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Abstract

The automatic and unobtrusive identification of user’s activities is one of
the challenging goals of context-aware computing. This paper discusses and
experimentally evaluates instance-based algorithms to infer user’s activities
on the basis of data acquired from body-worn accelerometer sensors. We
show that instance-based algorithms can classify simple and specific activities
with high accuracy. In addition, due to their low requirements, we show how
they can be implemented on severely resource-constrained devices. Finally,
we propose mechanisms to take advantage of the temporal dimension of the
signal, and to identify novel activities at run time.

Key words: Context-aware Computing, Body-worn Sensors, Motion
Classification.

1. Introduction

The automatic and unobtrusive identification of user’s activities from
sensor data is one of the key and most challenging goals of context-aware
computing [1]. Several opportunities can arise from the availability of such
an information. For example, a service would be able to flexibly adapt its
behavior to different circumstances (e.g., a smart phone application could
turn silent, once recognizing that the user is in a theater watching a movie).
As another example, the simple description of user’s activities could auto-
matically produce entries in blogs, diaries and social network sites [2].

While advances in hardware technologies (e.g., smart phones, wireless
sensors and RFID tags [3]) are making feasible to collect a vast amount
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of information about the user in an unobtrusive way, it is still difficult to
organize and aggregate all the collected information in a coherent, expressive
and semantically-rich representation. In other words there is a gap between
low-level sensor readings and their high-level context description [4].

In this paper we tackle the problem of turning low-level accelerometer
data acquired from body-worn sensors into high-level activity descriptions.
Body-worn accelerometers are suitable for this kind of applications: they
are small and economic, could be easily integrated in everyday objects and
clothes, and they are already integrated in a number of smart phones.

To efficiently classify human activities on the basis of accelerometer data
we focus on instance based mechanisms. Instance-based classifiers do not
build an explicit, declarative representation of the class of interest but rely
on the class labels attached to the training samples similar to the test sample
to be classified. These methods have thus been called lazy learners, since
“they defer the decision on how to generalize beyond the training data until
each new query instance is encountered” [5]. We focused on these algorithms
in that they are easy to implement, they offer state-of-the-art classification
performance, the classification procedure can be easily understood (it does
not rely on black-box models like in neural networks), they support on-line
classification and training and, as detailed in the following sections, they can
be implemented on resource-constrained devices.

Although the problem of classifying user activities on the basis of body-
worn accelerometers has already been investigated in several other researches
[6, 7, 8, 9] (see Section 2 for details), the contribution of this paper is to
show that simple instance-based algorithms can classify accelerometer data
more accurately than several other approaches employing more complex algo-
rithms. In addition, we show that instance-based algorithms can be executed
on resource constrained devices like sensor motes.

More in detail, the paper presents the following contributions and insights:

1. We show that simple instance-based (IB) algorithms offer state-of-the-
art classification performance in this scenario (80% classification pre-
cision and recall with 16 classes). In addition, we verified that they
can be easily implemented on resource constrained sensors. In partic-
ular, the mainstream argument that IB consumes too much memory
because it stores individual feature vectors (see later) is unfounded. In
this scenario, IB can be implemented on memory-constrained devices
keeping state-of-the-art performance.
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2. We highlight that body-worn accelerometers are not only useful to rec-
ognize simple motion/ambulation states (e.g., walking, running) like in
most of the related work. These sensors can also recognize and dis-
criminate among specific activities in other scenarios (e.g., use a PC,
stir pasta, drive the car). This supports the use of accelerometer data
and IB-algorithms to fulfill the context-awareness vision.

3. We present a mechanism allowing IB classification to take into con-
sideration the time series of the acceleration data and to aggregate
classification results over a given time frame to considerably improve
classification precision and recall.

4. We present a mechanism to introduce and identify new activity classes
at run time. One of the main problems of IB classifiers is that they
classify any new pattern as one of the predefined classes, no matter how
different the new pattern is from the ones in the training set. Instead,
practical systems require a mechanism to understand that a pattern
deviating from the ones seen previously could represent a completely
new activity rather than a different “gait” for the predefined ones.

Accordingly, the remainder of the paper is organized as follows: Section 2
surveys related work in this area. Section 3 presents the instance-based algo-
rithms we used to classify activities using acceleration data and illustrates the
possible applications enabled by these algorithms. Section 4 presents some
novel mechanisms we introduced to better deal with the sensors’ time series
and to enable the on-line discovery of new classes. Section 5 describes the
collection of the dataset. Section 6 presents the classification performances of
our proposal. Section 7 details some results illustrating the suitability of the
proposed mechanism to resource-constrained sensors. Section 8 concludes.

2. Related work

The problem of recognizing user’s activities on the basis of accelerom-
eter data has been studied in a large number of works. Basically, all the
approaches share the same basic framework:

1. A number of accelerometers are worn by the user typically at specific
positions on her body.

2. Data is collected on a device (smart phone, laptop) and the user is
asked to label his/her activities to provide ground truth information.
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3. Feature vectors are extracted from the raw accelerometer data.
4. A pattern recognition algorithm (whether instance-based or using other

mechanisms, such as Hidden Markov Model and Support Vector Ma-
chine) is used to learn a model to recognize user’s activities on the basis
of the feature vectors.

5. Once this training phase is concluded, new data is collected while the
user performs daily activities. Such data is converted in feature vectors
and then classified.

