo00]. In very general terms, when a node “A” wants to send a message to a
node “B”, it actually injects the network with a TOTA tuple, that holds: the source
identifier i.e. “A”, the message, and the number of hops from the source of the message to
the current node. Such structure not only trivially hand-off the message to “B”, but
creates a path leading to “A” that can be exploited for further uses. If node “B” wants to
reply, it can just send a message that follows the “A”-field downhill towards node “A”. In
this case no flooding is involved. The field-like distributed data structures created in this
process, can be used further also by other peers to communicate.

Complex spaces enable advanced navigation strategies. A shared coordinate system,
like the one described in the previous section, allows, for example, to set-up geographic
routing algorithm [BosM01]. A geographic routing algorithm is a mechanism that takes

 15

advantage of the established coordinate frame to send messages to the node closer to a
specific location. Such algorithm is suitable in a lot of application scenarios because it
inherently supports communication decoupling in that senders and receivers are
decoupled by the coordinate frame. For example, a sender can send a message to an
unknown receiver located at a specific location and the message will be received by
whoever is closer to that location.

4.4. Application Level
The spatial abstractions and tools promoted by TOTA enable to easily realize complex

coordination tasks in a robust and flexible way.
Our research, up to now, has mainly focused on the problem of enabling a group of

agents to coordinate their respective movements (i.e. distributed motion coordination).
Specifically, considering our case study, we focus on how tourists can be supported in
planning their movements across a possibly large and unfamiliar museum and in
coordinating such movements with other, possible unknown, tourists. Such coordination
activities may include scheduling attendance at specific exhibitions occurring at specific
times, having a group of students split in the museum according to teacher-specific laws,
helping a tourist to avoid crowd or queues, letting a group of tourist to meet together at a
suitable location, and even helping to escape accordingly to specific evacuation plans.

An intriguing possibility to realize motion coordination is to take inspiration from the
physical world, and in particular from the way masses in our universe move accordingly
to the gravitational field. By interpreting (rather roughly) the General Relativity Theory,
we can say that the gravitational field actually changes the structure of the space letting
particles to globally self-organize their movements. Under this interpretation, particles
achieve their “tasks” by simply following the structure of the space.

Realizing this kind of idea with the spatial abstraction promoted by TOTA is rather
easy. Under the assumption that users spread hop-counting tuples in the network, it is
possible to realize several coordination tasks. A group of tourist following downhill each
other tuples will collapse in a single location allowing the tourists to meet somewhere in
the building. Analogously, museum’s guides could decide to sense each other's tuples (i.e.
spaces) so as to maintain a certain distance from each other to improve their reachability
by tourists. If a guide has to go away, the same tuples would allows the others to
automatically and adaptively re-shape their formation.

Following this approach, agents achieve their goals not because of their capabilities as
single individuals, but because they are part of an auto-organized system that leads them
to the goal achievement. Such characteristics also imply that the agents’ activities are
automatically adapted to the environmental dynamism, which is reflected in a changing
spatial representation, without forcing agents to re-adapt themselves.

Motion coordination with spatial abstractions is by no means limited to the presented
case study. It can be applied to a wide range of scenarios ranging from urban traffic
management, mobile software agents on Internet and even self-assembly in modular
robots (detailed in the following). A modular or self-reconfigurable robot is a collection
of simple autonomous mobile robots with few degrees of freedom. A distributed control
algorithm is executed by all the robots that coordinate their respective positions to let the
robot assume a global coherent shape or a global coherent motion pattern (i.e. gait).

From a methodological viewpoint, robots can exploit spatial abstraction and TOTA

 16

tuples to self-organize their respective positions in space. In particular, starting from any
spatial configuration of robots: (i) robots start diffusing specific types TOTA tuples; (ii)
robots react to locally perceived tuples by trying to follow them downhill/uphill, or by
changing their activity state possibly depending on the perceived values of the tuples (i.e.
depending on their position in some abstract space); (iii) changes in the activity state of
robots can lead to inhibiting the propagation of some tuples and/or to the diffusion of new
types of tuples in the system, leading back to point (i). One can then apply this process
several times, with new types of tuples being propagated in different phases, so as to
incrementally have robots self-organize into the required shape [MamVZ04].

In all these application scenario, we verified that the spatial abstractions promoted by
TOTA effectively support robust and flexible self-organizing behaviors.

5. Conclusions

By abstracting the execution of distributed applications around spatial concepts,
spatial computing promises to be an effective approach towards the identification of
general and widely applicable self-* approaches to distributed systems development and
management. Our experiences with the TOTA middleware confirm the effectiveness of
the approach.

However, besides the claims of this paper and our personal experience, much work is
needed to asses the potentials of spatial abstractions in distributed computing, and to
verify whether they can actually pave the way to a sound and general-purpose approach to
self*- computing. In particular:
• Is the spatial computing stack depicted in Table 1 meaningful and useful, or a better

and more practical framing can be proposed?
• If and when such a unifying model will be found, will it be possible to translate it into

a limited set of programming abstractions and lead to the identification of a practical
methodology for developing self-organizing distributed computing systems?

• Is a middleware-centered approach like that of TOTA the best direction to follow?
• Several self-organization phenomena disregarded by this paper, deals with concepts

that can be hardly intuitively mapped into spatial concepts. Would exploring some
sorts of spatial mapping be still useful and practical? Would it carry advantages?

• Possibly most important of all questions: is the search for a unifying model fueled by
enough applications? Or it is rather the search for specific solutions to specific
problems the best direction to follow?

