
Self-Maintained Distributed Tuples for Field-based
Coordination in Dynamic Networks

Marco Mamei, Franco Zambonelli
University of Modena and Reggio Emilia

Via Allegri 13, 42100, Reggio Emilia, ITALY

{mamei.marco, franco.zambonelli}@unimore.it

ABSTRACT
Field-based coordination is a very promising approach for a wide
range of application scenarios in modern dynamic networks. To
implement such an approach, one can rely on distributed tuples
injected in a network and propagated to form a distributed data
structure to be sensed by application agents. However, to gain the
full benefits from such a coordination approach, it is important to
enable the distributed tuples to preserve their structures despite
the dynamics of the network. In this paper, we show how a variety
of self-maintained distributed tuples for field-based coordination
can be easily programmed in the TOTA middleware. Several
examples clarify the approach, and performance data is presented
to verify its effectiveness.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features; C.2.4 [Distributed Systems]: Distributed Applications.

General Terms: Algorithms, Design

Keywords: Field-based coordination, Distributed data
structures, tuple spaces, dynamic networks, mobility.

1. INTRODUCTION
In the near future, computer-based systems will be embedded in
all our everyday objects and in our everyday environments. These
systems will be typically communication enabled, and capable of
coordinating with each other in the context of complex mobile
distributed applications. Such distributed applications will have to
face an extreme dynamic scenario. “Agents” (we use this term
generically to indicate the active components of a distributed
application) can depart out of and arrive into the network at any
time, and can roam across different environments. In addition,
application’s agents will be likely to execute in dynamic, ever-
changing networks (e.g., MANETs, sensor networks, etc.).
Coordinating agents’ activities in such dynamic networks with
traditional models and infrastructures is not easy. It is of great
importance to rely on models and middleware infrastructures

explicitly designed to take care of all the issues implied in
network dynamics.
Among several possible definitions, coordination can also be
generally defined as the agents’ fundamental capability to decide
on their own actions in the context of their operational
environment. So, the basic problem of coordination in dynamic
network is: How can this fundamental capability be achieved
when the context is dynamically changing? It is quite natural to
see that the cornerstone of this problem is how to dynamically
(i.e., at run-time) provide agents with an effective representation
of their operational environment (simply context from now on). In
particular such contextual information must be (i) simple and
cheap to be obtained; (ii) expressive enough to facilitate the
definition and the execution of the agents’ activities; (iii)
continuously reflective the actual state of the context.
With this regard, approaches based on the concept of field-based
coordination [6] appear very suitable. In these approaches, the
agents’ context is abstracted and described by means of abstract
“fields” distributed in the network and expressing forces driving
agents’ activities. Agents can locally perceive these fields and
decide what to do on the basis of which fields they sense and their
magnitudes. This field-based representation of the context is (i)
simple and cheap to be obtained, since fields are spread in the
environment and agents need only to perceive locally the fields in
the area, (ii) expressive enough to facilitate the coordination
activities, since agents need only to combine the perceived fields
and be driven by them. Moreover, (iii) by letting fields to adapt
and self-maintain their distributed shape to reflect changing
environmental conditions, field-based coordination can be made
robust and adaptive to the above mentioned environmental (e.g.
network) dynamism.
From the programmer point of view, the main task in this
approach is to map specific coordination problems into suitable
field-based representations. To this end, a programming model
specifying how to build fields is required. The content of this
paper is to present a programming model to program self-
maintained distributed tuples, implementing the concept of fields.
The following of this paper is organized as follows: Section 2
describes field-based coordination and specifies a middleware
infrastructure suitable to support self-maintained tuples. Section 3
details how to program distributed tuples. Section 4 presents
performances and experiments. Section 5 discusses related works
and Section 6 concludes.

2. FIELD-BASED COORDINATION
To realize the idea of field-based coordination we basically need:
(i) to represent fields by means of suitable data structures; (ii) an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM SAC ’04, March 14-17, 2004, Nicosia, Cyprus.
Copyright 2004 ACM 1-58113-000-0/00/0000…$5.00.

infrastructure holding and supporting these data structures. Given
that, field-based coordination is centered on a few key concepts:

1. The agents’ operational environment is represented by
“field-like data structures”, spread by agents and/or by
the infrastructure, diffused across the infrastructure, and
locally sensed by agents;

2. A coordination policy is realized by letting the agents to
locally sense field data structures stored in the
infrastructure and act driven by the local shape of these
data structures;

3. Both environment dynamics and agents’ actions may
induce the field data structures to update (aka self-
maintain) their values. The new shape is automatically
stored in the infrastructure, inducing a feedback cycle
(point 2) that can be exploited to globally achieve a
global and adaptive coordination pattern.

