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ABSTRACT 
Field-based coordination is a very promising approach for a wide 
range of application scenarios in modern dynamic networks. To 
implement such an approach, one can rely on distributed tuples 
injected in a network and propagated to form a distributed data 
structure to be sensed by application agents. However, to gain the 
full benefits from such a coordination approach, it is important to 
enable the distributed tuples to preserve their structures despite 
the dynamics of the network. In this paper, we show how a variety 
of self-maintained distributed tuples for field-based coordination 
can be easily programmed in the TOTA middleware. Several 
examples clarify the approach, and performance data is presented 
to verify its effectiveness.    

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features; C.2.4 [Distributed Systems]: Distributed Applications. 

General Terms: Algorithms, Design 

Keywords: Field-based coordination, Distributed data 
structures, tuple spaces, dynamic networks, mobility. 

1. INTRODUCTION 
In the near future, computer-based systems will be embedded in 
all our everyday objects and in our everyday environments. These 
systems will be typically communication enabled, and capable of 
coordinating with each other in the context of complex mobile 
distributed applications. Such distributed applications will have to 
face an extreme dynamic scenario. “Agents” (we use this term 
generically to indicate the active components of a distributed 
application) can depart out of and arrive into the network at any 
time, and can roam across different environments. In addition, 
application’s agents will be likely to execute in dynamic, ever-
changing networks (e.g., MANETs, sensor networks, etc.). 
Coordinating agents’ activities in such dynamic networks with 
traditional models and infrastructures is not easy. It is of great 
importance to rely on models and middleware infrastructures 

explicitly designed to take care of all the issues implied in 
network dynamics.  
Among several possible definitions, coordination can also be 
generally defined as the agents’ fundamental capability to decide 
on their own actions in the context of their operational 
environment. So, the basic problem of coordination in dynamic 
network is: How can this fundamental capability be achieved 
when the context is dynamically changing? It is quite natural to 
see that the cornerstone of this problem is how to dynamically 
(i.e., at run-time) provide agents with an effective representation 
of their operational environment (simply context from now on). In 
particular such contextual information must be (i) simple and 
cheap to be obtained; (ii) expressive enough to facilitate the 
definition and the execution of the agents’ activities; (iii) 
continuously reflective the actual state of the context. 
With this regard, approaches based on the concept of field-based 
coordination [6] appear very suitable. In these approaches, the 
agents’ context is abstracted and described by means of abstract 
“fields” distributed in the network and expressing forces driving 
agents’ activities. Agents can locally perceive these fields and 
decide what to do on the basis of which fields they sense and their 
magnitudes. This field-based representation of the context is (i) 
simple and cheap to be obtained, since fields are spread in the 
environment and agents need only to perceive locally the fields in 
the area, (ii) expressive enough to facilitate the coordination 
activities, since agents need only to combine the perceived fields 
and be driven by them. Moreover, (iii) by letting fields to adapt 
and self-maintain their distributed shape to reflect changing 
environmental conditions, field-based coordination can be made 
robust and adaptive to the above mentioned environmental (e.g. 
network) dynamism. 
From the programmer point of view, the main task in this 
approach is to map specific coordination problems into suitable 
field-based representations. To this end, a programming model 
specifying how to build fields is required. The content of this 
paper is to present a programming model to program self-
maintained distributed tuples, implementing the concept of fields.  
The following of this paper is organized as follows: Section 2 
describes field-based coordination and specifies a middleware 
infrastructure suitable to support self-maintained tuples. Section 3 
details how to program distributed tuples. Section 4 presents 
performances and experiments. Section 5 discusses related works 
and Section 6 concludes. 

2. FIELD-BASED COORDINATION 
To realize the idea of field-based coordination we basically need: 
(i) to represent fields by means of suitable data structures; (ii) an 
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infrastructure holding and supporting these data structures. Given 
that, field-based coordination is centered on a few key concepts: 

1. The agents’ operational environment is represented by 
“field-like data structures”, spread by agents and/or by 
the infrastructure, diffused across the infrastructure, and 
locally sensed by agents; 

2. A coordination policy is realized by letting the agents to 
locally sense field data structures stored in the 
infrastructure and act driven by the local shape of these 
data structures; 

3. Both environment dynamics and agents’ actions may 
induce the field data structures to update (aka self-
maintain) their values. The new shape is automatically 
stored in the infrastructure, inducing a feedback cycle 
(point 2) that can be exploited to globally achieve a 
global and adaptive coordination pattern. 

