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ABSTRACT

Truly ubiquitous computing poses new and significant chal-
lenges. A huge number of heterogeneous devices will in-
teract to perform complex distributed tasks. One of the key
aspects that will condition the role and impact of these new
tecnologies on developed societies is how to obtain a man-
ageable representation of the surrounding environment start-
ing from simple sensing capabilities. This will make devices
able to adapt their computing activities on an ever-changing
environment. This paper presents a framework to promote un-
supervised training processes among different sensors. This
technology allows different sensors to exchange the needed
knowledge to create a model to classify events happening into
the environment. In particular we developed, as a case study,
a multi-modal multi-sensor classification system combining
data from a camera and a body-worn accelerometer to identify
the user motion state. The body-worn accelerometer sensor
learns a Gaussian mixture model of the user behavior pairing
accelerometer data with information coming from the cam-
era and uses it later on to classify the user motion in a fully
autonomous way. Overall, the system works in a completely
autonomous and unsupervisedway. Experiments demonstrate
the accuracy of the proposed approach in different situations.

Index Terms— Multimodal data, Distributed Sensors, Un-
supervised Motion Classification, Gaussian Mixture.

1. INTRODUCTION

Pervasive computing scenarios comprise a huge number of
heterogeneous devices interacting with each other to achieve
complex distributed applications. Smart camera and sensor
networks could be employed in a variety of applications in-
cluding environmental monitoring [1, 2, 3], navigation, and
human interaction [4]. One central problem underlying such
applications is how to obtain a useful representation of sur-
rounding environment. While advances in hardware technolo-
gies (e.g., smart cameras, wireless sensors and RFID tags) are
making economically feasible to collect a vast amount of in-
formation about the system context, it is still very difficult to
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organize and aggregate all the collected information in a co-
herent representation exploitable by software services.

In this paper we propose a general approach to create a
self-training sensors’ ecosystem. The idea consists in having
sensors to exchange information and learn a model of some
environmental properties under observation. Such a model
can then be used to classify events of interest and take ac-
tions on the basis of a high-level representation of the system
context. This would allow pervasive information and commu-
nication systems using the model to autonomously adapt to
highly dynamic and open environments. In particular, as de-
picted in Fig. 1, different sensors can exchange information
to build a representation of what is happening in the environ-
ment. Once the model has been built, some needed informa-
tion can be spread to help other sensors to construct a model
to interpret their data readings.

More in detail, the approach we propose lets sensors co-
operate to create a model to classify some signals. For ex-
ample, a “trained sensor” (one having already a classification
model) can provide ground truth information to an “untrained
sensor” (one able to produce raw data only) to enable it run-
ning a learning algorithm on its data and become a “trained
sensor” itself. The core idea is to use labels coming from on
sensor type to train another sensor type.

In addition the paper presents an actual use case of this
approach combining data from a camera and body-worn ac-
celerometer.

The rest of this paper will be structured as follows: Sec-
tion 5 will present related works in the area. Section 2 presents
the system architecture. Section 3 presents an implemented
use case illustrating our approach and highlights the statis-
tical approach used to run learning and classification algo-
rithms. Section 4 shows experiments and results conducted
on our test-bed. Finally Section 6 concludes and outlines fu-
ture work in the area.

2. DESCRIPTION OF THE SYSTEM

In our framework, every kind of sensor is modeled by means
of three modules: (i) a data acquisition module dedicated to
raw data sampling, (ii) a learning module that collects the
training data set pairing raw data with external data labels,
and runs a learning algorithm to create a classification model



Fig. 1. Sketch of the multi-sensor setup. A user moves
between two distinct pervasive environments. This allows
pervasive information and communication systems using the
model to autonomously adapt to highly dynamic and open en-
vironments.

of the data, (iii) a classification module that takes the model
from the learning module and use it to classify new raw data
(see Fig. 2).

All the components participating the process can be di-
vided among three categories:

• Trained sensors. These sensors successfully completed
the training phase of their classification algorithm or do
not have a training phase at all (i.e., the classification al-
gorithm is hard-coded in their program). Trained sen-
sor can sample data from the environment and produce
high level events based on the classification of their in-
puts. These events are pushed towards a tuple space
(described below).

• Untrained sensor. These sensors are not trained yet.
They sample data from the environment and store them
in a buffer. Each entry of this buffer is composed by
two elements. The first one is the feature vector, while
the second one is initially empty and should be filled
with a classification label. The training process ends
when enough entries of the circular buffer are properly
filled with a feature vector and the corresponding la-
bel, and the learning algorithm has been executed. At
this stage, the sensor can start to sample, classify and
publish brand new events (i.e., it has become a trained
sensor).

