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XLearn: Learning Activity Labels Across Heterogeneous
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Reggio Emilia, Italy

Sensor-driven systems often need to map sensed data into meaningfully-labelled activities in order to classify
the phenomena being observed. A motivating and challenging example comes from human activity recognition
in which smart home and other datasets are used to classify human activities to support applications such as
ambient assisted living, health monitoring, and behavioural intervention. Building a robust and meaningful
classifier needs annotated ground truth, labelled with what activities are actually being observed – and
acquiring high-quality, detailed, continuous annotations remains a challenging, time-consuming, and error-
prone task, despite considerable attention in the literature. In this paper we use knowledge-driven ensemble
learning to develop a technique that can combine classifiers built from individually-labelled datasets, even
when the labels are sparse and heterogeneous. The technique both relieves individual users of the burden of
annotation, and allows activities to be learned individually and then transferred to a general classifier. We
evaluate our approach using four third-party, real-world smart home datasets and show that it enhances
activity recognition accuracies even when given only a very small amount of training data.
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systems and tools;
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1 INTRODUCTION
Over the last decades more and more smart home and intelligent environment prototypes and
real-world testbeds are emerging, which have demonstrated promising values in the application
domains of health [33], energy [9], and workforce. For example, care homes are deploying sensorised
assisted living platforms to identify the elderly’s daily routine in order to provide personalised
care services, and smart home technology industries aim towards energy-efficient solutions for
air purification or heating configuration based on detected human behaviours such as cooking
and sleeping. Sensor-based human activity recognition is the key enabling technology for these
applications, integrating and abstracting low-level sensor data into high-level activities to which
activity-aware applications can adapt their behaviours. The ability to correctly identify and predict
users’ activities underpins the success of these applications.
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processing and is timestamped using the same clock (the internal clock of the computer)

that is used to timestamp the sensor data.

(a) House A
(b) House B

(c) House C, First floor (d) House C, Second floor

Fig. 8.2 Floorplan of houses A, B and C, the red boxes represent wireless sensor nodes.

8.3.3 Houses

A total of three datasets was recorded in three different houses. Details about the datasets

can be found in Table 8.1. Floorplans for each of the houses, indicating the locations of the

sensors, can be found in Figure 8.2.

House A House W

Xlearn
Annotate unlabelled sensor data in each dataset

Start time                  End time                               SID    SVal    Activity
-------------------- --------------------          -- ---      ---
25-Feb-2008 00:20:14   25-Feb-2008 00:22:57 13 1       Θ
25-Feb-2008 09:33:41   25-Feb-2008 09:33:42 13 1       Θ     
25-Feb-2008 09:37:51   25-Feb-2008 09:37:52 8 1       use toilet
25-Feb-2008 09:37:55   25-Feb-2008 09:37:56 8 1       use toilet  
25-Feb-2008 09:37:58   25-Feb-2008 09:38:01 3 1       use toilet
25-Feb-2008 09:49:31   25-Feb-2008 09:49:38 7 1       prepare breakfast
25-Feb-2008 09:49:39   25-Feb-2008 09:49:44 6 1       prepare breakfast
25-Feb-2008 09:49:53   25-Feb-2008 09:49:56 6 1       prepare breakfast

Start time                                       SName SVal   Activity
--------------------                    -----   ------   ---------
2009-08-24 07:07:05.048491 M017  ON     meal preparation
2009-08-24 07:07:09.025382 M016  ON      meal preparation
2009-08-24 07:07:11.000921 M016  OFF     meal preparation
2009-08-24 07:07:11.043797 M045  ON       Θ
2009-08-24 07:07:46.013543 M032  ON       R2_sleep
2009-08-24 07:07:47.015822 M017  ON       R2_sleep 
2009-08-24 07:07:47.058612 M036  ON       R2_sleep
2009-08-24 07:08:07.095058 M017  ON       Θ

House A House W

Start time                                       SName SVal   Activity
--------------------                    -----   ------   ---------
2009-08-24 07:07:05.048491 M017  ON     meal preparation
2009-08-24 07:07:09.025382 M016  ON      meal preparation
2009-08-24 07:07:11.000921 M016  OFF     meal preparation
2009-08-24 07:07:11.043797 M045  ON      use toilet
2009-08-24 07:07:46.013543 M032  ON      R2_sleep
2009-08-24 07:07:47.015822 M017  ON      R2_sleep 
2009-08-24 07:07:47.058612 M036  ON      R2_sleep
2009-08-24 07:08:07.095058 M017  ON      use toilet

Start time                      End time                             SID   SVal    Activity
--------------------   --------------------          -- ---      ---
25-Feb-2008 00:20:14   25-Feb-2008 00:22:57 13 1       sleep
25-Feb-2008 09:33:41   25-Feb-2008 09:33:42 13 1       sleep     
25-Feb-2008 09:37:51   25-Feb-2008 09:37:52 8 1       use toilet
25-Feb-2008 09:37:55   25-Feb-2008 09:37:56 8 1       use toilet  
25-Feb-2008 09:37:58   25-Feb-2008 09:38:01 3 1       use toilet
25-Feb-2008 09:49:31   25-Feb-2008 09:49:38 7 1       prepare breakfast
25-Feb-2008 09:49:39   25-Feb-2008 09:49:44 6 1       prepare breakfast
25-Feb-2008 09:49:53   25-Feb-2008 09:49:56 6 1       prepare breakfast

Fig. 1. An example of XLearn scenario. We have two users living in two residential settings deployed with different
sensors. Each user has been annotated with different activities. XLearn aims to combine their sensor data and activity
annotations to learn all these activities on all the users.

Significant progress has been made in activity recognition over the past years with the support
of a large number of modern data-driven techniques [2, 38], including Hidden Markov Models,
Conditional Random Fields, Support Vector Machine, and more recently deep neural networks [27].
To build a robust activity recognition model, most of these existing techniques require a large
volume of training data; that is, sensor data annotated with activity labels. However, the key
challenge facing the current activity recognition community is the lack of sufficient training data.
On the one hand, it often requires a lot of time and effort to annotate sensor data. It either relies on
users’ constant self-report on what they are doing, or records users’ activities via videos which
are later annotated by the others. On the other hand, there is never enough training data, as users
might change their routine over time; that is, they may perform new types of activities such as
playing Kinnect fitness games to be more active – and in doing so change both the activities they
do and the ways in which they do them. Or users’ health conditions degrade due to ageing or onset
of a certain disease, which can change their daily routine. Therefore annotation approaches that
require highly intensive effort and commitment are neither scalable nor sustainable for a large
number of users over a long period of time.
In this paper, we propose a novel approach, called XLearn, to reduce the annotation burden on

individual users via cross learning on scarcely- and partially-annotated data from multiple users,
to achieve satisfactory activity recognition accuracies. The hypothesis is that, as long as each user
contributes a very small number of labelled examples (even though these examples might not cover
a complete set of activity types), a cross learning approach will learn annotated examples across all
the users and be able to build an activity recognition model for each user to recognise all activities.
This is illustrated in Figure 1.

XLearn faces challenges taken from various transfer learning topics, which makes the application
of any existing transfer learning technique problematic. More specifically, learning is taking place
between domains that do not share the same feature space (i.e., source and target domains can be
in different home settings deployed with a different number of sensors in different types of sensing
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technologies) and may have different but semantically related output labels (i.e., source and target
domains might target different types of activities, or use different labels for the same activities).
XLearn is a knowledge-driven ensemble learning technique, built on generic smart home on-

tologies to enable computationally efficient feature and activity space remapping. In our previous
work, SLearn [37], we have achieved preliminary, promising results on using the ontologies to
remap feature spaces from heterogeneous datasets, but the performance of SLearn needs significant
improvement. In this paper, to enable robust integration of inferred activity labels from a diverse
collection of datasets, we employ a stacking ensemble and incrementally update the ensemble
classifier and its base classifiers over time to improve the accuracies of activity recognition. Also
SLearn assumes that all the datasets share the activity labels, which can be possible if the same
organisation deploys an activity monitoring system in many different houses and is more likely to
monitor a similar set of activities. However, XLearn works on a more general assumption where
each dataset can have a different set of activities as long as these activities are semantically related.
We have evaluated XLearn on four real-world smart home datasets, which exhibit high het-

erogeneity in terms of environmental layouts, sensing technologies, and activities. The results
demonstrate that XLearn has achieved satisfactory recognition accuracies with a small number of
training data (i.e., 2 from each dataset), better than the classic activity recognition approach – only
using each user’s own data for training. While we have developed and exercised our technique
on smart-home data, the underlying approach promises to be applicable to any sensor-driven
activity-recognition problem.
The rest of the paper is organised as follows. Section 2 scopes the problem that XLearn aims

to address with formal definitions and an illustrative example. Section 3 reviews the mainstream
work on addressing the scarcity of labelled data and identifies the difference between these other
techniques and XLearn. Section 4 describes the XLearn approach, and Section 5 introduces the
evaluation methodology and experiment setup. Section 6 performs an evaluation and discusses the
technique’s strengths and limitations, and Section 7 concludes the paper.