2.1 Application Scenarios 
To clarify the ideas of field-based coordination and to show its 
applicability, let’s focus on some application scenarios.  
Field data structures, being spread in a spatially distributed 
environment, are naturally suited in modeling spatial information. 
For instance, a “shepherd” agent could spread in the network 
infrastructure a field whose value monotonically increases hop-
by-hop as it gets farther from it. Such field implicitly enables any 
other agent, from wherever in the network, of “sensing” the 
presence of the shepherd and its distance. Also, by sensing the 
local gradient of the field, each agent could also reach the 
shepherd by following the gradient downhill. Moreover, if fields 
are dynamically updated to reflect changes in the system, if the 
shepherd moves around in the network, its field would be 
automatically updated and any agent looking for the shepherd 
would automatically re-adapt its movement. Such an approach is 
very effective, since it can be trivially coded and adapts to a 
variety of circumstances (e.g. different networks, nodes’ failures) 
because the fields naturally adapt to the changing environment. 

The above is just a specific instance of the more general scenario 
of field-based motion coordination [4, 7]. In this scenario, the 
environment is typically described by means of fields attracting 
agents towards goals and repelling agents from unwanted areas 
(e.g. dangerous, crowded, already seen areas, etc. depending on 
the specific application scenario). Fields are modeled by means of 
distributed data structures having an id and a numeric value, 
representing the field’s magnitude. Moreover, fields are 
constantly updated to reflect the possibly changing system’s 
situation.  Agents simply follow the resulting gradient of these 
fields, and complex movements are achieved not because of the 
agents’ wills, but because of dynamic re-shaping of the fields.  

The behavior of social insects, e.g. ants, has recently inspired 
some algorithms used to control the activities of multi agent 
systems [1]. The key of these approaches is in emulating the way 
in which ants interact one another. They do so by means of 
pheromone signals they spread in the environment that will be 
perceived by other ants later on. These pheromone signals can be 
used to find food sources, or to coordinate efforts in moving some 
heavy object, etc. Pheromone signals can be easily modeled by 
means of fields driving agents activities [5]. Instead of being 
propagated by the infrastructure in all directions, pheromone-field 

data structures would be distributed by the agents themselves as 
they move across the network. These data structures would then 
be used as trials driving agents activities.    

Routing in Mobile Ad-Hoc Network (MANET) can be easily 
modeled as a coordination problem: agents (i.e. network nodes) 
need to cooperate forwarding each other messages to enable long-
range, multi-hop communication. The main principle underlying 
many routing algorithms is to build a distributed data structure 
(implemented by means of a set of distributed routing tables) 
suitable to provide route information. Specifically, this data 
structure creates paths in the network enabling agents to forward 
messages in the right direction. Although some routing protocols 
make the analogy with fields explicit [14], the idea at the basis of 
distributed routing data structure is the same as field based 
coordination: provide agents with a ready-to-use representation of 
the context (i.e. where the message should go next). 
Other than these scenarios, field-based coordination has been 
successfully applied to a variety of other coordination problems: 
modular robotics [15], amorphous computing [12], videogames 
[16], showing the general applicability of this idea.    

2.2 The TOTA Middleware 
The idea of fields can potentially be implemented on any 
distributed middleware providing basic support for data storing 
(to store field values), communication mechanisms (to propagate 
fields) and event-notification mechanisms (to update fields and 
notify agents about changes in fields’ values). However, we think 
that a set of distributed tuple spaces is a particularly fertile ground 
on which to build such idea. A set of logically bounded tuples, 
one in each of the distributed tuple spaces, naturally matches the 
idea of a field spread across the infrastructure. The content of a 
tuple would represent the field’s physical properties (e.g. 
magnitude) at a specific location. This is the approach taken by 
our reference middleware TOTA (Tuples On The Air) [8]. 
TOTA is composed by a peer-to-peer network of possibly mobile 
nodes, each running a local version of the TOTA middleware. 
Upon the distributed space identified by the dynamic network of 
TOTA nodes, each component is capable of locally storing tuples 
and letting them diffuse through the network. Tuples are injected 
in the system from a particular node, and spread hop-by-hop 
accordingly to a specified propagation rule. Specifically, in 
TOTA, fields have been realized by means of distributed tuples 
T=(C,P), characterized by a content C and a propagation rule P. 
The content C is an ordered set of typed fields representing the 
information carried on by the tuple. The propagation rule P 
determines how the tuple should be distributed and propagated in 
the network. This includes determining the “scope” of the tuple 
(i.e. the distance at which such tuple should be propagated and 
possibly the spatial direction of propagation) and how such 
propagation can be affected by the presence or the absence of 
other tuples in the system. In addition, the propagation rules can 
determine how tuple’s content should change while it is 
propagated. The spatial structures induced by tuples propagation 
must be maintained coherent despite network dynamism. For 
instance, when new nodes get in touch with a network, TOTA 
automatically checks the propagation rules of the already stored 
tuples and eventually propagates the tuples to the new nodes. 
Similarly, when the topology changes due to nodes’ movements, 