6. Some standard measures (e.g., accuracy, confusion matrices) are used
to evaluate classification performances.

Since the basic framework of all the approaches in the area is almost
identical, we can present their setting and results in a single table (see Figure
2). For each of the related works being surveyed, we describe the number of
accelerometers being used, where they have been located, the number and
kind of activities the system tries to recognize, the classification mechanism
being used, and the resulting classification accuracy.

Looking at the table, it is possible to see that apart from a few proposals
[10, 6] most of the literature recognize a rather limited set of ambulatory
activities. It is also worth emphasizing that in [10] 5 accelerometers are used
instead of 3. This can obviously provide more data and ease the classifica-
tion process. On the other side, [6] exhibits large variance in classification
precision and recall. Despite a high number of activities is considered, some
of them are poorly recognized (less than 4% accuracy).

Although this table is useful to present several related coherently works,
it does not allow for simply comparing the reported accuracies and deduce
that one work is better than another. These works are applied to different
datasets, thus it is not correct to compare their results: it can be more
difficult to classify 2 similar activities than to separate 20 “disjunct” ones.
Similarly, one work can capture several expressions of the same activity (e.g.,
different ways of running), while another one might only capture only a few.
Despite these limitations, the table gives an overall view on the classification
task being addressed by the related work and on the obtained accuracy.

Our approach demonstrates that simple IB algorithms can reliably rec-
ognize a fairly large number of (also not ambulatory) activities.

We want also to emphasize that the use of IB approaches has recently
gained a lot of attention in research and applications in several other areas.
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One of the best known concrete applications developed with IB mecha-
nisms is Google’s “Did you mean?” tool. It corrects errors in search queries,
not through a complex parsing of the query but by memorizing billions of
query-answer pairs and suggesting the one closest to the users query.

In [11] a system to classify images on the basis of IB algorithms is pre-
sented. The system uses a large dataset of 80 millions images collected from
the Internet and labeled with one of the English nouns in the WordNet lexical
database. Using IB approaches, new images are classified on the basis of the
closest images in the dataset. This work demonstrates that IB algorithms
obtain state-of-the-art performances also on complex computer vision tasks.

The work presented in [12] applies IB algorithms to bio-informatics. It
compares different classification algorithms over typical bio-informatics datasets.
IB algorithms consistently rank at the top of that list. Similarly, for text-
classification, [13] shows that IB algorithms outperforms most of the (more
complex) mechanisms for text classification.

These results further motivate us in experimenting IB algorithms in the
area of human activity classification.

3. Instance-Based Classification of Human Activities

Instance-based classification algorithms can be generally divided into two
broad categories: (i) approaches based on the distance between the new
sample and the closest labeled instances, (ii) approaches based on the local
density of labeled instances in the area close to the new sample.

In our work we experimented with 4 instance-based classification algo-
rithms: K Nearest Neighbors (kNN, or IBk) represents the former category.
Direct Density (DD), Class Local Outlier Factor (CLOF), Local Classifica-
tion Factor (LCF) represent the latter one.

Density-based approaches have been used also because they provide ef-
fective techniques to detect outliers among the samples. As described in
the next section, this characteristic is useful to introduce and identify new
activity classes at run time.

3.1. Feature Vectors Extraction
Before describing the different instance-based classification algorithms, it

is important to describe how feature vectors have been extracted from the
accelerometer data.
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Ref N. Accel. Accel.
placement

N. Activi-
ties

Kind of
Activities

Classification
Mecha-
nisms

Accuracy Notes

[14] 1 2D thigh 7 ambulation Rule-based 93% - 96% (1)
[15] 2 3D L/R hip 4 ambulation,

posture
PCA 83% - 90%

[16] 4 1D chest,
thigh,
wrist,
forearm

9 ambulation,
posture,
typing,
talking,
cycling

kNN 95.8%

[17] 2 1D chest,
thigh

4 ambulation,
posture

Rule based 89.3%

[18] 12 3D all major
joints

6 ambulation,
typing,
writing,
shaking
hands

Naive
Bayes

65% - 95%

[19] 1 2D wrist 4 Kung-fu
movements

Hierarchical
HMM

96.7%

[20] 1 2D lower back 6 ambulation,
posture

Neural
Network

85% - 90%

[21] 1 2D knee 6 ambulation,
posture,
cycling

SOM 42% - 96%

[10] 5 2D hip, wrist,
arm, ankle,
thigh

20 ambulation,
posture,
working,
home
activities

Decision
Table,
IB, C4.5,
Naive
Bayes

84%

[7] 3 3D wrist,
waist,
shoulder

8 ambulation,
posture,
brushing
teeth

HMM 93.8% (2)

[6] 2 3D hip, wrist 34 ambulation,
posture,
working,
home act.

LSA 72.7% (3)

[22] 1 3D waist 8 ambulation,
posture,
brushing
teeth

Decision
Table,
C4.5, kNN,
SVM,
Naive
Bayes

73%-99% (4)

[23] 1 3D waist 4 ambulation,
posture

Gaussian
Mixture

85%

[8] 5 3D wrists,
arms, torso

5 home, of-
fice act.

HMM 90% (5)

In this pa-
per

3 3D arm, waist,
leg

16 ambulation,
working,
home act.