• Tuple spaces. Every pervasive environment has to be
providedwith a tuple space. It receives high level events
from trained sensors and forwards them to every un-
trained sensor that can use them. To avoid broadcast
communication while keeping the overall system easy
and clear, tuple space’s information access is arbitrated
by a publish-subscribemechanism. Trained sensors can
freely publish their events. Untrained sensors have to
subscribe a template to define the events which they
are going to use. Due to this, it is possible to realize
a complex environment populated by a huge number

Fig. 2. Functional blocks of the system. The trained sensor
classifies data and send it to the tuple space. The untrained
sensor pairs labels coming from the tuple space with the sam-
pled data to accomplish the learning phase.

of sensors monitoring different aspects of the environ-
ment. It is worth noting that, using this mechanism,
multiple trained sensors can be coordinated to jointly
train multiple untrained sensors.

The combined use of the above components (togetherwith
standard learning algorithms) allows to fulfill the idea of a
self-training sensors’ ecosystem outlined in Section 1. In par-
ticular different sensors can exchange information to build a
model of what is happening in the environment by means of
the tuple spaces.

3. IMPLEMENTED USE CASE

To verify in practice our ideas, we implemented a specific
use case: train a body-worn accelerometer sensor to recog-
nize motion states starting from a trained camera sensor. We
are basically interested in recognizing the following motion
states: “walking”, “running”, “standing still” and “falling down”.
These states can be recognized either by a camera sensor run-
ning a video analysis algorithm [5] or by analyzing the ac-
celeration patterns collected by the body-worn low-power ac-
celerometer sensor [6].

We used a PC with attached an analog camera and a Cross-
bowMicaZ mote equipped with the MTS310 sensor board. In
particular:

• The tuple space runs on a dedicated server.

• The camera sensor acquires data and forwards it to a
server running the classification module.

• The accelerometer sensor consists of two coupled Mi-
caZ motes able to acquire data and to run the classifi-
cation module. The motes send data to a server where
the learning module is executed. The fact that the clas-
sification module of the accelerometer sensor actually
runs on one of the MicaZ devices allows to classify the
acceleration data even without the availability of any
supporting infrastructure.



It is worth noting that functional modules depicted in Fig.
2 can be spreaded over the tuple spaces. By this way, load
intensitive tasks (e.g., computer vision algorithms and EM)
can be executed over high-performingdevices and lighter pro-
cesses (e.g. online classification)overmobile and low-performing
ones.

We deployed a trained camera sensor able to recognize the
aforementionedmotion states and configured it to upload aris-
ing events to the tuple space. Then, we introduced a second,
untrained, body-worn accelerometer sensor. Once it first en-
ters the camera field of view, it subscribes to the tuple space to
receive the labels coming from the camera with information
about the user motion state. Acceleration data and camera-
based classification are paired together and a model to classify
the user motion state on the basis of the sampled acceleration
data is built on the fly.

Thanks to the labels coming from the camera, the whole
system uses an unsupervised learning algorithm, therefore, no
manual intervention is required.

From that moment on, the accelerometer becomes a trained
sensor: other than producing raw data, can produce high-level
labels describing the user motion. This classification can pro-
ceed even when the sensor exits the area covered by the cam-
era.

3.1. Accelerometer Sensor

Learning Module
Accelerometer signal is alignedwith the camera one. Once

an event is detected by the camera, it is notified to all the sub-
scribing sensors with neglibile communication delays.

The output signal T = {−→ax,−→ay,−→az} provided by the ac-
celerometer consists of the separate accelerations along the
three axes x, y and z. To simplify the representation and re-
duce the dimensionality, the magnitude A of the sum vector
is obtained. In addition, processing the non-oriented scalar
magnitude would produce results independent on the actual
way the accelerometer is worn and, thus, its orientation.

As stated in [6], the power spectrum of the magnitude A
can be a good feature to use. First, the time seriesAS = {A}
provided by the accelerometer is analyzed in the frequency
domain through the FFT (Fast Fourier Transform) transform.
To reduce the computational load, a small 64 element window
with 32 samples of overlap is used. From these 64 elements,
one 32 element power spectrum is produced. Ultimately, the
DC component is canceled since it affects numerical stability.
Summarizing, this procedure converts a time series AS de-
fined in the spatial domain onR to a time seriesX defined in
the frequency domain on R31.