the distributed tuple structure automatically changes to reflect the 
new topology.  
The TOTA API is the main interface to access the middleware. It 
provides functionalities to let the application to inject and delete 
tuples in the local middleware (inject and delete methods), to 
read tuples both from the local tuple space and from the node’s 
one-hop neighborhood, either via pattern matching or via key-
access to a tuple’s unique id (read, readOneHop, keyrd, 
keyrdOneHop). Moreover, TOTA supports reactive behaviors by 
allowing agent to subscribe and unsubscribe to relevant events 
(e.g. the income of a new tuple) and to call-back agent’s react 
method whenever relevant event happen. Finally, two methods 
(store, move) allow tuples to be actually stored in the local tuple 
space or to migrate to neighboring nodes. These methods are not 
part of the main API and are used only within the tuples’ code.  

3. PROGRAMMING DISTRIBUTED 
TUPLES 
Given the API simplicity, the main task of the programmer is to 
program distributed tuples. To this end, it is important to have a 
flexible programming model suitable to specify those distributed 
data structures. Within the TOTA model, distributed tuples have 
been designed by means of objects: the object state models the 
tuple content, while the tuple’s propagation has been encoded by 
means of a specific propagate method. 

Following this schema, it has been defined an abstract class 
TotaTuple, that provides a general framework for tuples 
programming. This is: 

abstract class TotaTuple {
protected TotaInterface tota;
/* instance variables represent tuple fields */
…
/* this method inits the tuple, by giving a
reference to the current TOTA middleware */
public void init(TotaInterface tota) {
this.tota = tota;
}

/* this method codes the tuple actual actions */
public abstract void propagate();

/* this method enables the tuple to react to
happening events */
public void react(String reaction, String event)
{
}}

In TOTA, a tuple does not own a thread, but it is actually 
executed by the middleware (i.e. TOTA ENGINE) that runs the 
tuple’s init and propagate methods. The point to understand is 
that when the middleware has finished the execution of the tuple’s 
methods, the tuple (on that node) becomes a ‘dead’ data structure 
eventually stored in the local tuple space. Tuples, however, must 
remain active even after the middleware has run their code. This is 
fundamental because their self-maintenance algorithm – see 
Section 4 – must be executed whenever the right condition 
appears (e.g. when a new peer connects to the network, the tuples 
must propagate to this newly arrived peer). To this end, tuples can 
place subscriptions, to the TOTA EVENT INTERFACE as 
provided by the standard TOTA API. These subscriptions let the 
tuples remain ‘alive’, being able to execute upon triggering 
conditions. 

Although subclassing TotaTuple enables to create every kind of 
tuple, managing the intricacies of dealing with tuple propagation 
and maintenance can be tedious and error-prone. To this end, we 
developed a tuples’ class hierarchy (see Figure 1) from which the 
programmer can inherit to create custom tuples. Classes in the 
hierarchy take care of dealing with propagation and maintenance 
with regard to a vast number of circumstances. 

 TotaTuple 

MetricTuple 

StructureTuple 

SpaceTuple HopTuple MessageTuple 

 

Figure 1: the TOTA tuples’ class hierarchy 

3.1 StructureTuple 
The only child of the TotaTuple class is the class StructureTuple. 
This class is a template to create distributed data structures over 
the network. However, StructureTuples are still NOT self-
maintained. This means that if the topology of the network 
changes the tuple local values are left untouched.  