IB 95% (6)

Figure 1: Related work dealing with activity recognition on the basis of accelerometer
data. Notes: (1) Allows also dead reckoning, (2) Tested also on 1 3D sensor whose po-
sition changes dynamically, getting 80% accuracy, (3) Large variance in accuracy among
activities (some activities are poorly recognized - less than 4% accuracy), (4) Portability
of the model across users, (5) Deals also with complex activities, (6) All activities are rec-
ognized with similar accuracy. Acronyms: PCA (Principal Components Analysis), kNN
(k Nearest Neighbors), SOM (Self-Organizing Maps), IB (Instance Based mechanisms),
HMM (Hidden Markov Model), LSA (Latent Semantic Analysis), SVM (Support Vector
Machine).
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We started by just considering feature vectors consisting of 9 elements
corresponding to the x,y,z components of the acceleration measured by 3
body-worn sensors (positioned at right arm, waist and right leg) in a single
sampling (sensors are sampled at 10Hz). Each feature vector has been clas-
sified independently. The distance among these vectors have been measured
in terms of Euclidean distance.

It is worth noticing that our sampling rate is lower than that reported
in other related works. For example, the CenceMe project [9] measured
that 40Hz is the minimum acceptable rate for effectively classifying activities
from a single 3D accelerometer embedded in a mobile phone. In our case,
the use of 3 well-positioned 3D accelerometers allows to classify effectively
accelerometer data acquired at lower sampling rates.

In the following Section 4.1, we describe how we extended this vector to
take into account the temporal dynamics of the collected data.

3.2. Instance-based Classification

In this section we briefly describe the instance-based classification algo-
rithms we adopted in our experiments.

k Nearest Neighbors (kNN, or IBk). The k Nearest Neighbors algo-
rithm classifies a new sample p by selecting the k training samples that are
closest to p under some distance function (in this work we used the Euclidean
distance). Then, p is given the most frequent label appearing in the selected
k training samples. In the simplest case (k = 1), a new sample is classified
the same as the closest instance in the training set.

Direct Density (DD). If the samples in the training set TS are unevenly
distributed (like in most real cases), the kNN algorithm can fail to correctly
classify a given sample if it falls in a region having a high-density of samples
of another class. To deal with this issue, the Direct Density approach (DD)
takes into consideration the average distance between the sample to be clas-
sified and the k-nearest neighbors of a given class. The sample is classified
with the class of k-nearest neighbors at the minimum distance.

Class Local Outlier Factor (CLOF). While the DD algorithm tries
to determine to which extent a new sample is close to the clusters in the
training sets associated with the different classes, the Class Local Outlier
Factor (CLOF) algorithm measures how much the new sample is an outlier
with respect to that clusters. It does so, by considering the ratio between the
DD measure of the sample to be classified (q) and the average DD measure
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of the training samples close to q. If the q sample is within a cluster such
ratio will be close to 1. Otherwise it will be much higher.

Local Classification Factor (LCF). The Local Classification Factor
(LCF) linearly combines DD and CLOF classification (LCF = DD + w ·
CLOF ), trying to get the best trade-off between the two. The parameter w,
used in the linear combination, determines to which degree the outlier factor
of a sample q is relevant for its classification. A higher value for w leads
to more correctly classified objects in the sparser classes, at the expense of
incorrectly classified objects in the denser classes.

In Section 6 we will present the results of applying such algorithms to
human action classification.

4. Refining the Classification

In this section we present some valuable refinements to the classification
process. The first contribution allows to improve classification accuracy by
taking into account the time series of the acquired data. The second contri-
bution allows to discover new classes of activities at run time.

4.1. Dealing with Time

While some classification algorithms, such as HMM [5], inherently deal
with the temporal relationships among the acquired samples, instance-based
algorithms do not have such a mechanism built in their conception.

Still, for human activities classification such kind of temporal relation-
ships are important. In fact, while individual sensor readings can be am-
biguous and noisy, the pattern of a whole time-window of readings can be
much more recognizable. In addition, assuming that human activities last
for a minimum amount of time, it is possible to output class labels at a much
lower rate (e.g., 1Hz) than sensor readings (e.g. 10Hz) to save computational
resources (see Section 7.1).

Accordingly, we developed 2 simple yet effective mechanisms to represent
temporal relationships in instance-based mechanisms.

Embedding Temporal Information in the Samples. This mecha-
nism consists of adding elements, encoding temporal aspects, to the feature
vector. In particular, starting from the 9-components feature vector (3 3-axis
accelerometers) described in Section 3.1, we added mean and variance of the
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acceleration data computed over a sliding window. Furthermore, we consid-
ered sliding windows of both 10 and 20 consecutive samples (thus 1 and 2
seconds, respectively). We computed mean and variance of the module of the
acceleration at each sensor (3+3=6 new components) and concatenated these
new components to obtain the new feature vector. The temporal meaning
is thus encoded in the comparison between the actual observation and the
mean and standard deviation computed in the sliding window.

This is a simple representation of the pattern of acceleration data, however
it allows us to infer whether the current sensor reading is in-line with the
recent past readings or it is an outlier in that respect. As illustrated in
the experimental section, this simple temporal representation is effective and
improves classification accuracy (precision and recall) by more than 10%.

It is important to emphasize that this technique is fully integrated in the
instance based algorithm. Embedding temporal data in the samples, enables
us to use the same classification mechanism without additional modifications.