Our cooperative learning approach assigns automatically
a label/class to untrained sensor data using the posterior-based
classification provided by the trained sensors. Thus, data com-
ing from both types of sensors are paired to build the training
set TS = {S1, S2, · · · , SNTR

}, where NTR is the total num-

ber of samples in the training set and Si = 〈Xi, Ci〉 repre-
sents the i-th sample and is composed by the 31-dimensional
accelerometer observation X and the corresponding label C
provided by the camera with a majority-voting process.

Following a generative model, we first solve the infer-
ence problem of determining the class-conditional densities
p (X|Ci) for each class Ci individually. Thus, letXCi be the
set of accelerometer observations in the training set associ-
ated in the labelled data to the class Ci. This likelihood can
be modelled with a 31-variate mixture of Gaussians (MoG).

In order to estimate its parameters, we employ the well-
known EM algorithm and chose to keep the number of MoG
components K fixed to two. This choice has been validated
by a thorough experimentation which demonstrates that in-
creasingK brings no benefit to the performance.

One important optimization we performed is to force the
MoG 31 × 31 covariance matrices Σ

Ci

k to be diagonal, thus
assuming that the 31 Fourier components are statistically in-
dependent. This notably reduces the size of the parameter set
A used to represent the model, makingA storage on the tiny
memory of the body-worn sensor possible.

Classification Module
The set A of estimated parameters is stored in the mote

to be used for motion pattern classification during the on-line
testing phase. Since the accelerometer is now trained the on-
line classification of a new sampleXnew is simply performed
by applying Bayes rule and MAP (Maximum A Posteriori)
framework:

Cnew = Cs ⇔ s = argmax
∀r

p (Cr|Xnew,A) (1)

where, assuming uniform sample’s priori, the posterior class
probability can be written as:

p (Cr|Xnew,A) ∝ p (Xnew|A, Cr) p (Cr |A) (2)

The first term in the right-side of equation 2 corresponds
to the MoG for a given class Cr with parametersACr , while
the second term can be simplified as p (Cr) since there is no
dependency of the class on the MoG’s parameters. The term
p (Cr) represents the prior of class Cr and can be computed
as the normalized occurrence of that class in the training set.

3.2. Camera Sensor

Our system is also provided with a standard fixed color cam-
era. The classical computer vision flow considers first to seg-
ment moving objects (segmentation), then to track them on
the field of view of the camera (tracking), and ultimately to
analyze the objects to classify them and to infer their behav-
ior (object analysis).

In order to define a general-purpose approach, we have
defined a framework where visual objects are classified into
three classes: actual visual objects, shadows, or “ghosts”, i.e.



apparent moving objects typically associated with the “aura”
that an object that begins moving leaves behind itself. Further
details can be found in [7].

In this paper, we describe an approach of appearance-
based probabilistic tracking, specifically conceived for han-
dling all occlusions. The algorithm uses a classical predict-
update approach. It takes into account not only the status vec-
tor containing position and speed, but also the Appearance
Memory Model AMM and the Probabilistic Mask PM of
the shape. AMM represents the estimated aspect (in RGB
space) of the object’s points: each value AMM (p) repre-
sents the “memory” of the point’s appearance, as it has been
seen up to now. In the probability mask PM (p) each value
defines the probability that the point p belongs to the object.

Without going into much details, these two features are
used both to perform the matching between the existing tracks
and the objects detected in the current frames, and to detect
the presence of occlusions. Occlusions are detected by ana-
lyzing a measure of confidence and likelihood computed on
the probability mask PM . Further details can be found in [8].

Classification Module
Given the observation It, the algorithm bases its classifi-

cation on the analysis of the tracked person. It is worth noting
that the computer vision algorithm is capable to track multiple
targets but needs to associate that (or those) target(s) wearing
the accelerometers with the corresponding target ID(s). This
association can be obtained with the same synchronization
procedure described in Section 3.1, based on a specific event
such as a jump. Thanks to sophisticated tracking algorithms,
the distinction between “standing still” (class S), “walking”
(class W ) and “running” (class R) is almost straightforward.
Given that the frame rate is constant, the movement speed can
be easily estimated, even though perspective distortion can af-
fect strongly the estimation.