Such kind of tuples can be used in applications where the network 
infrastructure is relatively static and thus there is not the need of 
constantly update and maintain the tuple shape because of 
network dynamism. Consider a building properly instrumented to 
have computers in every room and corridor, wired accordingly to 
the building floor-plan. Each room could inject in the network a 
distributed tuple providing information on the room itself. The 
tuple could be propagated in the network, while increasing one 
integer value, in its content, hop-by-hop as it gets farther form the 
source. Provided with such tuples, agents in the building could 
easily get information and reach every room in the building by 
locally sensing the tuples present in the network.   

StructureTuple class inherits from TotaTuple and implements the 
superclass method propagate realizing a propagation schema that 
is at the core of the whole tuples’ hierarchy. The code is the 
following:  

public final void propagate() {
if(decideEnter()) {
boolean prop = decidePropagate();
changeTupleContent();
this.makeSubscriptions();
tota.store(this);
if(prop)
tota.move(this);

}}

The class StructureTuple implements the methods: decideEnter, 
decidePropagate, changeTupleContent and makeSubscriptions so 
as to realize a breadth first, expanding ring propagation. The 



result is simply a tuple that floods the network without changing 
its content. 

Specifically, when a tuple arrives in a node (either because it has 
been injected or it has been sent from a neighbor node) the 
middleware executes the decideEnter method that returns true if 
the tuple can enter the middleware and actually execute there, 
false otherwise. The standard implementation returns true if the 
middleware does not already contain that tuple. 

If the tuple is allowed to enter the method decidePropagate is run. 
It returns true if the tuple has to be further propagated, false 
otherwise. The standard implementation of this method returns 
always true, realizing a tuple’s that floods the network being 
recursively propagated to all the peers.  

The method changeTupleContent change the content of the tuple. 
The standard implementation of this method does not change the 
tuple content. 

The method makeSubscriptions allows the tuple to place 
subscriptions in the TOTA middleware. As stated before, in this 
way the tuple can react to events even when they happen after the 
tuple completes its execution. The standard implementation does 
not subscribe to anything. 

After that, the tuple is inserted in the TOTA tuple space by 
executing tota.store(this). Then, if the decidePropagate method 
returned true, the tuple is propagated to all the neighbors via the 
command tota.move(this).  

The tuple will eventually reach neighboring nodes, where it will 
be executed again. It is worth noting that the tuple will arrive in 
the neighboring nodes with the content changed by the last run of 
the changeTupleContent method. 

Programming a TOTA tuple to create a distributed data structure 
basically reduces at inheriting from the above class and 
overloading the four above methods to customize the tuple 
behavior. Here in the following, we present an example to show 
the expressiveness of the introduced framework. 

A TimeDecayingGradient tuple creates a tuple that floods the 
network in a breadth-first way and have an integer hop-counter 
that decays with time.  To code this tuple one has basically to: (i) 
place the integer hop counter in the object state, (ii) overload 
changeTupleContent, to let the tuple change the hop counter at 
every propagation step, (iii) overload decideEnter so as to allow 
the entrance not only if in the node there is not the tuple yet – as 
in the base implementation –, but also if there is the tuple with an 
higher hop-counter. This allows to enforce the breadth-first 
propagation assuring that the hop-counter truly reflects the hop 
distance from the source, (iv) to overload the makeSubscriptions 
method, to let the tuple subscribe to the peer internal clock 
associating the TIME reaction to every clock-tick, (v) finally, in 
the react method the reaction is treated by decreasing the integer 
value and deleting the tuple as soon as the value reaches zero. The 
code is the following:  
public class TimeDecayingGradient extends
StructureTuple {
public String name;
public int hop = 0;
public boolean decideEnter() {

super.decideEnter();
TimeDecayingGradient prev = (
TimeDecayingGradient)tota.keyrd(this);
return (prev == null ||

prev.hop > (this.hop + 1));
}
protected void changeTupleContent() {
super.changeTupleContent();
hop++;
}
public void makeSubscriptions() {
SensorTuple st = new SensorTuple("TIME","*");
tota.subscribe(st,

(ReactiveComponent)this,"TIME");
}
public void react(String reaction, String event) {
if(reaction.equalsIgnoreCase("TIME")) {
value = value -1;
if(value <= 0) {
tota.delete(this);
return;

}}}} 
The rest of the hierarchy of Figure 1 has been built in the same 
way. Programmers can inherit from the hierarchy by further 
customizing tuple’s propagation to match specific application’s 
requirements.  