Majority Voting over Temporal Window. This mechanism starts
from the consideration that all human activities have a minimum duration.
Accordingly, it is convenient to aggregate classification results over a sliding
window and perform majority voting on the classifications of that window.
For example, let us assume a time window of 30 seconds and that sensors
sample raw data at 10Hz and produce time-enriched feature vectors once a
second (as described in the above section). At this stage, suppose that the
system classified, over the 30 seconds window, the user behavior as “running”
23 times and “walking” in the remaining 7 times. Majority voting will let the
system classify the activity as “running” for the whole time frame. Starting
from the fact that it doesn’t make sense to recognize an action during only
few seconds we can consider the classification glitches as an error and ignore
them. Due to this, as illustrated in the experimental section, we switched
from a simple instance-based classifier to a “window-based” classifier. We
divide the time series of classified instances in windows with a variable length.
Each window will be associated with the most frequent label present inside
that time window.

4.2. Dealing with New Classes

One of the main problems in classification is that the system classifies
any new pattern as one of the predefined activities, no matter how distant
the new pattern is from any other pattern in the training set. In other words,
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the system is able to deal with only a predefined set of classes. Instead, a
practical system requires a mechanism to add new classes at run time. It
is worth noting that this problem extends the idea of the NULL class (i.e.,
the class that contains all the instances – outliers – that cannot be neatly
classified in any of the specified classes) [24]. If sensors register a pattern
significantly different form the ones describing the predefined classes, the
system should create a new class (possibly asking the user for a proper label)
and classify the new sensor readings accordingly.

On the one hand, instance-based algorithms are suitable for dynamically
adding classes at run time. Since they do not have an explicit training phase,
but all the computation is deferred at classification time, it is easy to add
a new class just by adding samples with the new class label. On the other
hand, it is rather difficult to decide whether a new sample is an outlier of a
previously existing class or it is the first sample of a new class.

The straightforward solution of creating a new class if the new sample is
farther than a threshold T from all the previously labeled samples does not
work well in practice, producing low classification accuracy.

Thus, we developed a novel solution to this problem. As discussed in Sec-
tion 3.2, Local Classification Factor (LCF) is suitable as an outlier detector.
After choosing the weight w to be used, for every sample q to be classified,
it produces a numeric value LCFi(q) associated with each class i found in
the training set. We modified our classifier to associate to a special class
called new every item which has min(LCFi(q)) greater than a threshold th.
In Section 6 we show that, by properly tuning parameters k, w and th it is
possible to discover new classes at run time rather effectively.

A similar approach, grounded on statistical significance tests, has been
presented in [24, 25]. In our future work we will try to combine this with our
approach to improve the recognition of new classes.

5. Dataset Collection

To test our proposal we set up a 4-node body-worn sensor network to col-
lect acceleration data. The network consists of: 3 Sunspot sensors
(http://www.sunspotworld.com) provided with 3D accelerometers attached
to the right arm, waist and right leg of the person, and a back-packed Ultra-
Mobile PC (UMPC): Asus EeePC 701SD (http://eeepc.asus.com). The 3
Sunspots sample acceleration data at 10Hz and transmit it to the ultra-
mobile PC where data is classified on line on the basis of an instance-based
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algorithm (see Fig. 2). This simple set-up has two main advantages:

1. Simplicity. We developed and debugged classification algorithms on
the ultra-mobile PC, avoiding the complexity in programming with the
sensors cumbersome libraries. This complies with the scientific aim
of our work: we are not trying to create a ready-to-market solution,
but to test models and algorithms. Moreover, high-level profiling tools
to monitor the application memory budget and CPU performance can
be readily used on the ultra-mobile PC. Thus, we can conduct rigor-
ous measurements to test whether the proposed approach can fit the
resource constraints of the sensors.

2. Repeatability. Although the ultra-mobile PC classifies samples on-
line, all the samples are also saved in files. This allows us to repeat ex-
periments and re-verify our conclusions. Some of our datasets are avail-
able on line: http://pervasive2.morselli.unimo.it/~nicola/humanActions/

On the basis of our set-up, we performed two data acquisition campaigns:

1. Activities Dataset. To create this dataset we asked a group of 6
people to wear our sensor network and perform a series of 16 predefined
activities: stir pasta (while cooking); climb stairs; sleep (lie in bed);
run; use pc (type and move the mouse); wash hands; use playstation 3
(sat with the joypad in hand); read sat on the sofa; take the elevator;
ride a bike; stand still; drive the car; eat pasta; drink at the bar (drink
standing still); walk; dance (step feet and move hands rhythmically).
These activities represent a mix of simple ambulatory activities and of
specific actions dealing with house- or office-works. Collected sensor
data has been clearly labeled with the associated activity.

2. Real-life Dataset. To create this dataset, 2 users (among the au-
thors) wear the sensor network for 1 day, as they went about their
normal lives. Ground-truth labels have been acquired with a separate
recording application roughly synchronized with the sensor clock. Ac-
tivities being annotated with the recording application are: chat being
sat; drink standing; set up the table; clean kitchen’s racks; eat; drive
the car; clean the table; chat standing; work at the pc; read on the sofa;
wash hands, take something from fridge

While the former dataset has all the sensor data labeled with the corre-
sponding activities, the latter dataset has a lot of unlabeled data where the
user did not explicitly indicate any activity.
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The tables in Figure 3 show the average amount of data (feature vec-
tors) being collected for each class from each user and the average recording
time. In the case of the “run” activity, for example, we collected about
7800 feature vectors (i.e., 13 minutes of recording) for each user. As already
explained, each of these feature vectors consists of 9 sensor readings (3 3D
accelerometer).

In the table we also report the average distance between feature vectors
of the same class (inter-class distance) and average distance between feature
vectors of one class and vectors of other classes (intra-class distance). The
fact that inter-class distance is lower than intra-class distance support the
use of IB algorithms for classification.