2.1 Application Scenarios
To clarify the ideas of field-based coordination and to show its
applicability, let’s focus on some application scenarios.
Field data structures, being spread in a spatially distributed
environment, are naturally suited in modeling spatial information.
For instance, a “shepherd” agent could spread in the network
infrastructure a field whose value monotonically increases hop-
by-hop as it gets farther from it. Such field implicitly enables any
other agent, from wherever in the network, of “sensing” the
presence of the shepherd and its distance. Also, by sensing the
local gradient of the field, each agent could also reach the
shepherd by following the gradient downhill. Moreover, if fields
are dynamically updated to reflect changes in the system, if the
shepherd moves around in the network, its field would be
automatically updated and any agent looking for the shepherd
would automatically re-adapt its movement. Such an approach is
very effective, since it can be trivially coded and adapts to a
variety of circumstances (e.g. different networks, nodes’ failures)
because the fields naturally adapt to the changing environment.

The above is just a specific instance of the more general scenario
of field-based motion coordination [4, 7]. In this scenario, the
environment is typically described by means of fields attracting
agents towards goals and repelling agents from unwanted areas
(e.g. dangerous, crowded, already seen areas, etc. depending on
the specific application scenario). Fields are modeled by means of
distributed data structures having an id and a numeric value,
representing the field’s magnitude. Moreover, fields are
constantly updated to reflect the possibly changing system’s
situation. Agents simply follow the resulting gradient of these
fields, and complex movements are achieved not because of the
agents’ wills, but because of dynamic re-shaping of the fields.

The behavior of social insects, e.g. ants, has recently inspired
some algorithms used to control the activities of multi agent
systems [1]. The key of these approaches is in emulating the way
in which ants interact one another. They do so by means of
pheromone signals they spread in the environment that will be
perceived by other ants later on. These pheromone signals can be
used to find food sources, or to coordinate efforts in moving some
heavy object, etc. Pheromone signals can be easily modeled by
means of fields driving agents activities [5]. Instead of being
propagated by the infrastructure in all directions, pheromone-field

data structures would be distributed by the agents themselves as
they move across the network. These data structures would then
be used as trials driving agents activities.

Routing in Mobile Ad-Hoc Network (MANET) can be easily
modeled as a coordination problem: agents (i.e. network nodes)
need to cooperate forwarding each other messages to enable long-
range, multi-hop communication. The main principle underlying
many routing algorithms is to build a distributed data structure
(implemented by means of a set of distributed routing tables)
suitable to provide route information. Specifically, this data
structure creates paths in the network enabling agents to forward
messages in the right direction. Although some routing protocols
make the analogy with fields explicit [14], the idea at the basis of
distributed routing data structure is the same as field based
coordination: provide agents with a ready-to-use representation of
the context (i.e. where the message should go next).
Other than these scenarios, field-based coordination has been
successfully applied to a variety of other coordination problems:
modular robotics [15], amorphous computing [12], videogames
[16], showing the general applicability of this idea.

2.2 The TOTA Middleware
The idea of fields can potentially be implemented on any
distributed middleware providing basic support for data storing
(to store field values), communication mechanisms (to propagate
fields) and event-notification mechanisms (to update fields and
notify agents about changes in fields’ values). However, we think
that a set of distributed tuple spaces is a particularly fertile ground
on which to build such idea. A set of logically bounded tuples,
one in each of the distributed tuple spaces, naturally matches the
idea of a field spread across the infrastructure. The content of a
tuple would represent the field’s physical properties (e.g.
magnitude) at a specific location. This is the approach taken by
our reference middleware TOTA (Tuples On The Air) [8].
TOTA is composed by a peer-to-peer network of possibly mobile
nodes, each running a local version of the TOTA middleware.
Upon the distributed space identified by the dynamic network of
TOTA nodes, each component is capable of locally storing tuples
and letting them diffuse through the network. Tuples are injected
in the system from a particular node, and spread hop-by-hop
accordingly to a specified propagation rule. Specifically, in
TOTA, fields have been realized by means of distributed tuples
T=(C,P), characterized by a content C and a propagation rule P.
The content C is an ordered set of typed fields representing the
information carried on by the tuple. The propagation rule P
determines how the tuple should be distributed and propagated in
the network. This includes determining the “scope” of the tuple
(i.e. the distance at which such tuple should be propagated and
possibly the spatial direction of propagation) and how such
propagation can be affected by the presence or the absence of
other tuples in the system. In addition, the propagation rules can
determine how tuple’s content should change while it is
propagated. The spatial structures induced by tuples propagation
must be maintained coherent despite network dynamism. For
instance, when new nodes get in touch with a network, TOTA
automatically checks the propagation rules of the already stored
tuples and eventually propagates the tuples to the new nodes.
Similarly, when the topology changes due to nodes’ movements,

the distributed tuple structure automatically changes to reflect the
new topology.
The TOTA API is the main interface to access the middleware. It
provides functionalities to let the application to inject and delete
tuples in the local middleware (inject and delete methods), to
read tuples both from the local tuple space and from the node’s
one-hop neighborhood, either via pattern matching or via key-
access to a tuple’s unique id (read, readOneHop, keyrd,
keyrdOneHop). Moreover, TOTA supports reactive behaviors by
allowing agent to subscribe and unsubscribe to relevant events
(e.g. the income of a new tuple) and to call-back agent’s react
method whenever relevant event happen. Finally, two methods
(store, move) allow tuples to be actually stored in the local tuple
space or to migrate to neighboring nodes. These methods are not
part of the main API and are used only within the tuples’ code.