2 PROBLEM STATEMENT
In this section, we will identify the research problem that the XLearn tries to address, through a
concrete illustrative example and a formal definition. Take Figure 1 as an example scenario, which
is activity recognition in a smart home environment deployed with binary event-driven sensors.
Assume there are two home settings: House A andW, each with different spatial layouts and hosting
different users. Each environment is instrumented with a different number of binary event-driven
sensors of different sensing technologies, including infra-red passive motion detectors [8, 16], door
or window switch sensors, object sensors, and pressure sensors [16, 22]. These sensors collect
data about a resident’s presence in the environment, and their interactions with everyday objects,
which will help to interpret what the resident is doing [39]. Examples of sensor events and labelled
activities are presented in Figure 1.
Based on the syntax and terminology from transfer learning [26], we first give preliminary

definitions of problems that the XLearn approach aims to address.
Definition 1. Let a dataset D consist of a domain D and a task T , where
(1) a domain D is a two-tuple (χ , P (X )). χ is them-dimensional feature space of D and P (x⃗ ) is

the marginal distribution where x⃗ = [x1, ...,xm] ∈ χ .
(2) a taskT is a two-tuple (Y, f ()) for a domain D.Y is the label space of D, which is a collection

of possible class labels Y = {y1,y2, ...,yNc }. f () is an objective predictive function for D.
(3) within this dataset, each pair (x⃗ ,y) ∈ χ ×Y ∪ {Θ}, where Θ represents unknown or unlabelled.

That is, some instances in the feature space have labels; i.e., (x⃗ ,y) ∈ χ × Y and f (x⃗ ) ∈ Y ,
while the other instances do not; i.e., (x⃗ ,Θ) ∈ χ × {Θ} and f (x⃗ ) = Θ.

ACM Trans. Intell. Syst. Technol., Vol. 0, No. 0, Article 0. Publication date: 2018.
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Take an example of the datasets in Figure 1, an instance x⃗ is represented as a feature vector
[x1,x2, ...,xn] in χ , where n is the number of sensors being deployed and xi indicates the ratio of
the ith sensor reporting an event during a certain time interval (e.g., every 30 or 60 seconds); that is,
xi = Ni/N , where Ni is the number of events reported by the ith sensor and N is the total number
of events being reported in an interval. This feature representation is similar to the numerical
format to represent binary sensor data in a vector [4], and the only difference is that we normalise
the number of activation with the total sensor events in each interval. Another way to represent
sensor feature vector values as 0 or 1 to indicate whether a sensor is activated or not. This binary
representation can be difficult to distinguish activities that activate the same set of sensors; for
example, when a user is preparing for breakfast and dinner, he/she might activate most of the
sensors in the kitchen.
The label space Y , for example in House A, consists of ‘prepare breakfast’ and ‘get drink’. An

unknown label on sensor data is marked as Θ. The predictive function f here is to classify sensor
features x⃗ into an activity label in Y .

Definition 2. Let DS be a collection of datasets {D1,D2, ...,DND }, where each dataset has differ-
ent domains (i.e., ∀1 ≤ i, j ≤ ND , i , j, χi , χj and Pi , Pj ) and has different tasks (i.e., Yi , Yj
and fi , fj ). XLearn aims to assign a label to each unlabelled instance in the dataset; that is, ∀x⃗ ∈ χi ,
there exists a label y ∈ Y1 ∪ Y2 ∪ ... ∪ YND . To make this work we make two assumptions:
(1) Feature space remapping – the feature spaces between the datasets are comparable and can

be remapped between each other. That is, there exists a mapping function θi→j : χi → χj
that remaps each instance x⃗ in χi to an instance x⃗ ′ in χj .

(2) Label space remapping – similarly, there exists a mapping function ϑi→j :Yi → Yj that remaps
each labely inYi to a labely ′ inYj , andy andy ′ can be in different terms but are semantically
related.

As we can see in Figure 1, each dataset features different spatial layouts and sensor deployments,
so they have different feature spaces in terms of feature dimension and semantics and as well as
their marginal distributions; i.e., the frequency of a sensor being activated.
In addition, each dataset targets different collections of activities; that is, different numbers of

activities, and different labels for the same or semantically similar activity such as ‘meal preparation’
in House W and ‘prepare breakfast’ in House A. It is clear that these two datasets have different
domains and tasks with respect to Definition 1. The sensor events in each house are partially
labelled; that is, some sensor events have not been annotated with an activity label but with the
unknown symbol Θ in Figure 1. The task of XLearn is to complement each dataset’s annotation
and recognise all these 4 activities on unlabelled sensor data in both datasets.

We present XLearn as a promising technique to improve activity recognition on scarcely labelled
datasets, all of which can have different feature spaces and label spaces, and do not have to be
fully labelled. Thus, this technique is not subject to heterogeneous sensor deployments and activity
sets in different environments, which addresses the key challenge in transfer learning of human
activity recognition in the real-world applications. To make the learning effective, XLearn builds
on an assumption that there exists simple ontologies that semantically relate the feature spaces
across different datasets and as well as their label spaces.

3 RELATEDWORK
Activity recognition has been an active research topic in the last decade, and a variety of techniques
have been proposed [38]. Among them, different approaches have been designed to address the
scarcity challenge of activity annotation, including knowledge-driven techniques, unsupervised
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learning, semi-supervised learning, and transfer learning. In the following, we will compare and
contrast these approaches with XLearn.

3.1 Knowledge-driven Techniques
Ontologies are one of the main knowledge-driven approach in activity recognition [38]. Chen et
al. [5] present a comprehensive smart home ontology for daily activity recognition. For exam-
ple, a ‘making tea’ activity can be described with a collection of property-value pairs, including
hasContainer, hasTeabag, and hasFlavour. In general, the knowledge-driven approaches often
require heavy knowledge engineering effort; for example, specifying how each activity is related to
objects or events that can be sensed from sensors. Such activity specification can be error-prone or
difficult to accommodate different variations or patterns of an activity.

Research has been carried out to integrate knowledge withmachine learning techniques. Riboni et
al. [30] propose a hybrid approach of ontological and probabilistic reasoning for activity recognition.
It combines ontologies with Markov Logic Network to reason temporal relationships between
sensor events and activities; for example, ‘turning on the oven’ cannot belong to an activity instance
‘meal preparation’ if their temporal distance is too far apart; e.g., over two hours. Ye et al. [39] have
used a lightweight ontology to specify necessary conditions of an activity. Based on this ontology,
a collection of machine learning techniques including sequential mining and clustering are applied
to enable unsupervised learning on activity recognition.
XLearn applies ontologies to support feature space remapping, but itself is better than an

knowledge-driven activity recognition approach, it does not need a detailed specification on
activities, which often requires a lot of knowledge engineering effort and can be error-prone. The
problem that XLearn aims to address is different from a classic activity recognition problem; that is,
XLearn tries to shared partially learned activity models from multiple datasets to complement the
learning due to insufficient training data, rather than learning activity labels on one dataset.

3.2 Unsupervised Learning
Unsupervised learning automatically partitions and characterises sensor data into patterns that can
be mapped to different activities without the need of annotated training data. Pattern mining and
clustering are the two mostly used techniques that support unsupervised activity recognition. Gu et
al. have applied emerging patterns to mine the sequential patterns for interleaved and concurrent
activities [14]. Rashidi et al. propose a method to discover the activity patterns and then manually
group them into activity definitions [28]. Based on the patterns, they create a boosted version of a
Hidden Markov Model (HMM) to represent the activities and their variations in order to recognise
activities in real time. Similarly, in our previous work, we have combined the sequential mining and
clustering algorithms to discover representative sensor events for activities [39]. Different from the
work in [28], they have applied the generic ontologies to automatically map the discovered sensor
sequential patterns to activity labels through a semantic matching process [39]. Yordanova et al.
have also applied domain knowledge in rule-based systems to generate probabilistic models for
activity recognition [19, 42].
Taking a different route, researchers also have applied web mining and information retrieval

techniques to extract the common-sense knowledge between activities and objects via mining
online documents; that is, what objects are used to perform a daily activity and how significant
each object is contributed to identifying this activity [25, 36, 41, 43]. During the reasoning process,
the mined objects are mapped to sensor events and an appropriate activity will be recognised.
XLearn targets a problem more challenging than a classic activity recognition problem where

for each dataset we train a model with labelled instances and recognise unlabelled instances. In
XLearn, the training data is assumed to be incomplete in that it might not cover all the activities
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of interest. XLearn is not an unsupervised learning technique as it still relies on labelled training
data, but the labels can come from different datasets. In this way, XLearn shares the annotation
cost across a large number of users, which can significantly reduce the cost on individual users.