In order to illustrate the structure of our dataset we also executed mul-
tidimensional scaling [26] on our data (to represent 9-dimensions vectors in
2 dimensions). The result is depicted in Figure 4 and shows the clustered
structure of the different classes.

The labels given to the recorded activities reflect what the user did at
the time of data collection. In the activities dataset we selected the above 16
activities/labels with the goal of testing our system with an organized and
heterogeneous set of actions. In the real-life dataset labels reflect what the
user annotated for ground-truth recording.

The use of general labels such as: “dance” or “clean kitchen’s racks”
does not imply that we are able to reliably recognize every kind of “dancing”
or “cleaning kitchen’s racks” activities. We are aware that the dataset we
collected both for training and testing purposes does not contain all the
possible expressions of those general activities.

Our system produces the results discussed in Section 6, within the scope
of the activities’ expressions we recorded.

Nevertheless, the ability of effectively classifying specific activities can
be combined with other approaches to allow the system to recognize more
complex and general actions [27].

6. Experimental Results

We conducted several experiments to verify the accuracy of the algo-
rithms proposed in Section 3 with our datasets. First, we compared IB1,
IB3, IB6, DD3, DD6, CLOF3 and CLOF6 on the same dataset, using fea-
ture vectors described in Section 3.1 . The number after the name of the
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Figure 2: Data collection setup.

algorithm represents the number k of searched neighbors. We tested the pro-
posed algorithms only for values of k <= 6, since we empirically found that
higher values increase the computational complexity without increasing the
accuracy of the classification.

To run the experiments we divided the datasets described in Fig. 3 among
training and testing sets. In particular, in all the experiments we use 300
feature vectors for the testing set, and a training set varying from 30 to 240
feature vectors (as detailed in the following). On the basis of this set up, we
adopt a cross validation approach by shifting the selection of the testing set
across our data. This enables us to report results that are less dependent on
the dataset. Furthermore, the final outcome is less sensitive to overfitting
since the system is trained with different data “folds”.

For all the experiment we computed precision and recall of the resulting
classification. Thats is, for each class X:

Precision =
|{vectors classified as X} ∩ {vectors that are actually X}|

|{vectors classified as X}|

Recall =
|{vectors classified as X} ∩ {vectors that are actually X}|

|{vectors that are actually X}|

Then we averaged results from different classes. It is worth noting that,
since we have a testing set of 300 vectors for all the classes, we can just
compute the average without any weighting.
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Activity Avg. # vectors Avg. rec. time Avg. inter-class d. Avg. intra-class d.

stir pasta (cooking) 3900 6 min 0.59 1.67
climb stairs 10800 18 min 1.41 2.06

sleep (lie in bed) 3700 6 min 0.02 3.39
run 7800 13 min 2.82 2.91

use pc 15400 25 min 0.51 2.31
wash hands 1900 3 min 0.57 1.66

use ps3 1900 3 min 0.17 1.89
read on the sofa 1200 2 min 0.21 1.92
take the elevator 2700 4 min 0.35 2.15

ride a bike 3500 6 min 0.87 1.69
stand still 8800 14 min 0.21 1.77

drive the car 22500 37 min 0.69 2.47
eat pasta 4200 7 min 0.47 1.97

drink standing still (bar) 3900 6 min 0.49 1.83
walk 28100 47 min 1.39 2.15
dance 3300 5 min 1.48 2.01

Activity Avg. # Samples Avg. rec. time Avg. inter-class d. Avg. intra-class d.

chat being sat 12600 21 min 0.07 2.39
drink standing 6000 10 min 0.63 1.44
set up the table 15600 26 min 0.86 1.43

clean kitchen racks 3600 6 min 0.84 1.42
eat 13800 23 min 1.08 1.5

drive the car 9600 16 min 1.64 1.96
clean the table 2400 4 min 1.26 1.86
chat standing 26400 44 min 0.79 1.46
work at the pc 31800 53 min 1.2 1.51
read on the sofa 8400 14 min 0.99 1.65

wash hands 1200 2 min 0.74 1.41
take s. from fridge 1800 3 min 0.75 1.48

Figure 3: (top) Activity dataset. (bottom) Real-life dataset

All the experiments except those in Section 6.3 have been conducted by
using, for both training and testing, data coming from the same user. Thus,
the measured precision and recall in all the experiments refers to this case.
More in detail, we set up the experiment so that during cross validation, the
300-vector testing set is always associated with a training set coming from
the same user.

Figure 5 shows the precision and recall levels reached with an increasing
number of training instances for the various classifiers. It is interesting to
note that even a small number of training instances per class (approximately
50) is enough to reach high precision and recall. Moreover, it is clear from
the graph that IBk and DDk algorithms outperform CLOFk. Considering
the fact that these algorithms may run on resource constrained devices (see
Section 7), IB1 is clearly the best choice. In fact, even though its performance
is similar to IB3, IB6 and DDk, it is much simpler and, therefore, faster to
be executed. For this reason, we used IB1 in all the experiments reported in
the following of this section.

It is worth mentioning that, without any kind of optimizations, by simply
applying IB1 to a training set composed of only 200 instances of 9 attributes
(3 axis, 3 accelerometers) it is possible to achieve remarkable precision and
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Figure 4: (top) Activity dataset. (bottom) Real-life dataset

recall levels. In particular, about 85% on the activity dataset while about
75% on the real life data set. This experiment supports the contribution
claims made at the beginning of the paper: the simple IB1 algorithm can
classify accelerometer data with about 80% precision and recall, with a lim-
ited number of training examples. This fact also supports the idea of using
IB algorithms on resource-constrained sensors (see Section 7).