3. PROGRAMMING DISTRIBUTED
TUPLES
Given the API simplicity, the main task of the programmer is to
program distributed tuples. To this end, it is important to have a
flexible programming model suitable to specify those distributed
data structures. Within the TOTA model, distributed tuples have
been designed by means of objects: the object state models the
tuple content, while the tuple’s propagation has been encoded by
means of a specific propagate method.

Following this schema, it has been defined an abstract class
TotaTuple, that provides a general framework for tuples
programming. This is:

abstract class TotaTuple {
protected TotaInterface tota;
/* instance variables represent tuple fields */
…
/* this method inits the tuple, by giving a
reference to the current TOTA middleware */
public void init(TotaInterface tota) {
this.tota = tota;
}

/* this method codes the tuple actual actions */
public abstract void propagate();

/* this method enables the tuple to react to
happening events */
public void react(String reaction, String event)
{
}}

In TOTA, a tuple does not own a thread, but it is actually
executed by the middleware (i.e. TOTA ENGINE) that runs the
tuple’s init and propagate methods. The point to understand is
that when the middleware has finished the execution of the tuple’s
methods, the tuple (on that node) becomes a ‘dead’ data structure
eventually stored in the local tuple space. Tuples, however, must
remain active even after the middleware has run their code. This is
fundamental because their self-maintenance algorithm – see
Section 4 – must be executed whenever the right condition
appears (e.g. when a new peer connects to the network, the tuples
must propagate to this newly arrived peer). To this end, tuples can
place subscriptions, to the TOTA EVENT INTERFACE as
provided by the standard TOTA API. These subscriptions let the
tuples remain ‘alive’, being able to execute upon triggering
conditions.

Although subclassing TotaTuple enables to create every kind of
tuple, managing the intricacies of dealing with tuple propagation
and maintenance can be tedious and error-prone. To this end, we
developed a tuples’ class hierarchy (see Figure 1) from which the
programmer can inherit to create custom tuples. Classes in the
hierarchy take care of dealing with propagation and maintenance
with regard to a vast number of circumstances.

 TotaTuple

MetricTuple

StructureTuple

SpaceTuple HopTuple MessageTuple

Figure 1: the TOTA tuples’ class hierarchy

3.1 StructureTuple
The only child of the TotaTuple class is the class StructureTuple.
This class is a template to create distributed data structures over
the network. However, StructureTuples are still NOT self-
maintained. This means that if the topology of the network
changes the tuple local values are left untouched.

Such kind of tuples can be used in applications where the network
infrastructure is relatively static and thus there is not the need of
constantly update and maintain the tuple shape because of
network dynamism. Consider a building properly instrumented to
have computers in every room and corridor, wired accordingly to
the building floor-plan. Each room could inject in the network a
distributed tuple providing information on the room itself. The
tuple could be propagated in the network, while increasing one
integer value, in its content, hop-by-hop as it gets farther form the
source. Provided with such tuples, agents in the building could
easily get information and reach every room in the building by
locally sensing the tuples present in the network.

StructureTuple class inherits from TotaTuple and implements the
superclass method propagate realizing a propagation schema that
is at the core of the whole tuples’ hierarchy. The code is the
following:

public final void propagate() {
if(decideEnter()) {
boolean prop = decidePropagate();
changeTupleContent();
this.makeSubscriptions();
tota.store(this);
if(prop)
tota.move(this);

}}

The class StructureTuple implements the methods: decideEnter,
decidePropagate, changeTupleContent and makeSubscriptions so
as to realize a breadth first, expanding ring propagation. The

result is simply a tuple that floods the network without changing
its content.

Specifically, when a tuple arrives in a node (either because it has
been injected or it has been sent from a neighbor node) the
middleware executes the decideEnter method that returns true if
the tuple can enter the middleware and actually execute there,
false otherwise. The standard implementation returns true if the
middleware does not already contain that tuple.

If the tuple is allowed to enter the method decidePropagate is run.
It returns true if the tuple has to be further propagated, false
otherwise. The standard implementation of this method returns
always true, realizing a tuple’s that floods the network being
recursively propagated to all the peers.

The method changeTupleContent change the content of the tuple.
The standard implementation of this method does not change the
tuple content.