3.3 Semi-supervised Learning
Active learning, also called ‘query learning’, is a subfield of machine learning motivated by the
scenario where there is a large amount of unlabelled data and a limited but insufficient amount
of labelled data. As the labelling process is tedious, time-consuming and expensive in real-world
applications, active learning methods are employed to alleviate the labelling effort by selecting the
most informative instances to be annotated [31].
Stikic et al. have attempted active learning and cotraining to recognise daily activities from

accelerometers and infra-red sensors [32]. Alemdar et al. apply active learning strategies to select
the most uncertain instances to be annotated; that is, the instances sit at the boundaries of classes [1].
The annotated instances are then used to iteratively update a HMM to infer daily activities in a home
setting. Cheng et al. apply a density-weighted method that combines both uncertainty and density
measure into an objective function to select the most representative instances for user annotation,
which has been demonstrated to improve activity recognition accuracy with the minimal labelling
effort [6]. Similarly, Hossain et al. combine the uncertainty measure and Silhouette coefficient to
select the most informative instances as a way to discover new activities [15].
XLearn is better than active learning [31] in that it will not query a user or a human operator,

but learns labels from the other datasets, which again reduces the annotation burden on each user.
Another commonly applied semi-supervised learning technique is cotraining, proposed by Blum

andMitchell in 1998 has been one classic approach able to boost performance of a learning algorithm
by leveraging a large number of unlabelled examples [3]. The idea is that the description of each
example can be partitioned into two distinct views, and each view can be linked with edges in a
bipartite graph. Then two classifiers can be trained separately on each view, and then results from
each classifier are used to enlarge the training set of the other.

The cotraining algorithm and its variations have been recently applied in the multi-view human
activity recognition in smart home environments [13]. That is, an activity can be viewed from
different platforms of sensor streams, such as acceleration data, motion sensor, or video. The
principle is to learn the same activities from each sensor platform and share and adapt labels from
one sensor platform to another.
Cotraining works on multiple views from the same data while the XLearn approaches need to

work on multiple datasets that share the sensing mission; that is, compatible sensor features and
activities. Here XLearn novelly applies the cotraining principle in transfer learning.

3.4 Transfer Learning
Transfer learning is another approach to deal with the limitation of labelling data, where knowledge
learned from a source domain (with labelled data) can be transferred to a target domain (without
labelled data) [26]. Maekawa et al. [23] have proposed an unsupervised approach to recognise
physical activities from accelerometer data. They utilise information about users’ characteristics
such as height and gender to compute the similarity between users, and find and adapt the models
for the new users from the similar users.
Zheng et al. [43] propose an algorithm for cross-domain activity recognition that transfers the

labelled data from a source domain to a target domain so that the activity model in the source
domain can help to complete the similar activity model in the target domain. The similarity is
not only measured on the objects being involved in the activities, but also on their underlying
physical actions. They use the web search and apply the information retrieval techniques to build
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the similarity function that produces different probabilistic weights of actions and objects on
activities of interest. These weights will be further used to train a multi-class weighted support
vector machine to support activity recognition.

van Kasteren et al. [34] propose a manual mapping between sensors in different households and
learn the parameters of a target model using the EM algorithm to transit probabilities of HMM
models from source to target. Similarly, Rashidi et al. [29] learn sensor mappings based on their
locations and roles in activity models. The role is characterised in mutual information, measuring
the mutual dependence between an activity and a sensor and suggests the relevance of using the
sensor in predicting the corresponding activity. Feuz et al. [12] propose a data-driven approach to
automatically map sensors based on their meta-features, which are mainly about when a sensor
reports, and time intervals between events reported by this sensor and other sensors.
XLearn is most relevant to but not the same as transfer learning [26] as it targets a research

problem that challenges the assumptions of most transfer learning techniques. Here our assumption
is slightly different from the above works where they assume a complete model (that is, containing
all the activities of interest) can be learnt on a source domain, while we assume each domain may
only have a small fraction of data being annotated (that is, the activities having been annotated can
be a subset of activities of interest in a domain) and we do not assume any domain necessarily as a
source or target domain. However, transfer learning techniques such as feature remapping can be
applied to XLearn. Especially, our approach is most similar to the above three, where we focus on
sensor mappings to support sharing sensor data across multiple datasets. The difference is that
we are using a knowledge-driven approach with the advantage of reducing the impact of sensing
technology, deployment, and individual activity routine on the effectiveness of transfer learning.

Table 1. Comparison between XLearn and state-of-the-art activity recognition techniques
Techniques Datasets Labelled Learning
Supervised
Learning

Single dataset Fully Train on well-annotated dataset and recognise newly in-
coming sensor data [38]

Knowledge-
driven

Single dataset Not Specify each activity on the knowledge model and infer
activity labels from sensor data [5]

Hybrid
model

Single dataset Fully Train the complex correlation between sensor data and
activities, leverage the knowledge model in guiding and
constraining the training process with activities specified
on the knowledge model [30, 39], and infer activity labels
from sensor data

Unsupervised
learning

Single dataset Not Learn the latent structure of sensor data and assign ac-
tivity labels to the structures accordingly based on the
knowledge specified or learnt [19, 28, 39, 42]

Semi-
supervised
learning

Single dataset Partially Train on a small amount of training data, incrementally up-
date the model with self-learnt labels [13, 32] or acquired
labels through active learning [1, 6, 15, 32]

Transfer
learning
and domain
adaptation

2 datasets with homoge-
neous or heterogeneous
feature spaces

Fully Learn an activity model on one dataset (called the source)
and adapt or transfer the model to another dataset (called
the target), with a general assumption that the source
dataset is annotated with all the activity labels [12, 23, 29,
34, 43]

SLearn Multiple (≥ 2) datasets
with heterogeneous fea-
ture spaces

Partially Shared learning activity labels from datasets via ei-
ther sharing the training data or the classifier on each
dataset [37]

XLearn Multiple (≥ 2) datasets
with heterogeneous fea-
ture and activity spaces

Partially Cross learning activity labels from datasets in an ensemble
classifier that takes into account the classification perfor-
mance and output of each dataset’s activity model, and
latent structures of each dataset
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3.5 Comparison and Summary
In summary, Table 1 has contrasted and compared XLearn with the existing activity recognition
techniques. XLearn has worked on a different assumption: instead of learning an activity model
from one dataset, it cross learns the activity models between different datasets by leveraging an
activity model from each dataset and complementing each other’s insufficiently annotated training
data. It does not require all the activity labels are annotated in each dataset. To do so, we design
algorithms to bridge and learn the difference between their feature and label spaces.

4 PROPOSED APPROACH
We hypothesise that when each dataset contributes a small number of labelled examples (even
though these examples might not cover a complete set of activity types), XLearn will be able
to cross learn the annotated examples and improve activity recognition accuracies. XLearn is a
knowledge-driven ensemble learning technique, whose main design points are illustrated as follows.
(1) The key enabler for sharing these datasets is the feature space remapping and label space

remapping. We will propose a generic knowledge-driven approach in Section 4.1 and justify
the advantage of this approach by comparing it against a data-driven approach.

(2) As we aim to reduce the annotation burden, we will reduce the amount of the training data
as much as possible. However, a small amount of training data might prevent from building
a reliable classifier. To compensate, we will expand the training set by finding all the other
examples that are semantically similar to the already annotated examples in Section 4.2.

(3) As each dataset may contain a subset of activities of interest, we need to integrate activ-
ity labels inferred from other datasets to complete the activity set. An ensemble classifier
is a natural choice for integration and has demonstrated beneficial in analysing complex
datasets [18]. Because we deal with very little training data, the classifier on each dataset can
be very weak. To make the best of these weak classifiers, we extract a range of meta-features
to characterise inference results from each dataset’s classifier and build a stacking ensemble
to learn the correlations between these meta features and the target activity label. This will
be described in Section 4.3.