Although a fair comparison with the state-of-the-art reported in Section
2 would require using the same dataset, the obtained results indicate that
– at least with regard of the set of action we considered – instance-based
algorithms exhibit performance in line with the current best practices.

We were also interested in discovering whether the information contribu-
tions coming from the three sensors were equal or not. Thus we applied IB1
to the same dataset used in the experiments above but modified to suppress
the contribution of one or more sensors. In Figure 6 we plotted precision
and recall reached by IB1, in the activity dataset, increasing the number of
training instances, using one sensor, two sensors, all three sensors, and each
of them alone. The plot shows that the sensors applied to the arm (S1) and
to the leg (S2) provide a similar amount of information, while the one ap-
plied to the waist (S3) is 10% less effective. In summary, even though the
waist-applied sensor gives a slightly smaller contribution, all three sensors
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Figure 5: Precision and recall levels achieved by several algorithms (IBk, DDk, CLOFk) us-
ing an increasing number of training instances (a,b activity dataset, c,d real-life dataset).

are needed to reach an overall precision and recall both close to 90% in the
activity dataset, and to 75% in the real life dataset.

6.1. Dealing with Time

We tried to investigate if precision and recall levels of IB1 could increase
using different feature vectors. In particular we tried to introduce the time
variable in our classification problem by “embedding temporal information
in the feature vectors” in different ways (see Section 4.1). Figure 7(a) shows
precision and recall of IB1 using an increasing number of training instances
each one composed of n samples (9 attributes each) concatenated over a
sliding window (n = 10, 20). In Figure 7(b) the feature vector is composed
of a single sampling (9 attributes) followed by mean and variance of each
attribute (18 attributes) over a sliding window of the previous n elements
(n = 10, 20). In Figure 7(c) the feature vector is composed by a single
sampling (9 attributes) followed by mean and variance of the magnitude of

16



a)

 30

 40

 50

 60

 70

 80

 90

 0  50  100  150  200  250

Pr
ec

is
io

n 
(%

)

Training Instances (for each class)

S1
S2
S3

S1 + S2
S1 + S2 + S3

b)

 30

 40

 50

 60

 70

 80

 90

 0  50  100  150  200  250

R
ec

al
l (

%
)

Training Instances (for each class)

S1
S2
S3

S1 + S2
S1 + S2 + S3

c)

 30

 40

 50

 60

 70

 80

 90

 0  50  100  150  200  250

Pr
ec

is
io

n 
(%

)

Training Instances (for each class)

S1
S2
S3

S1 + S2
S1 + S2 + S3

d)

 30

 40

 50

 60

 70

 80

 90

 0  50  100  150  200  250

R
ec

al
l (

%
)

Training Instances (for each class)

S1
S2
S3

S1 + S2
S1 + S2 + S3

Figure 6: The information contribution of each sensor. The plot shows that the sensors
applied to the arm (S1) and to the leg (S2) contribute with a similar amount of information,
while the one applied to the waist (S3) is approximately 10% less informative (a,b activity
dataset, c,d real-life dataset).

each sensor (6 attributes) over a sliding window of the previous n elements
(n = 10, 20).

These simple temporal representations are effective and improve classi-
fication precision and recall by more than 10%. Considering the fact that
all three variations produce similar results, the simplest one has to be pre-
ferred. Due to this, the most valuable option is the third one. In fact, its
precision and recall levels are only slightly worse than the other two (3-5%)
but the sample vector is composed of only 15 attributes instead of of 27(b)
or 90/180(a).

Finally, Figure 7(d) shows the results achieved using “majority voting over
temporal windows” optimization (see Section 4.1). We divided the dataset in
windows with a variable length. After the classification process, each window
was associated with its most frequent label. This technique is effective and
precision and recall close to 100% can be achieved. With regard to this result,
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Figure 7: Activity dataset. Graph showing precision and recall against number of train-
ing instances, using the temporal optimization of Section 4.1. Training instances composed
of: (a) n samples (9 attributes each) concatenated over a sliding window (n = 10, 20). (b)
n samples (9 attributes each), mean and variance of each attribute (18 attributes) over a
sliding window of n elements (n = 10, 20). (c) n samples (9 attributes each), mean and
variance of each sensor (6 attributes) over a sliding window of n elements (n = 10, 20). (d)
Graph showing the effect of temporal aggregation on the overall precision and recall. Clas-
sified instances are aggregated over increasing time windows (x-axis). For each window
the most frequent ground truth and the most frequent classification are accounted.

it is again worth noticing that this experiment has been conducted using cross
validation. This indicates that the reported result is less dependent on the
dataset and that it is eventually less sensitive to the problem of overfitting
since it derives form training with different data.

Figure 8 illustrates the results of the above experiment conducted over
the real-life data set, and in this case also similar conclusions can be reached.

6.2. Dealing with New Classes

To test the effectiveness of the proposed approach to recognize new ac-
tivities, described in Section , we performed the following set of experiments.
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Figure 8: Real-life dataset. Graph showing precision and recall against number of train-
ing instances , using the temporal optimization of Section 4.1. Training instances composed
of: (a) n samples (9 attributes each) concatenated over a sliding window (n = 10, 20). (b)
n samples (9 attributes each), mean and variance of each attribute (18 attributes) over a
sliding window of n elements (n = 10, 20). (c) n samples (9 attributes each), mean and
variance of each sensor (6 attributes) over a sliding window of n elements (n = 10, 20).
(d) Classified instances are aggregated over increasing time windows (x-axis). For each
window the most frequent ground truth and the most frequent classification are accounted.