The method makeSubscriptions allows the tuple to place
subscriptions in the TOTA middleware. As stated before, in this
way the tuple can react to events even when they happen after the
tuple completes its execution. The standard implementation does
not subscribe to anything.

After that, the tuple is inserted in the TOTA tuple space by
executing tota.store(this). Then, if the decidePropagate method
returned true, the tuple is propagated to all the neighbors via the
command tota.move(this).

The tuple will eventually reach neighboring nodes, where it will
be executed again. It is worth noting that the tuple will arrive in
the neighboring nodes with the content changed by the last run of
the changeTupleContent method.

Programming a TOTA tuple to create a distributed data structure
basically reduces at inheriting from the above class and
overloading the four above methods to customize the tuple
behavior. Here in the following, we present an example to show
the expressiveness of the introduced framework.

A TimeDecayingGradient tuple creates a tuple that floods the
network in a breadth-first way and have an integer hop-counter
that decays with time. To code this tuple one has basically to: (i)
place the integer hop counter in the object state, (ii) overload
changeTupleContent, to let the tuple change the hop counter at
every propagation step, (iii) overload decideEnter so as to allow
the entrance not only if in the node there is not the tuple yet – as
in the base implementation –, but also if there is the tuple with an
higher hop-counter. This allows to enforce the breadth-first
propagation assuring that the hop-counter truly reflects the hop
distance from the source, (iv) to overload the makeSubscriptions
method, to let the tuple subscribe to the peer internal clock
associating the TIME reaction to every clock-tick, (v) finally, in
the react method the reaction is treated by decreasing the integer
value and deleting the tuple as soon as the value reaches zero. The
code is the following:
public class TimeDecayingGradient extends
StructureTuple {
public String name;
public int hop = 0;
public boolean decideEnter() {

super.decideEnter();
TimeDecayingGradient prev = (
TimeDecayingGradient)tota.keyrd(this);
return (prev == null ||

prev.hop > (this.hop + 1));
}
protected void changeTupleContent() {
super.changeTupleContent();
hop++;
}
public void makeSubscriptions() {
SensorTuple st = new SensorTuple("TIME","*");
tota.subscribe(st,

(ReactiveComponent)this,"TIME");
}
public void react(String reaction, String event) {
if(reaction.equalsIgnoreCase("TIME")) {
value = value -1;
if(value <= 0) {
tota.delete(this);
return;

}}}}
The rest of the hierarchy of Figure 1 has been built in the same
way. Programmers can inherit from the hierarchy by further
customizing tuple’s propagation to match specific application’s
requirements.

3.2 MessageTuple
MessageTuples are used to create messages that are not stored in
the local tuple spaces, but just flow in the network as sorts of
“events”. The basic structure is the same as StructureTuple, but a
default subscription is in charge to erase the tuple after some time
passed. Note that it would not be possible to simply remove the
tota.store() method from the propagate method, because
previously stored values are used to block the tuple backward
propagation. To this end the tuples’ value can be deleted only
after the tuple wave-front has passed.
It is worth noting that setting the time before deletion is not
trivial. If the tuple propagates in a breadth first manner, it can
simply be set to the time the tuple wave-front takes to proceed
two-hops away. However, if the tuple is propagated in a specific
direction and the network topology is closed in a circular track
this can lead to a message the continues circulating trough the
network endlessly. Up to now, we did not considered this option
and the time to delete has been set considering the breadth first
case.
Message tuples could be fruitfully applied as a communication
mechanism. These tuples, in fact, could embed in their
propagation rule the routing policy, without requiring routing
agents to properly forward them. Moreover, it is easy to
implement with these tuples several different communication
patterns like unicast or multicast. Finally, by combining these
tuples with StructureTuples, it is easy to realize publish-subscribe
communication mechanism, in which StructureTuples creates
subscriptions paths, to be followed by MessageTuples
implementing events.
With regard to these tuples, we do not present any examples since
we may apply here the same consideration as made in
StructureTuple case.

3.3 HopTuple
This kind of tuple inherits from StructureTuple to create
distributed data structures that self-maintain its structure
(supported by the TOTA middleware), to reflect changes in the
network topology (see Figure 2).

(a)

Px

1

4

4

3
3

2

3

3

4
3

Ps (b)
Px

1

4

4

3
3

2

3

3

4

Figure 2: HopTuples self-maintain despite topology changes.
(a) the tuple on the gray node must change its value to reflect
the new hop-distance from the source Px. (b) if the source
detach all the tuples must auto-delete to reflect the new
network situation.