Let Ht and V t be the height of the bounding box and
the velocity of the tracked person in It, respectively. The
velocity is estimated through the distance (in pixels) covered
by the person’s centroid between It−1 and It. By using a
discriminative approach we can infer the posterior class Ci

probabilities as follows:

p
(

Ci = S|It
)

=
1√

2πσ1

exp

{

−
(V t)

2

2σ2
1

}

(3)

p
(

Ci = W |It
)

=
1√

2πσ2

exp

{

−
(V t − Th1)

2

2σ2
2

}

(4)

p
(

Ci = R|It
)

=
1

1 + exp {− (V t − Th2)}
(5)

p
(

Ci = F |It
)

=
1

1 + exp {− (∆H − Th3)}
(6)

In other words, a person is classified as standing still if
his/her velocity is almost zero, modeled with a zero-mean

Fall Stand Walk Run
Fall 84.27% 8.70% 4.76% 2.28%
Stand 0.00% 86.43% 13.00% 0.57%
Walk 2.71% 0.48% 94.81% 2.00%
Run 0.43% 9.12% 1.72% 88.73%

Table 1. Confusion matrix of camera sensor classification.

Gaussian (see equation 3) with a small standard deviation
σ1 (set to 1 in our tests). The same applies for classifying
walking people (equation 4), but with a Gaussian centred on
a positive value Th1 (set to 5) and with a large standard de-
viation σ2 (set to 3). Moreover, the person is classified as
running if the velocity is greater than a threshold Th2 (set to
10 pixels). Thresholding is performed with a logistic sigmoid
function centred on the value Th2 (see equation 5). Logistic
sigmoid function provides a smoother transition than the clas-
sical Heaviside function used when thresholding. Finally, the
classification of falling people is performed by looking at the
variation ∆H = Ht−1 − Ht of the height of the bounding
box: if this variation is greater than a threshold Th3 (set to 5)
this means that the height is changing fast and this is a cue for
a fall.

Given the equations 3-6, a MAP approach provides the
class maximizing the posterior probabilities:

Cj | j = argmax
∀k

p
(

Ck|It
)

(7)

4. EXPERIMENTAL RESULTS

To evaluate the performances of our system we did several
tests.

First, we recordedwith the camera a personmoving inside
our department, acting in several motion states. At the same
time, the same person wore the accelerometer sensors on his
belt. While the scene was recorded, we manually collected
the ground truth. The camera sampled at 30Hz, while the ac-
celerometers at 100Hz. We reported in Fig. 3 a snapshot of
the data we collected in this experiment. This plot shows the
three accelerations (on X, Y and Z direction) with superim-
posed both the ground-truth and the camera classifications, in
order to show the correspondence of accelerations’ changes
with mition variations.

We used these data in two ways. First, we compared
the labels produced by the camera with the ones manually
collected to measure the computer vision algorithm perfor-
mances. Table 1 presents the confusion matrix of this classifi-
cation. Looking at the reported confusion matrix of the cam-
era sensor classification, it is possible to see that the vision
algorithm works pretty well, having a precision of 88.59%
and a recall of 88.56%.

Second, we measured the classification performance of
the accelerometer, once it has been trained with the labels



Fig. 3. A snapshot of the multi-sensor training set we used. Camera’s classification labels and ground truth are superimposed
over acceleration time series.

coming from the camera. We compared the labels produced
by the accelerometer with the ground truth to obtain the con-
fusion matrix reported in Table 2. Overall the classification
has a precision of 85.25% and a recall of 69.50%. The poor
performance on detecting falls (that contributes also to de-
crease the overall recall of the system) is due to the fact that
the falling action is composed of a transient phase in which
the accelerometer values can vary significantly. A more cor-
rect modeling of this action would be to take the sequence of
observations into account, for instance with a HMM.

Although accelerometer classification performance is quite
good, it is possible to see a reduction of performance with re-
spect to the vision classification. This is due to two simple
facts: first and most importantly, a belt-worn accelerometer
produces a signal that is less descriptive than a full-fledge
video sequence. Accordingly, the features extracted from the
acceleration signal are less capable of discriminating among
high-level behaviors (e.g., falling and walking) than the video
sensor. Second, the accelerometer is trained with labels com-
ing from the camera sensor and thus it is affected also by the
errors coming from the camera.

However these considerations have to be applied only to
the algorithms we used in this use case which are not the
main contribution of this paper. It is worth considering that
the framework we propose can support a moltitude of others
algorithms which would perform much better.

To better understand the contribution of this latter source
of errors, we conducted another experiment aimed at evaluat-
ing the robustness of the approach with respect to the camera
classification errors.