3.2 MessageTuple 
MessageTuples are used to create messages that are not stored in 
the local tuple spaces, but just flow in the network as sorts of 
“events”. The basic structure is the same as StructureTuple, but a 
default subscription is in charge to erase the tuple after some time 
passed. Note that it would not be possible to simply remove the 
tota.store() method from the propagate method, because 
previously stored values are used to block the tuple backward 
propagation. To this end the tuples’ value can be deleted only 
after the tuple wave-front has passed. 
It is worth noting that setting the time before deletion is not 
trivial. If the tuple propagates in a breadth first manner, it can 
simply be set to the time the tuple wave-front takes to proceed 
two-hops away. However, if the tuple is propagated in a specific 
direction and the network topology is closed in a circular track 
this can lead to a message the continues circulating trough the 
network endlessly. Up to now, we did not considered this option 
and the time to delete has been set considering the breadth first 
case. 
Message tuples could be fruitfully applied as a communication 
mechanism. These tuples, in fact, could embed in their 
propagation rule the routing policy, without requiring routing 
agents to properly forward them. Moreover, it is easy to 
implement with these tuples several different communication 
patterns like unicast or multicast. Finally, by combining these 
tuples with StructureTuples, it is easy to realize publish-subscribe 
communication mechanism, in which StructureTuples creates 
subscriptions paths, to be followed by MessageTuples 
implementing events. 
With regard to these tuples, we do not present any examples since 
we may apply here the same consideration as made in 
StructureTuple case.  



3.3 HopTuple 
This kind of tuple inherits from StructureTuple to create 
distributed data structures that self-maintain its structure 
(supported by the TOTA middleware), to reflect changes in the 
network topology (see Figure 2).  
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Figure 2: HopTuples self-maintain despite topology changes. 
(a) the tuple on the gray node must change its value to reflect 
the new hop-distance from the source Px. (b) if the source 
detach all the tuples must auto-delete to reflect the new 
network situation.  

Basically this class overloads the empty makeSubscription method 
of the StructureTuple class, to let these tuples react to changes in 
the topology, by adjusting their values to always be consistent 
with the hop-distance form the source (i.e. an integer hop is 
maintained in the HopTuple class).  
For example, a FlockingTuple creates a data structure that has a 
minimum at a specific distance (RANGE) from the injecting 
agent. Such shape self-maintains to remain coherent despite agent 
movements. This is the code: 
public class FlockingTuple extends HopTuple {
private static final int RANGE = 3;
public int value = RANGE;
protected void changeTupleContent() {
super.changeTupleContent();
if(hop <= RANGE)
value --;
else
value ++;

}} 
These kinds of tuples are fundamental, since they enable field-
based coordination also in presence of dynamic networks. Motion 
coordination fields like the “shepherd” one presented in 2.1 will 
be realized with this tuples. The strength of these tuples, from a 
software engineering point of view, is that agents have simply to 
inject these tuples and then they can forget about them. All the 
burden in maintaining their shape is moved away form the agents. 
As another example, a DownhillTuple creates a tuple that follows 
the hop counter of a HopTuple tuple downhill. To code this tuple 
one has basically to overload the decideEnter method to let the 
tuple enter only if the value of the HopTuple in the node is less 
that the value on the node from which the tuple comes from. The 
code to realize this tuple is the following: 
public class DownhillTuple extends HopTuple {
public String name;
public int oldVal = 9999;
HopTuple trail;

public DownhillTuple() {

trail = new HopTuple();
trail.setContent("ciao");
}
public boolean decideEnter() {
super.decideEnter();
int val = getGradientValue();
if(val < oldVal) {
oldVal = val;
return true;
}
else
return false;

}
/* this method returns the minimum hop-value of
the HopTuple tuples matching the tuple to be
followed in the current node */
private int getGradientValue() {
Vector v = tota.read(trail);
int min = 9999;

for(int i=0; i<v.size(); i++) {
HopTuple gt =
(HopTuple)v.elementAt(i);
if(min > gt.hop)
min = gt.hop;