Basically this class overloads the empty makeSubscription method
of the StructureTuple class, to let these tuples react to changes in
the topology, by adjusting their values to always be consistent
with the hop-distance form the source (i.e. an integer hop is
maintained in the HopTuple class).
For example, a FlockingTuple creates a data structure that has a
minimum at a specific distance (RANGE) from the injecting
agent. Such shape self-maintains to remain coherent despite agent
movements. This is the code:
public class FlockingTuple extends HopTuple {
private static final int RANGE = 3;
public int value = RANGE;
protected void changeTupleContent() {
super.changeTupleContent();
if(hop <= RANGE)
value --;
else
value ++;

}}
These kinds of tuples are fundamental, since they enable field-
based coordination also in presence of dynamic networks. Motion
coordination fields like the “shepherd” one presented in 2.1 will
be realized with this tuples. The strength of these tuples, from a
software engineering point of view, is that agents have simply to
inject these tuples and then they can forget about them. All the
burden in maintaining their shape is moved away form the agents.
As another example, a DownhillTuple creates a tuple that follows
the hop counter of a HopTuple tuple downhill. To code this tuple
one has basically to overload the decideEnter method to let the
tuple enter only if the value of the HopTuple in the node is less
that the value on the node from which the tuple comes from. The
code to realize this tuple is the following:
public class DownhillTuple extends HopTuple {
public String name;
public int oldVal = 9999;
HopTuple trail;

public DownhillTuple() {

trail = new HopTuple();
trail.setContent("ciao");
}
public boolean decideEnter() {
super.decideEnter();
int val = getGradientValue();
if(val < oldVal) {
oldVal = val;
return true;
}
else
return false;

}
/* this method returns the minimum hop-value of
the HopTuple tuples matching the tuple to be
followed in the current node */
private int getGradientValue() {
Vector v = tota.read(trail);
int min = 9999;

for(int i=0; i<v.size(); i++) {
HopTuple gt =
(HopTuple)v.elementAt(i);
if(min > gt.hop)
min = gt.hop;

}
return min;
}}

3.4 MetricTuple and SpaceTuple
In some application, it is not possible to rely on a suitable network
infrastructure on which to propagate distributed tuples. For
example a group of three robots in need to coordinate their
movements can create an ad-hoc network, but hop-based
distributed tuples would be useless in such a network. In these
scenarios it is fundamental to have tuples relying on spatial
distances rather than hop-distances. The assumption here is to
have location devices installed on nodes or suitable algorithms
[12] able to spatially localize neighboring (directly accessible)
nodes. In other words, each device must be able to create a local
private coordinate system localizing neighborhood nodes.

(a)

(0,0)

(20,-8)(-13,-10)

(-22,5)

(-17,21)

(-26,30)

(0,20)

(-3,37)

(16,28)

(15,8)

(34,-16) (10,-18)

(47,4)

(45,25)

(33,7)

(29,25)

(b)

(0,0)

(15,25)

(10,10)

(-1,15)

P1

P2

P2

P3

Figure 3: (a) Metric and space tuples create a shared
coordinate system, centered in the node that injected the tuple.
This is done by having each node combining the coordinate its
sees in its private coordinate frame with neighbors’ ones. (b)
Maintenance of the tuple, requires only local updates, since
node that does not move do not change their position with
respect to the source (P3 is not affected by P2 movement, since
its coordinates with respect of P1 do not change).

The basic implementation of these tuples, from which to inherit, is
a tuple that combines local coordinate systems, to create a shared
coordinate system, with the center in the node that injected the
tuple (see Figure 3(a)). Before explaining the difference between
Metric and Space tuple, it is important to consider that these kinds
of tuples are easier to be maintained that HopTuple. In fact, once
these tuples have been propagated, if a node moves, only its tuple
local value is affected, while all the others are left unchanged,
since their position with respect to the source does not change.
Specifically, a tuple on a node that moves can infer its new value
by looking at the tuples stored in neighboring nodes and by
considering their coordinates (see Figure 3(b)).
What happens when the source moves? In theory all the tuple
instances must be changed because the origin of the coordinate
system has shifted. This is exactly what happens in MetricTuple
where the origin of the coordinated system is anchored to the
source node. This of course can lead to scalability problems,
especially if the source is highly mobile.
What happens if also the source updates its value looking at
neighboring nodes? In this case, the origin of the coordinate
system remains where the tuple has been first injected. This, even
if no nodes are in that position! The coordinate system is
maintained by the network, but not affected by it. This is the
SpaceTuple implementation.
The following example is a tuple that holds the spatial distance
form the source (note that x,y,z are maintained in the MetricTuple
and SpaceTuple classes). In the example, DistanceTuple inherits
form MetricTuple and so it always represent the distance from the
source. However, if the same tuple would have inherited from
SpaceTuple, then it would have expressed the distance form the
point in which it had been originally injected.
public class DistanceTuple extends MetricTuple {
public int value = 0;
protected void changeTupleContent() {
super.changeTupleContent();
value = (int)Math.sqrt((x*x)+(y*y)+(z*z));