We conducted a separate test for each of the 16 classes in our activity dataset.
For each class we created a training set composed of 250 vectors from each
class but the selected one (i.e., 15 · 250 vectors). Moreover, we created a test
set containing 250 vectors of all the classes (i.e., 16 · 250 vectors).

These vectors have been chosen form the dataset in Fig. 3 and then
permutated to engage a cross validation schema.

The idea is to investigate how the algorithm deals with the class that is
in the testing set, but not in the training set. We ran the LCF algorithm to
discover which samples in the testing set were not present in the training set.
In particular, we annotated how many of the instances of the missing class
have been correctly classified as new.
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a b c d e f g h i j k l m n o p
0.83 0.56 0.68 0.88 0.57 0.69 0.91 0.51 0.63 0.67 0.73 0.72 0.59 0.80 0.87 0.85

Figure 9: Table describing the precision of LCF in new events classification. Actions used
are: (a) stand still; (b) sleep (lie in bed); (c) read sat on the sofa; (d) walk; (e) run; (f)
drive the car; (g) climb stairs; (h) use pc (type and move the mouse); (i) use playstation 3
(sat with the joypad in hand); (j) stir pasta (while cooking); (k) eat pasta; (l) drink at the
bar (drink standing still); (m) dance (step feet and move hands rhythmically); (n) ride a
bike; (o) take the elevator; (p) wash hands;

Figure 9 presents the results. It shows the precision of the algorithm in
identifying the new class. The table shows for example that if the action
(a) stand still is not in the training set, then the LCF algorithm correctly
classifies it as new in 83% of the times. In the remaining 17% of the times,
the action is incorrectly classified as one of the other activities.

The result shows that, for the most of the actions, more than 50% of the
instances were correctly classified as new. However it is worth mentioning
that these results have a considerable variance and depend on the number
and type of the classes present in the training set. For example, instances
belonging the dancing class are frequently misclassified as running instead
of new because of the similarities between these two actions. Obviously, if
the class running was not present in the training set, the number of errors
would be greatly reduced.

In this experiments, we empirically set k = 6, w = 0.5 and th = 4.0
by cycling through all the possible values of these parameters to find the
best result. To be more specific we explored 0 < k < 10, 0 < w < 1 and
0 < th < 10 using a discrete step of 0.1. We are aware that this methodology
is prone to overfitting and that this result has been biased by the data we
used. However, considering the early stage of this part of our work, we aim
simply to show that instance-based algorithms can be a suitable tool for
recognizing novel classes.

Similar approaches, grounded on statistical significance tests, have been
presented in [24, 25]. The use of statistical tests rather than a single threshold
can improve the robustness and the correctness of the approach. In [24, 25]
authors report 90% precision in identifying new (NULL) classes. In our future
work we will apply statistical significance tests to improve our results.

6.3. Moving the Training Set

A desirable property for every event classification system is to be resistant
to overfitting. This property makes a system robust to the “background
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noise” during the classification and may greatly simplify the deployment
and eventual updates. While a system prone to overfitting has to be tuned
for every user or usage, a less sensitive one can share a common training
set among different installations. In addition, sharing samples among users
would speed up the training phase of the algorithm. For example, a sport
application could be provided with a pre-collected set of labeled samples
to classify sport activities. A user of this application could try to classify
his/her own activities on the basis of the predefined samples, thus zeroing
the bootstrap training phase.

While in all the previous experiments the training and the testing sets
were recorded by the same user, in this experiment the training and the test
sets were recorded by two different users.

We tested two kinds of feature vectors for this experiment: (i) vectors
composed by a single sampling (9 attributes) and mean and variance of the
magnitude of each sensor (6 attributes) over a sliding window of n elements
(n = 10, 20). (ii) The same kind of vectors, but normalized to a fixed range,
in order to reduce differences across users. Figure 10 shows the precision
and recall levels against the number of training instances. Unfortunately the
graphs show a robust decrease (40%-55% against 90%) in precision and recall
suggesting a limited portability of training sets over different installations.
This is due to the inherent idiosyncrasies of each user’s movements that make
the sharing of samples rather inaccurate.

To better illustrate this problem we analyzed the confusion matrix asso-
ciated with this classification (see Figure 11). Large errors are mainly asso-
ciated to rather similar activities (e.g., looking at the first row, the “drink
at the bar” activity is often misclassified into “stir pasta”. Similarly “eat
pasta” is often confused with “stir pasta”).

The main problem here relates to our use of labels to describe activities.
As discussed in Section 5, our dataset is rather limited: data representing
the “drink at the bar” activity, for example, does not cover all the possible
expressions of such an activity, so different users might label “drink at the
bar” with some rather different movements. To overcome this limitation,
on the one hand a larger dataset comprising more expressions of the same
activities should be recorded. On the other hand, novel features should be
extracted from the sensor data. In particular, the spectral characteristics of
the data seem to be a good candidate for this kind of application [7]. In our
future work we will combine spectral characteristics in the feature vectors so
as to allow for training set portability across users.
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Figure 10: Graph showing precision and recall against number of training instances. In
this case the feature vector is composed by a single sampling (9 attributes) and mean
and variance of the magnitude of each sensor (6 attributes) over a sliding window (10/20
items). The training and test set are composed by the same actions performed by two
different users. This shows a limited portability of training sets over different installations.
Due to this, it is important to tune the classification system on each user.