Figure 2 illustrates the above workflow and in the following we will detail each of the processes.

4.1 Semantic model
Underlying XLearn is the semantic model of sensor features and activity labels, based on which we
can remap the sensor feature space and activity output space from one dataset to another.
4.1.1 Smart home ontologies There are different feature remapping strategies described in [26].

Feuz et al. [12] have proposed a meta-feature based mapping function for event-driven sensors
in smart home environments. They have defined a range of meta-features about each sensor; for
example, the average sensor event frequency over 1-hour time periods, over 3/8/24-hour periods,
the mean and standard deviation of the time between this sensor event and the next sensor event,
and the probability of the next event is from the same sensor. These meta-features are used as a
heuristic to guide the mapping process. This is a data-driven approach for feature-space remapping,
but its performance might be affected by the activity routine of various users and the deployment
and types of sensing technologies in each environment. For example, one user might often have
breakfast at 6am while the other might have at 9am, or one user prefers having shower before
breakfast while the other prefers the other way around so that the sensors might be mis-matched on
the time scale. In addition, the density of the sensor deployment and the frequencies and sensitivity
of sensors reporting events might affect the mapping on the intervals between events. For example,
one environment can be more densely deployed with sensors so that the time distances between
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#1 #2 #ND

Cluster labeling
Partition data into different subsets and use labelled instances to label unlabelled instances

Ensemble  labelling
Acquire the most likely label by integrating inferred labels from all the datasets

generate meta features from 
clusters and base learners

Meta features

Stacking ensemble

Infer
Label

Initial Partially-Labelled Datasets

Final Fully-Labelled Datasets

Fig. 2. Workflow of XLearn. At the top are a set of datasets labelled as #1, #2, ..., #ND , each of which contains
a set of labelled instances (marked in green, plum, and blue) and a set of unlabelled instances (marked in
grey). Cluster labelling will label instances that are semantically close to the labelled instances. This will help
expand the existing training set and build a more robust classifier on each dataset. An ensemble is employed
to learn the correlation of feature space in each dataset and the combined activity labels from all the datasets.
Then the ensemble labelling process integrates the inference results to select the most confident label for
each remaining unlabelled instance. This ensemble labelling process will run iteratively and incrementally
until all the instances are labelled. The assigned labels can come from different datasets (as shown at the
bottom of the figure)

events reported by different sensors can be significantly shorter than the other set up with much
fewer sensors.
To reduce the impact of such differences in each dataset, we adopt a knowledge-driven fea-

ture mapping based on smart home ontologies [39] which has demonstrated generality across
heterogeneous smart home datasets. The principle of knowledge-driven feature mapping is to
compute similarity between a pair of sensors based on where they are deployed and which object
they have attached to. Both location and object concepts are organised in a hierarchy. Figure 3
presents part of object and location ontologies. For example, Door ⊑ MovableBarrier and Bedroom
⊑ SleepingArea.
Based on the hierarchy, we can measure the similarity between domain concepts [35]. The

approach works by finding the least common subsumer (LCS) of the two input concepts and
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Artifact

Article

Tableware

Crockery

Cup

Flatware

Plate

Structure

Movable
Barrier

Door

PhysicalEntity

: type of

Cooking
Utensil

Pan

House

Cooking
Area

Sleeping
Area

Toilet Bathroom

HygieneArea

LivingRoom Office

WorkingArea DiningArea
Entertaining

Area

Dining
Room

Kitchen

Bedroom

: type of

(a) Object ontologies extracted from WordNet (b) Location ontologies 

Fig. 3. An example of part of the object and location ontologies [39]. The object ontologies are extracted from
WordNet [24] where words are organised by their semantic relations in a hierarchical lexical system. The location
ontologies describe location concepts common in most of the home settings and their relationships in terms of
their functionality.

computing the path length from LCS up to the root node. LCS is the most specific concept that
both input concepts share as an ancestor.

Definition 3. Let c1 and c2 be two concepts organised in a hierarchy. The conceptual similarity
measure between them is: sim (c1,c2 )=

2∗N3
N1+N2+2∗N3

, where N1(N2) are the paths length between c1 (c2)
and the LCS node of c1 and c2, and N3 is the path length between LCS and the root.

For example, to calculate the similarity between Door and Cup, we locate their LCS as Artifact,
calculate three paths: (1) from Door to Artifact; i.e., 3; (2) from Cup to Artifact; i.e., 4; and (3)
from Artifact to the root PhysicalEntity; i.e., 1, and compute the similarity as 2∗1

3+4+2∗1 = 0.22.
4.1.2 Feature space remapping In the following, we define both feature and activity space remap-

ping based on these ontologies.
Definition 4. Let x⃗I = [xI ,1,xI ,2, ...,xI ,mI ] be amI -dimensional feature vector from a dataset I in
Definition 1. A semantics-based feature mapping function is defined as θI→I I (x⃗I ) = x⃗I I , denoted as
[xI I ,1,xI I ,2, ...,xI I ,mI I ], where ∀1 ≤ j ≤ mI I ,

xI I ,j=
∑
i∈Sj xi ∗sim (sI ,i ,sI I ,j )

|Sj |
,

S j is a collection of sensors in the feature space I that are similar to the sensor j in II.

Sj={sl |1≤l ≤mI ,sim (sI ,l ,sI I ,j )>ε },

sim (sI ,l ,sI I ,j )=(simL (sI ,l ,sI I ,j )+simO (sI ,l ,sI I ,j ))/2

where ε is the threshold to choose similar sensors, simL and simO are the similarity measure on
location and object concepts that the lth sensor in I and jth sensor in II, and wL and wO are the
weights on the location and object similarity; i.e.,wL +wO = 1.

Based on the above definition 4, a value x⃗I I ,j in a converted instance x⃗I I ∈ χI I is the weighted
average of the ratio of all the similar sensors in the source feature space χI to the jth sensor in
χI I and the weight is their sensor similarity. That is, we try to estimate the ratio of the jth sensor
reporting events by looking at the probabilities of all of its similar sensors in the source dataset.

Figure 4 illustrates an example of the above process. Assume that there are two datasets I and I I ,
each having 3 and 2 sensors respectively, and their similarity scores have been calculated based
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on the similarity of their attached objects and deployed locations with both wO and wL as 0.51.
Given a current sensor feature x⃗I in the dataset I , we need to simulate a sensor feature x⃗I I in the
other dataset. First, for each sensor in I I , we need to identify similar sensors in I . Assume that the
similarity threshold is 0.5, according to the formula in Definition 4, we identify the similar sensor
sets S j (j = 1,2) for each sensor in the dataset I I as {sI ,1} and {sI ,3}. Then the probability on each
sensor is the averaged contribution from their similar sensors.

Fig. 4. An example of sensor feature space remapping

4.1.3 Activity label space remapping Within the semantic model, we can also remap activity
label space. Even though each dataset can be partially labelled, we assume that the designer and
developer of each smart home has pre-defined a collection of activities of interest. Each activity
can be described with a collection of location concepts where a user often performs this activity
and with a collection of object concepts which this activity often involves [39]. Then the similarity
between any two activities is weighted similarity between their corresponding location and object
concepts.

Definition 5. Given an activity yI ,i in the label space YI , then a semantics-based label space
remapping function is defined as ϑI→I I (yI ,i ) = yI I ,j = arдmax sim(yI ,i ,yI I ,j ).
GivenyI ,i maps to a collection of location concepts Li indicating where the activity can be performed
and object concepts Oi indicating what everyday objects might be involved in this activity, and
similarly yI I ,j maps to a collection of location concepts Lj and object concepts O j ,

sim (yI ,i ,yI I ,j )=
∑
C∈{L,O } ωC×simC (Ci ,Cj ) and simC (Ci ,Cj )=

∑
ci ∈Ci ,cj ∈Cj simC (ci ,cj )

|Ci |×|Cj |
.