}}

4. PERFORMANCES AND EXPERIMENTS
The effectiveness of the field-based approach is of course related
to costs and performances in managing fields. Specifically, when
considering self-maintained distributed tuples, some fundamental
issues arise: what is the cost of propagating a tuple? How much
burden self-maintenance adds to the system? Is it scalable? Is the
process fast enough?
While the cost of propagating a tuple, for each node, is something
inherently scalable, depending only on the number of node’s
neighbors. The scalability of tuples’ maintenance is less clear.
To start answering this questions we concentrated on the
following: Are maintenance operations confined within a locality
from where a change in the tuple’s context originally triggered
the maintenance? If the answer to this question is yes, there are
good chances that an implementation of this model can lead to
good performances: being maintenance confined, it is independent
from the size of the network. If the answer is no, any
implementation is probably doomed to failure.
In the following of this section we are going to present the results
we found with regard to the different tuples in the hierarchy of
Figure 1. However, before to proceed, a caveat is needed: the

following considerations and performances refers only to the
classes in hierarchy. It is clear that by subclassing one of these
tuples and by introducing complex subscriptions and reactions –
that can possibly cause cascading events – performances can
change a lot. One of the drawbacks of the flexibility given by our
programming model is that the programmer must take care of the
performances of the reaction (s)he put into the tuples.

4.1 Structure and Message Tuple
These tuples are not maintained, so the answer to our question is
trivially: yes! Please note that also with regard of tuples like the
TimeDecayingFloodTuple described in 3.1, that adds a custom
reaction, the answer is still positive, since a change in the tuple
context (i.e. time) affects only the tuple itself so it is obviously
confined. The same consideration holds also for the delete
operation inherent in message tuples.

4.2 HopTuples
With regard to HopTuple, answering our question is more
complicated. Tuples’ maintenance operations are required upon a
change in the network topology, to have the distributed tuples
reflect the new network structure. This means that maintenance
operations are triggered whenever, due to nodes’ mobility or
failures, new links in the network are created of removed. In this
context our question becomes: are the tuples’ maintenance
operations confined to an area neighboring the place in which the
network topology had actually changed? This means that, if for
example, a device breaks down (causing a change in the network
topology) only neighboring devices should change their tuples’
values. The size of this neighborhood is not fixed and cannot be
predicted a-priori, since it depends on the network topology (see
Figure 2).
How can we perform such localized maintenance operations in a
fully distributed way? To fix ideas, let us consider the case of a
tuple incrementing its integer content by one, at every hop, as it is
propagated far away from its source.
Given a local instance of such a tuple X, we will call Y a X’s
supporting tuple if: Y belongs to the same distributed tuple as X, Y
is one-hop distant from X, Y value is equal to X value minus
1.With such a definition, a X’s supporting tuple is a tuple that
could have created X during its propagation. Moreover, we will
say that X is in a safe-state if it has a supporting tuple, or if it is
the source of the distributed tuple. We will say that a tuple is not
in a safe-state if the above condition does not apply.
Each local tuple can subscribe to the income or the removal of
other tuples belonging to its same type in its one-hop
neighborhood.
Upon a removal, each tuple reacts by checking if it is still in a
safe-state. In the case a tuple is in a safe-state, the tuple the
removal has not any effect - see later -. In the case a tuple is not in
a safe state, it erases itself from the local tuple space. This
eventually causes a cascading tuples’ deletion until a safe-state
tuple can be found, or the source is eventually reached, or all the
tuples in that connected sub-network are deleted (as in the case of
Figure 2(b)). When a safe-state tuple observe a deletion in its
neighborhood it can fill that gap, and reacts by propagating to that
node. This is what happens in Figure 2(a), safe-state tuple
installed on mode Ps and having value 3 propagates a tuple with
value 4 to the hole left by tuple deletion (gray node). It is worth

noting that this mechanism is the same enforced when a new peer
is connected to the network.
Similar considerations applies with regard to tuples’ arrival: when
a tuple sense the arrival of a tuple having value lower than its
supporting tuple, it means that, because of nodes’ mobility, a
short-cut leading quicker to the source happened.

(a)
0

0,1

0,2

0,3

0,4

0,5

0,6

0 1 2 3 4 5 6 7 8# hops from topology change

av
g.

 #
m

es
sa

ge
s s

en
t

avg. density = 5.7; avg.
diameter = 15.1
avg. density = 7.2; avg.
diameter = 14.8
avg. density = 8.8; avg.
diameter = 12.7

(b)
0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0 1 2 3 4 5 6 7 8# hops from topology change

av
g.

 #
m

es
sa

ge
s s

en
t

avg. density = 5.7; avg.
diameter = 15.1
avg. density = 7.2; avg.
diameter = 14.8
avg. density = 8.8; avg.
diameter = 12.7

Figure 4: Experimental results: locality scopes in tuple’s
maintenance operations emerge in a network without
predefined boundaries. (a) topology changes are caused by
random peer movements. (b) topology changes are caused by
the movement of the source peer.