We run a number of learning phases of the accelerometer
data, passing to the accelerometer learning module increas-
ingly corrupted class labels: we corrupted the ground truth
information with errors sampled accordingly to the camera
sensor confusion matrix reported in Table 1. Then, we tested

Fall Stand Walk Run
Fall 15.00% 21.25% 63.75% 0.00%
Stand 0.00% 77.63% 22.37% 0.00%
Walk 0.00% 1.96% 97.20% 0.84%
Run 0.79% 0.79% 10.24% 88.19%

Table 2. Confusion matrix of accelerometer sensor classifi-
cation. Note that the data at the basis of this confusion matrix
are not the same of the camera sensor confusion matrix. The
data considered by the camera are used by the accelerometer
for training only.

the accelerometer classification performance. The graph in
Fig. 4 shows on the x-axis the percentage of errors intro-
duced, varying from 0 to 100 percent. Precision and recall
are reported on the y-axis. As expected, classification capa-
bilities are highly correlated with the quality of training data.
Introducing an error of 20% halves the precision and recall
levels.

To summarize the discussion about the performances of
the system it is possible to see that: (i) the algorithms pro-
posed to track moving persons and classify their motion state
are suitable for this application scenario; (ii) the algorithm we
choose to classify acceleration data is working properly; (iii)
our idea of a self-training sensor ecosystem is feasible and
could help to reduce resources needed to deploy near-coming
smart cameras and sensor networks infrastructures.

5. RELATED WORKS

In [9] was first proven that under certain condition is possible
to exploit classification labels coming from a classifier to train
another one. Since unlabeled samples can be obtained signif-
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Fig. 4. Graph showing accelerometer classification perfor-
mance with respect to the camera classification errors.

icantly easier than labeled samples the main goal would be to
take advantage of the statistical properties of the labeled and
unlabeled data by using a semi-supervised approach. Hence,
a seed classifier, that was trained from a smaller number of
labeled samples, can be improved by taking into account a
large number of available unlabeled samples.

The work described in [10] presents a multi-modal, multi-
sensor classification system using body-wornmicrophones and
accelerometers. Sensors’ outputs are independently classified
and their values are merged together using different kinds of
information fusion mechanisms. Other than the choice of sen-
sors being used (we use cameras instead of microphones), the
main conceptual difference between this and our work is that
we combine sensors also in the learning phase, following the
cooperative learning paradigm described above. Moreover,
our system has been designed to allow also the individual sen-
sors (especially the accelerometer) to work in isolation.

Another interesting work in the direction of multi-modal
multi-sensor motion classification is presented in [11]. This
work combines accelerometer-based classification with data
coming from a RFID-glove reporting information about the
(RFID tagged) objects touched by the user (e.g., if the user
is touching a tooth-brush, it is unlikely that he is running).
The main difference with our proposal is that while this work
focuses only on the classification algorithms we propose a
general framework not tied with specific solutions.

Although the general idea of the training sensor ecosys-
tem is not bounded to specific pattern recognition algorithms.
It is worth reporting some works at the state of the art in this
area. In fact, our proposal is intended to let these algorithms
to cooperate with each other seamlessly.

The analysis of human movements has been a very active
research area in the computer vision community. Gavrila in
[12] surveyed the existing approaches to whole-body or hand

motion analysis. Generally speaking, most of the reported
approaches focus on specific human motions and are heavily
based on a model used for the system training. For instance,
Yam et al. [13] proposed a system for people identification
based on the analysis of their gait. The system extracts leg
motion by temporal template matching in which the periodic
motion of leg is used as a model. Fourier analysis is employed
to analyze the periodicity of the leg motion. However, this
approach can only work on pure lateral views and is basically
capable to distinguish only between walking and running.

Urtasun and Fua [14] exploited a more general model and
used temporal motion models based on PCA to formulate
the human body tracking problem as one of minimizing dif-
ferentiable objective functions. Moreover, a multi-activity
database is accessed to compare extracted features with a the-
oretically infinite set of human motion models.

Ultimately, recent advances in statistical pattern recogni-
tion and computer vision techniques contribute to a new era
of research on human motion understanding, as demonstrated
by the quite recent special issue on Computer Vision and Im-
age Understanding journal [15]. As an example among the
many existing proposals, Robertson and Reid [16] model hu-
man behaviors as a stochastic sequence of actions and eval-
uate the likelihood by using HMM. The observations come
from position, velocity and motion descriptors and matching
is performed against a labeled database of actions.

6. CONCLUSIONS

In this paper we presented a novel approach to promote un-
supervised training processes among different sensors. This
technology allows different sensors to exchange the needed
knowledge to create a model to classify events happening into
the environment. This allows pervasive information and com-
munication systems using the model to autonomously adapt
to highly dynamic and open environments. We described also
an use case of this approach combining data from a camera
and body-worn accelerometer. In particular the accelerome-
ter is trained by the data coming from the camera to recognize
four user motion states.
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