In our hope, further researches and a larger variety of studies about self-* properties in
distributed systems will soon provide the correct answers to the above questions.

References

[BanMV04] S. Bandini, S. Manzoni, G. Vizzari, “Towards a Specification and Execution
Environment for Simulations based on MMASS: Managing at-a-distance Interaction”, Fourth
International Symposium From Agent Theory to Agent Implementation (AT2AI'04), Vienna,
Austria, 2004.

[Bor04] C. Borcea, “Spatial Programming Using Smart Messages: Design and Implementation”,
24th Int.l Conference on Distributed Computing Systems, Tokio (J), May 2004.

[BosM01] P. Bose, P. Morin, I. Stojmenovic, J. Urrutia, “Routing with Guaranteed Delivery in Ad
Hoc Wireless Networks”, Wirleless Networks 7:609-616, Kluwer Academic Publisher, 2001.

 17

[Cab03] G. Cabri, L. Leonardi, M. Mamei, F. Zambonelli, Location-dependent Services for Mobile
Users, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems And Humans,
Vol. 33, No. 6, pp. 667-681, November 2003

[Car01] A. Carzaniga, D. Rosenblum, A. Wolf, “Design and Evaluation of a Wide-Area Event
Notification Service”, ACM Transaction on Computer System, 19(3):332-383.

[ChiC91] R. S. Chin, S. T. Chanson, “Distributed Object-Based Programming Systems”, ACM
Computing Surveys, 23(1), March 1991.

[CouDK94] G.Coulouris, J. Dollimore, T. Kindberg,
Distributed Systems. Concepts and Design
Addison-Wesley, second edition, 1994.

[Dim04] G. Di Marzo, A. Karageorgos, O. Rana, F. Zambonelli (Eds.), Engineering Self-organizing
Systems: Nature Inspired Approaches to Software Engineering, LNCS No. 2977, Springer
Verlag, May 2004.

[Est02] D. Estrin, D. Culler, K. Pister, G. Sukjatme, “Connecting the Physical World with Pervasive
Networks”, IEEE Pervasive Computing, 1(1):59-69, 2002.

[GelSB02] H.W. Gellersen, A. Schmidt, M. Beigl, “Multi-Sensor Context-Awareness in Mobile
Devices and Smart Artefacts”, Mobile Networks and Applications, 7(5): 341-351, Oct. 2002.

[HigB01] Hightower and G. Borriello, “Location Systems for Ubiquitous Computing,”
Computer, vol. 34, no. 8, Aug. 2001, pp. 57–66.

[Jini] JINI, http://www.jini.org
[Kep02] J. Kephart, “Software Agents and the Route to the Information Economy”, Proceedings of

the National Academy of Science, 99(3):7207-7213, May 2002.
[MamVZ04] M. Mamei, M. Vasirani, F. Zambonelli, “Experiments of Morphogenesis in Swarm os

Simple Mobile Robots”, Journal of Applied Artificial Intelligence (to appear) 2004.
[MamZ03] M. Mamei, F. Zambonelli, “Co-Fields: a Unifying Approach to Swarm Intelligence”, 3rd

Workshop on Engineering Societies in the Agents’ Word, LNCS No. 2677, April 2003.
[MamZ04] M. Mamei, F. Zambonelli, “Programming Pervasive and Mobile Computing

Applications with the TOTA Middleware”, 2nd IEEE Conference on Pervasive Computing
and Communications, Orlando (FL), IEEE CS Press, March 2004.

[MamZL04] Mamei, M., and F. Zambonelli. 2004b. Co-Fields: a Physically Inspired Approach to
Distributed Motion Coordination. IEEE Pervasive Computing, 3(2):52-60.

[NagSB03] R. Nagpal, H. Shrobe, J. Bachrach, “Organizing a Global Coordinate System from
Local Information on an Ad Hoc Sensor Network”, 2nd International Workshop on Information
Processing in Sensor Networks, Palo Alto (CA), April, 2003.

[Pis00] K. Pister, “On the Limits and Applicability of MEMS Technology”, Defense Science
Study Group Report, Institute for Defense Analysis, Alexandria (VA), 2000.

[Poo00] R. Poor, Embedded Networks: Pervasive, Low-Power, Wireless Connectivity, PhD Thesis,
Massachusstes Institute of Technology, 2001.

[RaoP03] A. Rao, C. Papadimitriou, S. Ratnasamy, S. Shenker, I. Stoica. “Geographic Routing
Without Location Information”. ACM Mobicom Conference. San Diego (CA), USA, 2003.

[Rat01] S. Ratsanamy,, P. Francis, M. Handley, R. Karp, ”A Scalable Content-Addressable
Network”, ACM SIGCOMM Conference 2001, Aug. 2001.

[RipIF02] M. Ripeani, A. Iamnitchi, I. Foster, “Mapping the Gnutella Network”, IEEE Internet
Computing, 6(1):50-57, Jan.-Feb. 2002.

 [Row04] A. Rowstron et al., “PIC: Practical Internet Coordinates”, 24th International Conference
on Distributed Computing Systems, IEEE CS Press, Tokyo (J), May 2004.

[Wal97] J. Waldo et al., “A Note on Distributed Computing”, Mobile Object Systems, LNCS No.
1222, Feb. 1997.

[Zam04] F. Zambonelli, M.P. Gleizes, R. Tolksdorf, M. Mamei, Spray Computers: Frontiers of
Self-organization“, 1st International Conference on Autonomic Computing, IEEE CS Press,
New York (I), May 2004.