How many information must be sent to maintain the shape of a
distributed tuple? What is the impact of a local change in the
network topology in real scenarios? To answer these questions we
exploited a mobile ad-hoc network emulator running the TOTA
middleware, we developed. The graph in Figure 4 shows results
obtained by a large number of experiments, conducted on
different networks. We considered networks having an average
density (i.e. average number of nodes directly connected to an
other node) of 5.7, 7.2 and 8.8 respectively (these numbers come
from the fact that in our experiments they correspond to 150, 200,
250 peers, respectively). In each network, a tuple, incrementing its
content at every hop, had been propagated. Nodes in the network
move randomly, continuously changing the network topology.
The number of messages sent between peers to keep the tuple
shape coherent had been recorded. Figure 4(a) shows the average
number of messages sent by peers located in an x-hop radius from
the origin of the topology change. Figure 4(b) shows the same
values, but in these experiment only the source of the tuple
moves, changing the topology.
The most important consideration we can make looking at those
graphs, is that, upon a topology change, a lot of update operations
will be required near the source of the topology change, while
only few operations will be required far away from it. This implies

that, even if the TOTA network and the tuples being propagated
have no artificial boundaries, the operations to keep their shape
consistent are strictly confined within a locality scope (Figure 4).
This fact supports the feasibility of our approach in terms of its
scalability. In fact, this means that, even in a large network with a
lot of nodes and tuples, we do not have to continuously flood the
whole network with updates, eventually generated by changes in
distant areas of the network. Updates are almost always confined
within a locality scope from where they took place.

4.3 Metric and Space Tuple
With regard of these tuples answering the question is easy again.
In 3.4 we said that Metric tuples maintenance is confined in the
node itself for all the nodes apart from the source, it spreads
across the whole network if the source moves. So the answer for
Metric tuples is partially no! and for this reason they must be used
carefully, maybe with custom rules in their propagation rules
limiting a-priori their scope. The answer for Space tuple, instead,
is a clear yes! Since maintenance is strictly locally confined.
All the above considerations are good hints for the feasibility of
the model, showing that it can scale to different application
scenarios.

5. RELATED WORK
A number of recent proposals rely on different kinds of
distributed data structures to support coordination activities in
multi agent systems.
Approaches like Lime and XMiddle [11, 13] propose relying on
virtually shared data structures as the basis for uncoupled
interactions and context-awareness. Each device/agent in the
network owns a private data structure (e.g., a private tuple space
or a portion of an XML tree). Upon connection with other
devices/agents in a network, the privately owned data structures
can merge together accordingly to specific policies, to be used as
a common interaction space to exchange contextual information
and coordinate with each other. By letting the shared data
structure mediate and uncouple all interactions, and by not relying
on any centralized service, these approaches suit well the
dynamics of wireless open networks. However, the acquired
information is typically local (deriving from the sharing of data
among directly connected devices/agents). Although it is possible
to transitively share data across farther devices/agents, it is
difficult to acquire a more global perspective and in achieving
complex distributed coordination patterns.
The L2imbo model, proposed in [3], is based on the notion of
distributed tuple spaces augmented with processes (Bridging
Agents) in charge of moving tuples form one space to another.
Bridging agents can also change the content of the tuple being
moved, for example to provide format conversion between tuple
spaces. The main differences between L2imbo and our idea of
distributed tuples are that, in L2imbo, tuples are conceived as
“separate” entities and their propagation is mainly performed to
let them be accessible from multiple tuple spaces. Our tuples are
instead logically bounded and, rather than being used and
interpreted a single entities, must be read as part of field-like
distributed data structures. Because of this difference, tuples’
propagation is defined for every tuple in our approach, while is
defined for the whole tuple space in L2imbo.

Smart Messages [2] is an architecture for computation and
communication in large networks of embedded systems.
Communication is realized by sending in the network messages
which include code to be executed at each hop in the network
path. The execution of a message at each hop determines the next
hop in the path, making messages responsible for their own
routing. Smart Messages share with our approach the idea of
putting intelligence in the network by letting messages (or tuples)
execute hop-by-hop small chunk of code to determine their
propagation. However, in Smart Messages, code is used mainly
for routing or mobility purposes. In our approach, instead, tuples
are not simply routed though the network, but can be persistent
and create a distributed data structure that remains stored in the
network. Moreover, in our approach propagation code can also be
used to change the message/tuple content, in order to realize
distributed data structure and not just replicas.
The research projects Anthill [9] and SwarmLinda [10] share the
idea of applying ant-inspired algorithms to Internet-scale Peer-to-
Peer systems. Here, field-like data structures – modeling ants’
pheromones – instead of being propagated autonomously (e.g. in
a breadth-first manner) are spread by the agents as they randomly
move across the Peer-to-Peer network. In particular, these data
structures create paths connecting peers that share similar files,
thus enabling a fast content-based navigation in the network of
peers. Clearly, these kinds of systems could be easily modeled
within the abstraction promoted by our approach.