4.2 Cluster labelling
A classic approach of dealing with a small amount of training data is leveraging unlabelled data.
That is, for each dataset, we train a classifier on its labelled data and then use it to iteratively
infer the labels on its unlabelled examples for T rounds or until the algorithm converges. For
each iteration, we select the top k most confident examples to expand the labelled data pool and
iteratively update the classifier.
However, it is difficult to initialise a robust classifier with too little training data. For example,

there are two extracted sensor features, on which the main activated sensors are ‘stove’ and
‘microwave’ respectively. Even though these two features are similar, a classifier trained on the
observed feature (i.e., ‘stove’) will not be able to recognise the new feature (i.e., ‘microwave’). Thus
our first task is to expand the training set on each dataset to label all the unlabelled instances that
are similar to the labelled instances. This will allow us to build a more robust classifier to recognise
as many already-labelled activities as possible.

1The location and object weight wO and wL can be defined differently in different environments and sensor deployments.
Here we consider their contribution to sensor similarity is equal. In our experiments, we have not observed the significant
impact of different weight settings on the accuracy of XLearn. The results are reported in the supplementary file: https:
//drive.google.com/drive/folders/1tQkB0ERk74sTmFi5aNkdCRcDidqEC67P.
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To enable semantic clustering, we define a semantic cosine based on the soft cosine distance
metric but using the semantics of Definition 4:

semantic_cosine (ai ,bj )=
∑N
i,j si,j ai bj√∑N

i,j si,j ai aj

√∑N
i,j si,j bi bj

, (1)

where a and b are two sensor feature vectors, and si,j are the similarity between the ith and jth
sensor in Definition 4.
With the semantic cosine as the distance metric, we cluster the whole dataset into different

groups and then perform label expansion in each of the subsets. This process has been illustrated in
Algorithm 1 and 2. For each cluster, we collect the activity labels on its data points. If a cluster has
no label, then we leave it for the ensemble labelling stage. If there exists one label within a cluster,
then we spread the same label to all the unlabelled instances in that cluster under the assumption
that the same activity will normally trigger similar sets of sensors and result in instances whose
distance are close. Otherwise, we split this set further into multiple clusters, until all the clusters
have zero or one label, or indivisibly reach the minimum size of 2.
ALGORITHM 1: label_expansion: expanding labels to semantically similar instances
input :A dataset D – a collection of instances, part of which are labelled with activity labels
Result: LC – a collection of clusters whose instances have been labelled
Result: UC – the remaining unlabelled clusters
LC ← ∅;
UC ← ∅;
C ← semantic_cluster(D);
foreach c ∈ C do

split_and_label(c , LC, UC);
end

ALGORITHM 2: split_and_label: splitting a cluster and labelling its instances
input :c – a cluster of instances that might or might not be labelled
input :LC – a collection of clusters whose instances have been labelled
input :UC – the remaining collection of unlabelled clusters
// collect unique activity labels for a given cluster c ;
L← collect_unique_labels(c );
if |L | == 0 then

UC ← UC ∪ {c }
end
else if |L | == 1 then

// label all the instances within the group c with the same label in L;
label(c , L);
LC ← LC ∪ {c }

end
else if |L | > 1 and |д | > size_min then

// If there exists more than one label in this cluster, then we need to split the cluster further;
C′ ← semantic_cluster(c );
foreach c ’ ∈ C′ do

split_and_Label(c ’, LC, UC);
end

end

4.3 Ensemble Learning
After the above cluster labelling process, we build a base classifier on the expanded training set
on each dataset to recognise the existing activity labels. Ensemble learning here is to infer the
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most likely activity label for the remaining unlabelled instances in each dataset by integrating the
inferred labels from all the available datasets. To do so, an intuitive way is an ensemble classifier
that aggregates the inference results from each dataset. There exist different types of ensembles [18]
and here we opt for a stacking ensemble for the following reasons. Even though we have expanded
the training set, a base classifier on each dataset can still be weak and their inference results are
strongly biased towards the activity labels occurring in the training set. For example in the extreme
case where there is only one type of activities being labelled in the training set, a Random Forest
classifier will always infer that activity and the posterior probability on that activity will be 1.0.
Thus the simple ensemble classifiers like majority voting will not work well (or at all). To account
for the weakness of the base classifiers, we will consider the notion of reliability of classifiers,
which has often been used in the fusion process [21].

Modal accuracy is one aspect of the reliability of a classifier, which is often determined by the
overall classification accuracies [20]. However, overall accuracies are indiscriminate on different
misclassification cases [21]. Instead we estimate the reliability usingmacro F1 scores on the training
set, that is, a balanced precision and recall on each activity class. This score indicates how well the
classifier infers membership of each class, and it will also discount the high posterior probability of
a class that dominates the training set.
Another aspect of the reliability of a classifier is the distance to prototypes, which measures the

distance between a current instance and a prototype; i.e., a representative pattern of a class. The
intuition is that the closer is the instance to a prototype, the more likely the instance belongs to the
same class as the prototype. Here, we define a prototype as each labelled cluster. For each activity
class, we find the cluster that is closest to a given instance x⃗ and record its distance and size. The
size can suggest how reliable the cluster is. The distance is calculated as follows:

dist (x⃗,a)=min (dist (x⃗,ci )),1≤i≤na , and dist (x⃗,ci )=avд (dist (x⃗,x⃗ ′)),∀x⃗ ′∈ci

where na is the number of clusters that are labelled with an activity a, and x⃗ ′ is any example in
the ith cluster ci . In the end, for an instance x⃗ we will generate a meta feature vector F , which
is defined as F ={prj (x⃗ ) | |accj | |dist_szj (x⃗ ) |1≤j≤ND }, where (1) prj – posterior probability, indicating how
likely an instance belongs to each activity from the jth dataset’s base classifier; (2) accj – modal
accuracy, indicating the accuracy of the jth base classifier at inferring activities on the training set;
and (3) dist_szj – distance and size of the closest cluster in each activity class from the jth dataset.
To combine these meta features, we use a stacking ensemble to learn the correlations between

these features and an activity label, which can be simply phrased as: y⃗ = F T ω⃗, where ω⃗ is the
learnt weight vector on the generated features and y⃗ is the posterior probability on each activity
category.
To build a stacking ensemble, we will gather all the labelled instances from each dataset and

generate the above features using Algorithm 3. Thus, we collect a new training set DR ∈ ℜm×n

for the stacking ensemble, wherem = 4 ×
∑ND

i=1 N
i
c , where N i

c is the number of activity classes on
the ith dataset, and n =

∑ND
i=1 N

i
L
, where N i

L
is the number of labelled instances in the ith dataset.

The activity space of the ensemble is the union of the activity labels from all the datasets. The
ensemble will aim to learn on the meta features, and balance the posterior probabilities and the
modal accuracies of each base classifier and the distance to their closest cluster in each activity
category between all the datasets.

Once the ensemble is built, we will perform online learning and update on the ensemble, which is
described in Algorithm 5. For each unlabelled instance x⃗ that is randomly sampled from unlabelled
clusters in each dataset, we will generate the meta feature and derive the activity label with the
likelihood from the ensemble; that is, ymax← argmax

y∈Y1∪...∪YND

pre (a = y |x⃗ ).
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ALGORITHM 3: generate_meta_feature: generate features for a stacking ensemble
input : x⃗i – an instance from the ithe dataset
input :L = {LC j |1 ≤ j ≤ ND } – a collection of labelled clusters from each dataset
input :H = {hj |1 ≤ j ≤ ND } – a collection of base classifier models built on the labelled clusters in each dataset
// generate meta features for an ensemble;
F = null ;
for j = 1, ..., ND do

if i , j then
//remap x⃗i from ith to jth feature space;
x⃗ j = θi→j (x⃗i )

end
//use hj to classify x⃗ j and get the probability distribution;
prj = hj (x⃗ j );
//get the current model accuracy of hj ;
accj =model_accuracy (hj );
// for each activity type a, find the cluster that is closest to x⃗ j and collect its size
(dj , sj ) = closest_distance (x⃗ j , LC j );
F = concatenate (F , (prj , accj , dj , sj ));

end
return F

ALGORITHM 4: ensemble_builder: build a stacking ensemble
input :L ={LCi |1 ≤ i ≤ ND } – a collection of labelled clusters from each dataset
// generate features for an ensemble;
F S = ∅;
for i = 1, ..., ND do

foreach (x⃗i , y ) ∈ unf old (Di ) do
F S = F S ∪ {(generate_meta_feature(x⃗i ), y ) };

end
end
//train an ensemble on the meta feature;
h′ = train (F S)

We rank the instances according to their likelihood, and select the top k instances to annotate.
Following Definition 5, we will remap the predicted labels for these selected instances to the labels
in their own activity space. For example in Figure 1, if an instance from House A is predicted as
‘W.meal preparation’ – a label from House W, this label will be remapped to House A as ‘A.prepare
breakfast’. Then we use these instances to update the unlabelled clusters by spreading their labels
onto the other examples in the same cluster, move these labelled clusters fromUC to LC, and
update each base learner and the ensemble with newly-labelled instances. We iterate the above
process until all the instances are labelled.