}
return min;
}} 

3.4 MetricTuple and SpaceTuple 
In some application, it is not possible to rely on a suitable network 
infrastructure on which to propagate distributed tuples. For 
example a group of three robots in need to coordinate their 
movements can create an ad-hoc network, but hop-based 
distributed tuples would be useless in such a network. In these 
scenarios it is fundamental to have tuples relying on spatial 
distances rather than hop-distances. The assumption here is to 
have location devices installed on nodes or suitable algorithms 
[12] able to spatially localize neighboring (directly accessible) 
nodes. In other words, each device must be able to create a local 
private coordinate system localizing neighborhood nodes. 
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Figure 3: (a) Metric and space tuples create a shared 
coordinate system, centered in the node that injected the tuple. 
This is done by having each node combining the coordinate its 
sees in its private coordinate frame with neighbors’ ones. (b) 
Maintenance of the tuple, requires only local updates, since 
node that does not move do not change their position with 
respect to the source (P3 is not affected by P2 movement, since 
its coordinates with respect of P1 do not change). 



The basic implementation of these tuples, from which to inherit, is 
a tuple that combines local coordinate systems, to create a shared 
coordinate system, with the center in the node that injected the 
tuple (see Figure 3(a)). Before explaining the difference between 
Metric and Space tuple, it is important to consider that these kinds 
of tuples are easier to be maintained that HopTuple. In fact, once 
these tuples have been propagated, if a node moves, only its tuple 
local value is affected, while all the others are left unchanged, 
since their position with respect to the source does not change. 
Specifically, a tuple on a node that moves can infer its new value 
by looking at the tuples stored in neighboring nodes and by 
considering their coordinates (see Figure 3(b)). 
What happens when the source moves? In theory all the tuple 
instances must be changed because the origin of the coordinate 
system has shifted. This is exactly what happens in MetricTuple 
where the origin of the coordinated system is anchored to the 
source node. This of course can lead to scalability problems, 
especially if the source is highly mobile. 
What happens if also the source updates its value looking at 
neighboring nodes? In this case, the origin of the coordinate 
system remains where the tuple has been first injected. This, even 
if no nodes are in that position! The coordinate system is 
maintained by the network, but not affected by it. This is the 
SpaceTuple implementation. 
The following example is a tuple that holds the spatial distance 
form the source (note that x,y,z are maintained in the MetricTuple 
and SpaceTuple classes). In the example, DistanceTuple inherits 
form MetricTuple and so it always represent the distance from the 
source. However, if the same tuple would have inherited from 
SpaceTuple, then it would have expressed the distance form the 
point in which it had been originally injected. 
public class DistanceTuple extends MetricTuple {
public int value = 0;
protected void changeTupleContent() {
super.changeTupleContent();
value = (int)Math.sqrt((x*x)+(y*y)+(z*z));

}} 

4. PERFORMANCES AND EXPERIMENTS 
The effectiveness of the field-based approach is of course related 
to costs and performances in managing fields. Specifically, when 
considering self-maintained distributed tuples, some fundamental 
issues arise: what is the cost of propagating a tuple? How much 
burden self-maintenance adds to the system? Is it scalable? Is the 
process fast enough? 
While the cost of propagating a tuple, for each node, is something 
inherently scalable, depending only on the number of node’s 
neighbors. The scalability of tuples’ maintenance is less clear.   
To start answering this questions we concentrated on the 
following: Are maintenance operations confined within a locality 
from where a change in the tuple’s context originally triggered 
the maintenance? If the answer to this question is yes, there are 
good chances that an implementation of this model can lead to 
good performances: being maintenance confined, it is independent 
from the size of the network. If the answer is no, any 
implementation is probably doomed to failure. 
In the following of this section we are going to present the results 
we found with regard to the different tuples in the hierarchy of 
Figure 1. However, before to proceed, a caveat is needed: the 

following considerations and performances refers only to the 
classes in hierarchy. It is clear that by subclassing one of these 
tuples and by introducing complex subscriptions and reactions – 
that can possibly cause cascading events – performances can 
change a lot. One of the drawbacks of the flexibility given by our 
programming model is that the programmer must take care of the 
performances of the reaction (s)he put into the tuples.     

4.1 Structure and Message Tuple 
These tuples are not maintained, so the answer to our question is 
trivially: yes! Please note that also with regard of tuples like the 
TimeDecayingFloodTuple described in 3.1, that adds a custom 
reaction, the answer is still positive, since a change in the tuple 
context (i.e. time) affects only the tuple itself so it is obviously 
confined. The same consideration holds also for the delete 
operation inherent in message tuples.   