7. Running Instance-based Algorithms on Resource-constrained
Sensors

Instance-based classification algorithms are usually known to have two
main performance drawbacks: (i) high classification time, and (ii) large stor-
age space needed. In this section we illustrate that none of these concerns
apply to this application scenario. We show this both with simple calcula-
tions and with some experiments on different sensor platforms.

7.1. Classification Time

Instance-based classification typically has classification times that are
much larger than other classifiers. For example, while with a linear clas-
sifier only a dot product needs to be computed to classify a test sample (to
find out the closest class vector), instance-based algorithms require the train-
ing set to be ranked for similarity with the test sample, which is much more
expensive. This is a characteristic of “lazy” learning methods, since they do
not have a true training phase and thus defer all the computation at clas-
sification time. The fundamental operation that needs to be performed by
these algorithms is to identify the k training samples closest to the sample
to be classified. While exhaustive search requires O(N) operations, where
N is the number of samples in the training set, there exist advanced data
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Figure 11: Confusion matrix for experiment of Figure 10. First row is classification. Last
Column groundtruth. a = drink at the bar (drink standing still); b = stir pasta (while
cooking); c = ride a bike; d = dance (step feet and move hands rhythmically); e = drive
the car; f = eat pasta; g = run; h = sleep (lie in bed); i = climb stairs; j = stand still; k
= use pc (type and move the mouse); l = walk; m = wash hands; n = use playstation 3
(sat with joypad in hand); o = read on the sofa; p = take the elevator

structures (kd-trees) [28] able to identify the k nearest neighbors with O(log
N) operations.

To assess the feasibility of our proposal, also in the simple case of exhaus-
tive - O(N) - search, we assumed a scenario with 100 activities to be recog-
nized and 100 training samples used to describe each of them. In particular,
we focus on the case illustrated in Figure 7(c). In this case, acceleration data
are sampled at 10Hz by three sensors. Sensors sample data and send them,
using a wired or wireless connection, to the main sensor node (in charge of
performing the IB classification). The main node receives all the data and
computes means and variances over a window of 10 elements (1s) to get the
feature vector. Assuming that human activities last for a minimum of 1s,
the main sensor node can output class labels at 1Hz, so it has to classify one
feature vector composed by 15 floats every second. We considered the time
needed to receive and average the 10 samples in the window as negligible.

Although in our setup we used an UMPC to run classification, in this
experiment we wanted to test the computational burden of IB classification
on a wireless sensor. Given these assumptions, we measured the time required
by both Sun SPOT and MicaZ sensors (http://www.xbow.com) to compute
the Euclidean distance between two 15-float samples. We implemented a
simple algorithm in Java (Sun SPOT) and NesC (MicaZ) and ran it 1000
times on both the devices. On average it took approximately 0.01ms on a
Sun SPOT sensor and 0.05ms on a MicaZ sensor (see Figure 12).
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Figure 12: Distribution of time to compute distances among feature vectors in Sun SPOT
and MicaZ sensor platforms.

Considering 100 actions, each of them described by 100 samples, and a
simple exhaustive search over the whole dataset composed in this case by
10000 training samples, we can estimate an overall execution time of 0.1s
on Sun SPOT sensors and 0.5s on MicaZ sensors. It is worth noting that
this search has to be done only once every second. Moreover, by exploiting
efficient data structures able to avoid exhaustive searches like kd-trees, the
overall execution time would be in the order of 1ms on both the sensors.

7.2. Memory Requirements

Instance-based classification algorithms tend to require more memory
than other classifiers. While most classifiers (e.g., neural networks and
Bayesian networks) construct an explicit and declarative representation of
the class of interest, instance-based algorithms simply store all the samples
in the training set. So, while the class representation can be compact (e.g.,
a linear classifier only requires 1 vector per class), the storage of the training
samples is much larger.

The above two drawbacks are almost negligible in our scenario. We ver-
ified (see Figure 7 and 8) that state-of-the-art classification performances
can be achieved by storing about 100 feature vectors per class and that no
significant improvement can be expected by increasing that number.

For example, considering the case of Figure 7(c) in which we have samples
of 15 floats: single sensor data (9 floats) followed by mean and variance of the
magnitude of each sensor over a sliding window (6 floats). Assuming 4 bytes
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per float, then we have 60 bytes per feature vector, and thus 6KB per class.
In our test-bed, each sensor is a Sun SPOT provided with 512KB RAM and
4MB Flash memory. Thus, by storing the feature vectors in the node flash
memory, we can theoretically recognize about 650 activities. Considering a
testbed of MicaZ sensor node, each having 512KB Flash memory, we would
still be able to represent 85 activities.

8. Conclusions and Future Work

In this paper we described the use of instance-based algorithms to infer
user’s activities on the basis of accelerometer data acquired from body-worn
sensors. In particular, we highlighted that instance-based algorithms pro-
vide state-of-the-art performance, are simple to implement, and can run on
resource-constrained sensor platforms. Furthermore we showed that they can
achieve remarkable precision and accuracy levels in classifying simple and
specific activities. As a consequence, this approach is a promising starting
point for building next-generation systems able to recognize more complex
activities [27].

Despite these encouraging results, further work is needed to improve the
portability of training sets across individuals and to better identify new
classes at run time. In addition, larger-scale experiments may be needed
to enable the development of practical tools for the automatic recognition of
user activities.
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