5 EXPERIMENTS AND EVALUATION METHODOLOGY
The main objective of the evaluation is to assess whether XLearn can achieve accurate activity
recognition with limited training data. More specifically, we want to address the following questions:
(1) how much training data are needed to achieve reasonably good accuracies? We start with the

smallest training example 2, and gradually increase it up to 100 with a step size 2. We will
monitor the increase of recognition accuracies over the increase of training data.
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ALGORITHM 5: ensemble_update: online learning of a stacking ensemble
input :L = {LCi |1 ≤ i ≤ ND } – a collection of labelled clusters from each dataset
input :U = {UCi |1 ≤ i ≤ ND } – a collection of labelled clusters from each dataset
input :H = {hi |1 ≤ i ≤ ND } – a collection of base classifier models built on the labelled clusters in each dataset
input :h′ – a trained ensemble classifier
while ∃UCi NOT empty do

RS = ∅;
for i = 1, ..., ND do

foreach x⃗i ∈ random_sample (unf old (UCi )) do
F = generate_meta_feature(x⃗i );
// use h′ to infer the most likely activity label a and its probability pr ;
(x⃗i , a, pr ) = h′(F );
RS = RS ∪ {(x⃗i , a, pr ) }

end
end
//rank the result RS by the inferred probabilities in an descending order and select the top k instances to update the
corresponding base learners and ensemble learner
Tk = select(rank(RS ), k );
//use Definition 5 to remap the predicted labels of instances in Tk to the closest labels in each of their own datasets
remap_labels(Tk );
for i = 1, ..., ND do

//update the labelled and unlabelled clusters in each dataset
add(LCi ,Tk );
remove(UCi ,Tk );
// update the base learner hi with the instances in the Tk that belong to the ith dataset
hi = update(hi ,Tk );
update_model_accuracy(hi );

end
h′ = update(h′,Tk )

end

(2) Will it perform better than the state-of-the-art approaches? We compare the XLearn algorithm
with baseline classification, cotraining and active learning algorithms.

(3) To what extent of heterogeneity can the XLearn approach perform robust cross learning? We
will compare the performance of different combinations of datasets in XLearn and uncover
how heterogeneity impacts the effectiveness of cross learning. This will serve as a guidance
for selecting the most appropriate datasets to perform cross learning.

(4) Will XLearn enable more targeted annotations so as to reduce the annotation to an extreme while
still achieving high accuracies? We will demonstrate a selection strategy to choose examples
for annotation so that the performance of XLearn can be optimised. This will help to design a
more practical way to using XLearn.

Datasets. We evaluate XLearn on four publicly available, real-world datasets that capture typical
activities and that, more importantly represent common types of smart home datasets in terms of
the number of sensors and residents, different spatial layouts, and the degree of inherent noise. We
deliberately select these datasets that exhibit different level of heterogeneity, which can provide us
a comprehensive view of the effectiveness of the proposed technique.
The first three datasets2 (denoted as House A, B, and C respectively in the following) are

collected by the University of Amsterdam from three real-world, single-resident houses which
were instrumented with wireless sensor networks [17]. These three datasets record the same set

2https://sites.google.com/site/tim0306/datasets
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of 7 activities, including leaving the house, preparing breakfast or dinner, and sleeping. These
three houses are deployed with only binary sensors, whose reading indicates whether or not a
sensor fires. More specifically, the House A dataset consists of 14 state-change sensors attached to
attached to household objects like doors, cupboards, and toilet flushes, while the other two datasets
contain more than 20 sensors, including reed switches to measure whether doors and cupboards
are open or closed; pressure mats to measure sitting on a couch or lying in bed; mercury contacts to
detect the movement of objects (e.g., drawers); passive infrared to detect motion in a specific area;
float sensors to measure the flush of toilet. Even though the activity sets are the same from these
datasets, they are recorded from three different real-world, residential settings that have different
spatial layouts and host different subjects.
The fourth dataset3 (denoted as House W) is the interleaved activities of daily living from

the CASAS smart home project [7]. This dataset was collected in a smart apartment testbed
hosted at Washington State University during the 2009-2010 academic year. The apartment was
instrumented with various types of sensors to detect user movements, interaction with selected
items, the states of doors and lights, consumption of water and electrical energy, and temperature,
resulting in 2.8M sensor events. The apartment housed two people, R1 and R2, who performed
their normal daily activities during the collection period, including working, sleeping, or making
meals. Our experiments consider the following 13 activities: R1_Sleep, R1_Work, R1_Wander in
room, R2_Sleep, R2_Work, R2_Wander in room, Meal_Preparation, Watch_TV, Personal_Hygiene,
Bathing, Leave/Enter_home, Housekeeping, and Eating. That is, we havemerged some of the activity
labels in the common areas together; for example, instances that are labelled R1_Meal_Preparation
and R2_Meal_Preparation are changed to a common label Meal_Preparation. The reason is that
XLearn itself is not able to distinguish the users when they perform the same type of activities in
a common area. This can be done after plugging another machine learning technique [10] after
XLearn that is dedicated to learn fine difference between users. Figure 5 presents the similarity
between activities in House W and the other three houses, which is calculated from Definition 4.
As we can see, even with the simplification on House W, there exists relative large heterogeneity in
these houses’ activity sets. There is no clear one-to-one mapping between the activities from these
two datasets, and some activity like Sleep in House A can equally map to 6 activities in House W.
All these issues make sharing and learning the labels on each dataset difficult.

Fig. 5. Activity similarity between House W (in red) and Houses A, B and C (in blue)
It is worth stressing that, while Houses A, B, and C are from single-occupancy houses, House W

is from a multi-occupancy dwelling. These differences change the interleaving of basic events that
can possibly be observed: two events close in time but distance in space are possible in House W,
but are less likely (or impossible) in the other houses. If therefore we can transfer learning between
these two sets of environments, it will suggest that it is possible to learn activities independently,
in a more controlled setting, and then re-use the classifiers in a more realistic, uncontrolled setting.

3http://casas.wsu.edu/datasets/
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Data Preprocessing. For all the datasets, we first remove the sensor data that are not annotated
with an activity label, as XLearn aims to transfer meaningful activity models and does not deal with
miscellaneous activities; i.e., activities out of interest. After filtering, we segment sensor events into
a 60-second interval [16] and extract sensor features as defined in Definition 1. In the end, the total
number of instances for House A, B, C, and W are 505, 497, 474, and 70053.
Methodology. The experiment setup is described as follows. The training data consists of n × ND
labelled examples where n instances are are randomly selected from each of the ND datasets and
the test data will be all the remaining examples in each dataset. For example, if there are 3 datasets
containing of 100, 200 and 300 examples respectively, given n = 4, then the training set will be
composed of 12 labelled examples from these 3 datasets and the test set will include 588 examples
altogether. In the prediction process, XLearn assigns the most confident label to each test example,
and the label can come from a dataset different from the test example. We iterate n from 2 to 100
with a step size of 2. For each n, we run 100 iterations to balance the differences in randomly
generated annotated data. We choose the number over the percentage for training data because we
would like to examine the extreme situations where the training examples are as small as possible.
When the sizes of the datasets are imbalanced – i.e., when one dataset contains millions of sensor
events while another only contains thousands – it is hard to choose the smallest percentage.
Metrics.We examine the following accuracy metrics: (1)Overall accuracyO , which measures the
ratio of the learnt labels being the same as the true labels and is a commonly-used metric for activity
recognition. However, the datasets of use have imbalanced activity distributions, so the overall
accuracy can be misleading when the classifier that is optimised for this metric will always select
the majority class while ignoring the minority class. (2) Macro F1 score F1, which is averaged
F1 scores across all the activity classes and often used in the face of skewed class distribution. (3)
Similarity score S , which measures how close a learnt label is to a true label. In XLearn, the learnt
labels can come from other datasets which might not share the same collection of activity labels.
We have used Definition 5 to remap an inferred activity label to the most similar activity to the
corresponding dataset, but the exact match can be difficult.
Parameter and Algorithm Configuration.