4.2 HopTuples 
With regard to HopTuple, answering our question is more 
complicated. Tuples’ maintenance operations are required upon a 
change in the network topology, to have the distributed tuples 
reflect the new network structure. This means that maintenance 
operations are triggered whenever, due to nodes’ mobility or 
failures, new links in the network are created of removed. In this 
context our question becomes: are the tuples’ maintenance 
operations confined to an area neighboring the place in which the 
network topology had actually changed? This means that, if for 
example, a device breaks down (causing a change in the network 
topology) only neighboring devices should change their tuples’ 
values. The size of this neighborhood is not fixed and cannot be 
predicted a-priori, since it depends on the network topology (see 
Figure 2).  
How can we perform such localized maintenance operations in a 
fully distributed way? To fix ideas, let us consider the case of a 
tuple incrementing its integer content by one, at every hop, as it is 
propagated far away from its source. 
Given a local instance of such a tuple X, we will call Y a X’s 
supporting tuple if: Y belongs to the same distributed tuple as X, Y 
is one-hop distant from X, Y value is equal to X value minus 
1.With such a definition, a X’s supporting tuple is a tuple that 
could have created X during its propagation. Moreover, we will 
say that X is in a safe-state if it has a supporting tuple, or if it is 
the source of the distributed tuple. We will say that a tuple is not 
in a safe-state if the above condition does not apply. 
Each local tuple can subscribe to the income or the removal of 
other tuples belonging to its same type in its one-hop 
neighborhood.   
Upon a removal, each tuple reacts by checking if it is still in a 
safe-state. In the case a tuple is in a safe-state, the tuple the 
removal has not any effect - see later -. In the case a tuple is not in 
a safe state, it erases itself from the local tuple space. This 
eventually causes a cascading tuples’ deletion until a safe-state 
tuple can be found, or the source is eventually reached, or all the 
tuples in that connected sub-network are deleted (as in the case of 
Figure 2(b)). When a safe-state tuple observe a deletion in its 
neighborhood it can fill that gap, and reacts by propagating to that 
node. This is what happens in Figure 2(a), safe-state tuple 
installed on mode Ps and having value 3 propagates a tuple with 
value 4 to the hole left by tuple deletion (gray node). It is worth 



noting that this mechanism is the same enforced when a new peer 
is connected to the network. 
Similar considerations applies with regard to tuples’ arrival: when 
a tuple sense the arrival of a tuple having value lower than its 
supporting tuple, it means that, because of nodes’ mobility, a 
short-cut leading quicker to the source happened. 
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Figure 4: Experimental results: locality scopes in tuple’s 
maintenance operations emerge in a network without 
predefined boundaries. (a) topology changes are caused by 
random peer movements. (b) topology changes are caused by 
the movement of the source peer. 

How many information must be sent to maintain the shape of a 
distributed tuple? What is the impact of a local change in the 
network topology in real scenarios? To answer these questions we 
exploited a mobile ad-hoc network emulator running the TOTA 
middleware, we developed. The graph in Figure 4 shows results 
obtained by a large number of experiments, conducted on 
different networks. We considered networks having an average 
density (i.e. average number of nodes directly connected to an 
other node) of 5.7, 7.2 and 8.8 respectively (these numbers come 
from the fact that in our experiments they correspond to 150, 200, 
250 peers, respectively). In each network, a tuple, incrementing its 
content at every hop, had been propagated. Nodes in the network 
move randomly, continuously changing the network topology. 
The number of messages sent between peers to keep the tuple 
shape coherent had been recorded. Figure 4(a) shows the average 
number of messages sent by peers located in an x-hop radius from 
the origin of the topology change. Figure 4(b) shows the same 
values, but in these experiment only the source of the tuple 
moves, changing the topology. 
The most important consideration we can make looking at those 
graphs, is that, upon a topology change, a lot of update operations 
will be required near the source of the topology change, while 
only few operations will be required far away from it. This implies 

that, even if the TOTA network and the tuples being propagated 
have no artificial boundaries, the operations to keep their shape 
consistent are strictly confined within a locality scope (Figure 4).  
This fact supports the feasibility of our approach in terms of its 
scalability. In fact, this means that, even in a large network with a 
lot of nodes and tuples, we do not have to continuously flood the 
whole network with updates, eventually generated by changes in 
distant areas of the network. Updates are almost always confined 
within a locality scope from where they took place. 