6. CONCLUSION AND FUTURE WORK
In this paper we have presented a programming model to create
self-maintained distribute tuples over dynamic networks. These
kinds of tuples are, in our opinion, a fundamental building block
in the context of field-based coordination. What is missing is an
underlying general methodology, enabling engineers to map a
specific coordination policy into the corresponding definition of
tuples and of their shape. Possibly a great number of coordination
patterns can be easily engineered even in the absence of a general
methodology (e.g., biological systems can be sources of several
ready-to-work solutions [1]). Nevertheless, the definition of such
a methodology – still lacking in all related approaches based on
similar self-organization principles – would be definitely of help
and would possibly make our approach applicable to a wider class
of distributed coordination problems.

7. ACKNOWLEDGEMENTS
Work supported by the Italian MIUR and CNR in the “Progetto
Strategico IS-MANET, Infrastructures for Mobile ad-hoc
Networks ”.

8. REFERENCES
[1] E. Bonabeau, M. Dorigo, G. Theraulaz, “Swarm

Intelligence”, Oxford University Press, Oxford (UK) 1999.

[2] C. Borcea, et al., “Cooperative Computing for Distributed
Embedded Systems”, 22nd International Conference on
Distributed Computing Systems, IEEE CS Press, pp. 227-
238, Vienna (A), July 2002.

[3] N. Davies, et al, “L2imbo: A distributed systems platform for
mobile computing”, ACM Mobile Networks and
Applications, 3(2):143-156, Aug., 1998.

[4] S. Johansson, A. Saffiotti, “Using the Electric Field
Approach in the RoboCup Domain”, RoboCup 2001, LNAI
2377, Springer Verlag, pp. 399-404, Seattle, WA, 2001.

[5] M. Mamei, L. Leonardi, F. Zambonelli, “Co-Fields: A
Unifying Approach to Swarm Intelligence”, 3rd International
Workshop on Engineering Societies in the Agents World.
LNAI 2577, Springer Verlag, pp. 68-81, Madrid (Sp), 2003.

[6] M. Mamei, F. Zambonelli, “Field-based Approaches to
Adaptive Motion Coordination in Pervasive Computing
Scenarios”, to be published in “Handbook of Algorithms for
Mobile and Wireless Networking and Computing” CRC
Handbook, 2004.

[7] M. Mamei, F. Zambonelli, L. Leonardi, ”Distributed Motion
Coordination with Co-Fields: A Case Study in Urban Traffic
Management”, 6th IEEE Symposium on Autonomous
Decentralized Systems, Pisa(I), IEEE CS Press, pp. 63-70,
April 2003.

[8] M. Mamei, Franco Zambonelli, Letizia Leonardi, "Tuples On
The Air: a Middleware for Context-Aware Computing in
Dynamic Networks", 1st International Workshop on Mobile
Computing Middleware at 23rd International Conference on
Distributed Computing Systems, IEEE CS Press, pp. 342-
347, Providence (RI), May 2003.

[9] O. Babaoglu, H. Meling, A. Montresor, “A Framework for
the Development of Agent-Based Peer-to-Peer Systems”,
22nd International Conference on Distributed Computing
Systems, IEEE CS Press, pp. 15-22 ,Vienna (A), July 2002.

[10] R. Mendez, R. Tolksdorf, “A New Approach to Scalable
Linda-systems Based on Swarms”, ACM Symposium on
Applied Computer 2003, ACM Press, pp. 375-379, Orlando
(FL), March 2003.

[11] C. Mascolo, L. Capra, Z. Zachariadis, W. Emmerich,
“XMIDDLE: A Data-Sharing Middleware for Mobile
Computing”, Kluwer, Academic Publishers, Wireless
Personal Communications, 21:77-103, 2002

[12] R. Nagpal, “Programmable Self-Assembly Using
Biologically-Inspired Multiagent Control”, 1st International
Conference on Autonomous Agents and Multiagent Systems,
Bologna (I), ACM Press, pp. 418-425, July 2002.

[13] G. P. Picco, A. L. Murphy, G. C. Roman, “LIME: a
Middleware for Logical and Physical Mobility”, 21st
International Conference on Distributed Computing Systems,
IEEE CS Press, pp. 524-533, July 2001.

[14] R. Poor, “Embedded Networks: Pervasive, Low-Power,
Wireless Connectivity'', PhD Thesis, MIT, 2001.

[15] W. Shen, B. Salemi, P. Will, “Hormone-Inspired Adaptive
Communication and Distributed Control for CONRO Self-
Reconfigurable Robots”, IEEE Trans. on Robotics and
Automation 18(5):1-12, Oct. 2002.

[16] The Sims, www.thesims.com