Clustering algorithms.We have employed the two state-of-the-art clustering algorithms: DBSCAN
and KMEANS++. There is no real significance to these choices: a novel clustering algorithm or a
sophisticated distance metric is not the main objective or contribution of this work. We assume
that a more effective clustering algorithm could lead to a better performance.
To determine the optimal number of clusters, we use the F-test on the KMEANS++ algorithm;

we set k from the number of activity labels that have occurred in the training data to
√
(n) (n being

number of patterns in a cluster), and for each k we calculate the percentage of explained variance,
which is the ratio of the between-cluster variance over the overall variance. An abrupt change in
the percentage of explained variance suggests the corresponding k is an optimal solution.
We use the mutual information validation technique on the DBSCAN algorithm, based on

information entropy and measures how likely it is that we reduce the uncertainty about the
clustering C of a random element when knowing its cluster in another clustering C′ of the same set
of elements. We start with the mean distance between any two sensor features within the training
set. We then increase it by a standard deviation of distance measures within each activity. For each
setting, we will run the DBSCAN algorithm, and compute the mutual information score until we
find the optimal result.
Classification. To choose a base learner for each dataset, we want a simple classifier with good

prediction performance for a small number of training data. To find such a classifier we have
explored a collection of the state-of-the-art classification algorithms: Logistic Regression, Naïve
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Bayes, Random Forest, J48 Decision Tree, Support Vector Machine, and Neural Networks. None of
them have performed significantly better than the others. In the end, we use Naïve Bayes for the
base learner algorithm for two reasons: the technique takes the least time to train, and generates
quite small models. For example, on the House W dataset trained with 8 training examples, the
Naïve Bayes classifier is about 70K, while the random forest is about 100MB. The small size of the
classifier can make it easier to deploy on resource-constrained devices. Also the XLearn algorithm
is mainly used at the early stage of the system to quickly acquire labels from other datasets. As the
labelled examples accumulate, we can always replace the simple classifier with a more powerful
one – although it is not clear this would result in better final classification.

Often an ensemble classifier is a logistic regressor, and we have compared results with different
combinations of the above classifiers. Again there is no significant difference in performance in
these combinations.
Ensemble labelling. In Algorithm 5, we randomly sample a subset of unlabelled clusters for

updating. The sampling rate is set up as 50%. In XLearn we will need to choose top k examples
for the next training iteration. We have experimented with different numbers from 5 up to 100
with a step size 5. The smaller k , the better the accuracies. However, a smaller k generates a lot
of iterations and takes long time to converge. For the sake of performance, we choose k to be 20,
which can achieve good accuracies with acceptable run times.

6 RESULTS AND DISCUSSION
In this section, we will present and discuss evaluation results.

6.1 Cluster labelling
Figure 6 presents the ratio and F1 scores of the cluster labelling process with the DBSCAN and
KMEANS++ algorithms on all the datasets. We consider the label expansion process is effective in
that it achieves high accuracies.

The theoretically best F1 we can achieve is F1best = min (Nc ,Nct )
Nc

, where Nc is the total number of
activity classes in a dataset, and Nct is the number of activity classes being labelled in the training
data. It assumes that on each class i , F1i achieves 100% of precision and recall. In the extreme
situation, when there exist only 2 training instances from 2 different activity classes, then the F1best
will be 28% on House A, B, and C with Nc = 7, and 15% on House W with Nc = 13. As we can see
in Figure 6, the F1 scores are above 20% on the House A, B, and C, and above 10% on the house
W. Therefore, we conclude the cluster labelling has successfully recognised observed activities on
each dataset. The results also show that there is no significant difference between DBSCAN and
KMEANS++ in labelling accuracies. For the sake of performance, in the following experiments, we
will use only with the KMEANS++ algorithm that runs much faster than DBSCAN.

6.1.1 Effectiveness of semantic cosine. To demonstrate the effectiveness of the semantic cosine
metric, we compare the ratio and F1 scores of using the semantic cosine and cosine as the distance
metric in the KMEANS++ algorithm. Results in Figure 7 show that semantics cosine outperforms
cosine in the label expansion process. These distance metrics achieve similar labelling ratios,
suggesting that both have a similar capacity of clustering close instances together. However,
semantic cosine has achieved higher accuracies than cosine, indicating that the knowledge on
sensor similarity does help to group sensor features that might belong to the same activities. With
the increase in training data, the improvement in accuracies is becoming more and more significant.
The wider coverage of sensor features, the more effective of finding the similar features.

6.1.2 Effectiveness of expanded training set. To evaluate the effectiveness of the expanded training
set, we compare the recognition accuracies by applying Naïve Bayes on both the original and
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Fig. 6. Comparison of Cluster-labelling performance with KMEANS and DBSCAN on the four datasets. The
label expansion process can effectively label semantically similar examples.

House A - Semantic Cosine vs. Cosine
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Fig. 7. Comparison of recognition accuracies with the cosine and semantic cosine from the label expansion
process. Semantic cosine can more accurately identify similar sensor features.

expanded training set. The accuracies are measured in O and F1 and are presented in Figure 8. It
shows that with the expanded training set, the classifier can achieve better accuracies in all datasets.
We can see much better improvement for the datasets with a more diverse set of sensors, especially
the House W. The reason is that when the original training set is unable to capture all the possible
combinations of sensor activations for a certain activity, semantic clustering helps to expand the
training set with the instances that include semantically similar sensors.

6.2 Ensemble Labelling
Figure 9 presents the overall accuracies and F1 scores of XLearn, baseline learning, cotraining, and
active learning classifiers on each dataset. Here baseline learning means that we train Naïve Bayes
with the original training set and test on the remaining data. With active learning we use Naïve
Bayes with the information entropy uncertainty sampling strategy. We implement the cotraining
algorithm from the original paper [3]; that is, we order the test data with their prediction confidence
in a descending order, choose a top-p percentage of the test data to update the classifier, and iterate
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Fig. 8. Comparison of recognition accuracies on the Original and Expanded training sets from the label
expansion process. The expanded training set can enhance the activity recognition accuracies than the
originally collected training set.

the process until all the test data are labelled. We run p from 10% to 50% with a step 10%. Because
the results are similar, we only report the results on 10% and leave the rest accessible online4.
The results in Figure 9 show that base classifiers and cotraining perform similarly and worst

among all. The main reason is that both approaches suffer from a very small number of training
data. Active learning produces higher overall accuracies and F1 scores when the number of training
data is small, as it allows to acquire labels on uncertain examples from users. We report the query
ratio – the percentage of test examples is queried to gain the labels. As we can see, when the number
of training data is only 2, the query ratio can be between 10% and over 20%, which means 50 or
100 examples being queried, given that each of the House A, B, and C datasets contains about 500
examples in total. This makes the actual amount of training data is much higher than the training
data that are used in the other two algorithms. This also explains both O and F1 of active learning
do not change much with the increase of training data.
The other reason that active learning performs better at the early stage is that it assumes the

always availability of true labels for each user’s own sensor data. On the one hand, this allows
annotating sensor data for individual users and thus improves their own activity recognition model.
On the other hand, it has better coverage of the activity space than our proposed methods in that
the labels that we share in XLearn are constrained by their availability in the other datasets’ training
data. For example, if all the datasets only contain ‘having a meal’ and ‘sleeping’ activities altogether,
then our techniques will not be able to detect any activities other than these two, but the active
learning technique will still be able to learn the others such as ‘taking shower’ or ‘having drink’
because of the always availability assumption.
As presented in Figure 9, after a certain number of training data XLearn performs better than

active learning, especially on the House B, C and W datasets. After a careful comparison of the
results, we identify two reasons. First of all, all these three datasets are more noisy than House A,
4All the XLearn results can be accessed at https://drive.google.com/open?id=1tQkB0ERk74sTmFi5aNkdCRcDidqEC67P.
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Fig. 9. XLearn outperforms baseline, cotraining and active learning algorithms

which makes it difficult to estimate proper uncertainty threshold and thus lead to ineffective active
learning. Secondly, XLearn has a more complex learning workflow – a stacked ensemble taking
input from base classifiers and clusters, which leads to higher accuracy than the active learning
approach that only uses the base classifier.
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XLearn achieves better F1 scores than both baseline and active learning classifiers. This suggests
that sharing across different sets helps increase the number of activity classes; for example, we can
acquire unobserved activity labels from the other datasets. It is less likely that all the datasets are
only annotated by the same set of activities.