4.3 Metric and Space Tuple 
With regard of these tuples answering the question is easy again. 
In 3.4 we said that Metric tuples maintenance is confined in the 
node itself for all the nodes apart from the source, it spreads 
across the whole network if the source moves. So the answer for 
Metric tuples is partially no! and for this reason they must be used 
carefully, maybe with custom rules in their propagation rules 
limiting a-priori their scope. The answer for Space tuple, instead, 
is a clear yes! Since maintenance is strictly locally confined.  
All the above considerations are good hints for the feasibility of 
the model, showing that it can scale to different application 
scenarios. 

5. RELATED WORK 
A number of recent proposals rely on different kinds of 
distributed data structures to support coordination activities in 
multi agent systems. 
Approaches like Lime and XMiddle [11, 13] propose relying on 
virtually shared data structures as the basis for uncoupled 
interactions and context-awareness. Each device/agent in the 
network owns a private data structure (e.g., a private tuple space 
or a portion of an XML tree). Upon connection with other 
devices/agents in a network, the privately owned data structures 
can merge together accordingly to specific policies, to be used as 
a common interaction space to exchange contextual information 
and coordinate with each other. By letting the shared data 
structure mediate and uncouple all interactions, and by not relying 
on any centralized service, these approaches suit well the 
dynamics of wireless open networks. However, the acquired 
information is typically local (deriving from the sharing of data 
among directly connected devices/agents). Although it is possible 
to transitively share data across farther devices/agents, it is 
difficult to acquire a more global perspective and in achieving 
complex distributed coordination patterns. 
The L2imbo model, proposed in [3], is based on the notion of 
distributed tuple spaces augmented with processes (Bridging 
Agents) in charge of moving tuples form one space to another. 
Bridging agents can also change the content of the tuple being 
moved, for example to provide format conversion between tuple 
spaces. The main differences between L2imbo and our idea of 
distributed tuples are that, in L2imbo, tuples are conceived as 
“separate” entities and their propagation is mainly performed to 
let them be accessible from multiple tuple spaces. Our tuples are 
instead logically bounded and, rather than being used and 
interpreted a single entities, must be read as part of field-like 
distributed data structures. Because of this difference, tuples’ 
propagation is defined for every tuple in our approach, while is 
defined for the whole tuple space in L2imbo. 



Smart Messages [2] is an architecture for computation and 
communication in large networks of embedded systems. 
Communication is realized by sending in the network messages 
which include code to be executed at each hop in the network 
path. The execution of a message at each hop determines the next 
hop in the path, making messages responsible for their own 
routing. Smart Messages share with our approach the idea of 
putting intelligence in the network by letting messages (or tuples) 
execute hop-by-hop small chunk of code to determine their 
propagation. However, in Smart Messages, code is used mainly 
for routing or mobility purposes. In our approach, instead, tuples 
are not simply routed though the network, but can be persistent 
and create a distributed data structure that remains stored in the 
network. Moreover, in our approach propagation code can also be 
used to change the message/tuple content, in order to realize 
distributed data structure and not just replicas. 
The research projects Anthill [9] and SwarmLinda [10] share the 
idea of applying ant-inspired algorithms to Internet-scale Peer-to-
Peer systems. Here, field-like data structures – modeling ants’ 
pheromones – instead of being propagated autonomously (e.g. in 
a breadth-first manner) are spread by the agents as they randomly 
move across the Peer-to-Peer network. In particular, these data 
structures create paths connecting peers that share similar files, 
thus enabling a fast content-based navigation in the network of 
peers. Clearly, these kinds of systems could be easily modeled 
within the abstraction promoted by our approach. 

6. CONCLUSION AND FUTURE WORK 
In this paper we have presented a programming model to create 
self-maintained distribute tuples over dynamic networks. These 
kinds of tuples are, in our opinion, a fundamental building block 
in the context of field-based coordination. What is missing is an 
underlying general methodology, enabling engineers to map a 
specific coordination policy into the corresponding definition of 
tuples and of their shape. Possibly a great number of coordination 
patterns can be easily engineered even in the absence of a general 
methodology (e.g., biological systems can be sources of several 
ready-to-work solutions [1]). Nevertheless, the definition of such 
a methodology – still lacking in all related approaches based on 
similar self-organization principles – would be definitely of help 
and would possibly make our approach applicable to a wider class 
of distributed coordination problems. 
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