6.3 Impact of Heterogeneity
As we claim XLearn works on heterogeneous datasets, we deliberately select these diverse datasets
to demonstrate to what extent of heterogeneity datasets can be to achieve effective sharing. Here
we study the impact of different combinations of datasets on XLearn’s performance, which will
shed light on the sharing strategies – how to select most appropriate datasets to share, if there
exists a large number of datasets. Figure 10 presents XLearn’s accuracies O , F1, and S on House A
and W with four different combinations. On House A in Figure 10, when the amount of training
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Fig. 10. Impact of heterogeneity on the effectiveness of XLearn. We compare the accuracy of House A and House
W when cross learning on different sets of datasets.

data is small, the more data being available (e.g., ABC vs. AB) and the closer the datasets (e.g., AB
vs. AW), the better accuracy is achieved. On House W, House B shares more similarity with House
W given that the number of sensors in House B is larger, so we can observe higher accuracy on
House W when House B is involved. When the training data accumulates, the difference between
the combinations gets smaller, as each dataset will start using their own labels, which demonstrates
XLearn’s ability to preserve activity models for individuals to prevent negative transfer. We have
experimented all the other different combinations of datasets to further evaluate the impact of
heterogeneity on the effectiveness of transfer learning, and the trend is similar.
The other observation is higher similarity scores of learnt activity labels with true labels, com-

pared to overall and class accuracies. Looking at the inference results, we find that this mainly
happens with the activities share a similar collection of objects and locations; e.g., ‘breakfast’,
‘dinner’, or ‘meal preparation’. As we are not using temporal features in the current experiments,
these activities are difficult to select with the coarse-grained activity similarity in Definition 5.
For example, if a learnt label on an instance on House A is ‘meal preparation’ from House W,
then remapping this activity label to ‘breakfast’, ’dinner’, and ‘drink’ can be less accurate. The
reasons that we do not use temporal features are two folds. Firstly, in this work we want to focus
on sensor signatures to understand basic sensor and activity mapping. Secondly, temporal features
can be specific to individuals or the way of annotating activities, which we consider can be an extra
application-level rule on top of XLearn.
Compared to our previous work SLearn [37], the sharing data algorithm with Naive Bayes on

SLearn outperforms XLearn when the training samples are really small; i.e., when 2 or 4 labelled
examples are selected from House A, B and C, SLearn with NB on House A can achieve the overall
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accuracy of 68% and the macro F1-score of 50%. The reason is that gathering all the training
data together will improve the effectiveness of learning, while building a non-trivial stacked
ensemble will consume more training data than a simple classifier like Naive Bayes. However,
XLearn achieves much better accuracies when the training data contains slightly more examples;
i.e., 8. XLearn converges much faster than the sharing classifier algorithm on SLearn, and can enable
customised learning on each dataset compared to the sharing data algorithm on SLearn.

6.4 Strategic selection of examples to label
All the above examples are based on randomly sampled examples from the datasets for annotation.
What if we can select examples to label? Would such selection improve the recognition accuracies?
Driven by these questions, we run another set of experiments. For a given number of training data
n, we rank the clusters based on their size in a descending order and select the centroid examples
of the top n clusters to label. The intuition is to select most representative examples to label from
each dataset, which is one common strategy in active learning to select informative instances
to annotate. As we can see in Figure 11, we can achieve much improved accuracies across all
the datasets. The overall and class accuracies can be as high as nearly 70% and 40% when only 2
examples from each dataset are selected for training. This is largely because selecting the most
frequent and representative examples from each dataset collectively increase the performance.

Select examples to label
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Fig. 11. Overall accuracies and F1 scores with selected examples to label. With XLearn, we can effectively
target examples to annotate, leading to much higher recognition accuracies than random annotations. This
will help to further reduce the amount of training data.

6.5 Limitations and future work
The current work opens a new research direction towards a sustainable and scalable activity
recognition; that is, how to address the annotation challenge by taking advantage of the scalability
– leveraging data from a large number of users. The current solution is only a starting point and it
can be improved in the following aspects.

6.5.1 Selection of datasets to share. If there exist a number of datasets, we can select the datasets
whichwill not only lead to higher recognition accuracies but also reduce the computation complexity.
Those we select can be based on the similarity between their sensors and the similarity between
their activities. Another direction that can usefully be pursued is to select users who have similar
activity routine as the target users. These routine can be either learnt through their reported
activities, or through the other information like age, occupation, and family structure.

6.5.2 Strategic selection of examples. We have demonstrated the effectiveness of selecting ex-
amples to label on XLearn’s performance. We only experiment with the most intuitive solution –
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selecting the most representative activities. However, the most representative activities selected
from each dataset can be similar; i.e, the majority classes. In the future, we can take into account
of diversity: that is, how to cover a set of activity classes as large as possible. For example, we
can select future examples that are different from the already-labelled examples in terms of their
semantic difference and temporal features. Promoting diversity in selection of examples can further
reduce the number of training data acquired from human operators.

6.5.3 Knowledge engineering. The generality and feasibility of the smart home ontologies have
been demonstrated across different smart home environments without any modifications [39]. To
perform feature space remapping, we need to take the sensor deployment file to map sensors to their
corresponding location and object concepts. This limits the application of this knowledge-driven
approach to a certain extent in that our approach works better in a setting where sensors are more
or less fixed deployed and the semantic mapping between a source and target environment is
achievable, rather than an open environment where each sensor is mobile and can join and leave
the environment at any time. For example, when sensors are removed or moved, or a new sensor is
introduced, we will need to remap sensors and this effort is unavoidable in our current design.
Also to enable activity space remapping, we need to take a collection of pre-defined activities

from each dataset to compute the activity similarity matrix. With a general methodology of human
activity recognition [40], the system designer pre-defines a closed set of activities of interest, which
are often the requirements from applications such as personal healthcare. Then driven by the
activities, the designer will select a range of ambient and/or wearable sensors that can potentially
detect these activities. The designers will then start collecting sensor data for a short period of
time and annotate them with activity labels. With the annotated data, the developers will train a
computational model for activity recognition.

In XLearn, we take the pre-defined activity description from each dataset to prepare for activity
label remapping. What XLearn aims to achieve is to reduce the time and effort on annotating
sensor data with activity labels. The pre-defined activity collection can evolve over time; that is, the
system designers might add new activities to monitor. Then XLearn will take the new description
to update the models and share the activity across the other datasets. The activity label remapping
can incur extra knowledge engineering effort from the designers of smart home systems. However,
when different environments use different activity labels, there exists few techniques to easily build
mapping between them.

7 CONCLUSION
This paper proposes the XLearn algorithm to significantly reduce annotation burdens on individual
users by distributing that burden across multiple users. We have shown that such distribution
can result in more robust activity recognition by covering a diverse set of activities and activity
patterns. It can shorten the initialisation phase of an activity recognition system by working on the
labelled examples collected simultaneously across multiple users. In addition, the lighter burden of
annotation potentially supports long-term sustainable activity recognition that only requires users
to sporadically report their new activities over the deployment of an activity recognition system.
More specifically, XLearn:
• supports robust activity recognition that only requires limited number of training data (for
example with about 6 annotated examples from each dataset, we can achieve nearly 85% overall
accuracies and over 75% F1 scores);
• supports sustainable activity recognition in the sense that as long as each user can contribute a
few annotated examples over time, we can share and transfer learning across different users; and
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• is scalable in that it takes advantage of the large number of users: the more users contribute their
annotations, the better we can learn and the less annotations we expect from individuals.
With these very promising results, we can envision another way of performing activity recog-

nition: we can start recognition without the need for an explicit training period. When the sensors
are deployed, we can start collecting sensor data and users’ annotations over time at their own
pace. If one user has annotated a few examples of ‘preparing breakfast’ and the user in another
environment has annotated a few examples of ‘taking bath’, then XLearn can start recognising both
activities for both users. This will support long-term incremental activity recognition in that it can
accommodate new activities annotated by different users over time.
The current design of XLearn relies on the ontologies to map feature spaces from different

sensorised environments, which facilitates bridging their binary sensor feature space. To assess the
generality of the approach, we will adapt XLearn to the other types of sensor data. To do so, we
might need to replace the ontologies with other feature space remapping techniques.
Also XLearn mainly targets at meaningful activities; that is, the activities can be semantically

described. This leads to another limitation of XLearn in detecting miscellaneous or ‘other’ activities.
In the future, we will look into how to combine XLearn with other techniques, such as uncertainty
estimation strategies in active learning or new activity discovery [11], to recognise ‘other’ activities,
as the ones that cannot be confidently classified as any meaningful activity.
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