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Abstract—Pervasive services may have to rely on multimodal
classification to implement situation-recognition. However, the
effectiveness of current multimodal classifiers is often not
satisfactory. In this paper, we describe a novel approach to
multimodal classification based on integrating a vision sensor
with a commonsense knowledge base. Specifically, our ap-
proach is based on extracting the individual objects perceived
by a camera and classifying them individually with non-
parametric algorithms; then, using a commonsense knowledge
base, classifying the overall scene with high effectiveness. Such
classification results can then be fused together with other
sensors, again on a commonsense basis, for both improving
classification accuracy and dealing with missing labels. Ex-
perimental results are presented to assess, under different
configurations, the effectiveness of our vision sensor and its
integration with other kinds of sensors, proving that the
approach is effective and able to correctly recognize a number
of situations in open-ended environments.

Keywords-pervasive computing; situation recognition; com-
monsense knowledge; image analysis; activity recognition;
mobility.

I. INTRODUCTION

Situation-awareness, i.e., the capability of automatically
recognizing the situations in which an entity is engaged,
is a key feature to be enforced in pervasive computing
services, to enable them to dynamically adapt their behavior
to the current situation. Beside location-based mobile appli-
cations and services, which must exhibit forms of situation-
awareness, the need to acquire situation-awareness arises
in a variety of other scenarios like mobile robots, smart
buildings, e-vehicles and adaptive traffic management.

Due to its increasing importance, many researchers in per-
vasive computing are working on situation recognition. Most
of them focus on algorithms and tools to identify specific
situational aspects (e.g., location [18], current activity [14],
health status [4], daily routines [31], [9] etc.) from sensor
data. In particular, the key goal is to analyze and classify
the data produced by available sensors. This can take place
by analyzing and classifying the data of individual sensors
or, when multiple sensors are available, in a multimodal
way [30] [21], by fusing together the classification results

of different sensors to increase accuracy in recognition,
enabling complex multi-faceted situation recognition.

Among many works attacking situation recognition using
sensors such as accelerometers, magnetometers, GPS, mi-
crophones, light sensors, and so forth, vision (i.e., cameras
as sensors) has not received the same degree of attention so
far. On the one hand, vision is potentially very informative:
just think of how much information human brain is capable
of extracting from what we see. On the other hand, low-
cost miniaturized cameras have already hit the market, and
we can reasonably expect that micro cameras continuously
capturing what is around will be part of our future everyday
life-logging toolset.

In our opinion, one of the most relevant obstacle that
prevented vision to be intensively exploited as a situation-
recognition tool in pervasive computing so far is the lack of
reliable and general-purpose classifiers. In fact, while it is
simple to acquire images, it is still cumbersome to detect and
concurrently classify a wide range of objects, people, and
scenes. Many attempts have been made in the recent past
[10]. These latter focused on recognizing specific classes
of objects through complex parametric representations, pre-
venting vision to be an attractive source of information in
pervasive systems due to their computational requirements.

Recent advances in image processing, however, have
shown that it is possible to implement effective general-
purpose image classifiers using non-parametric algorithms
[26], [22], [15]. With a large datasets of loosely classified
images, it is possible to find, with high probability, images
visually similar to a query image, containing alike scenes
with related objects arranged likewise. Then, even though
the images in the retrieval set are only partially labeled
(as tagged Web images typically are), it is still possible to
propagate the labels to the query image, so as to perform
classification.

Starting from this idea, which has proved to be effec-
tive under controlled conditions, we have extended and
integrated it into a more elaborate framework exploiting
commonsense knowledge, suitable for multimodal situation
recognition in pervasive computing scenarios.



In particular, the contributions of this paper are as follows:
• We detail the design and implementation of our vision

sensor. It is based on deconstructing an image to
individual entities/objects, classify them with a non-
parametric approach and then on reconstructing a com-
prehensive classification out these individual features
with commonsense knowledge. Experiments show that
our vision sensor can represent an effective tools to
extract compact yet expressive situational information
(i.e., the scene) in an unattended way from a simple
camera.

• We show how, using a simple framework based again
on commonsense knowledge, the vision sensor can be
effectively integrated with other sensors for multimodal
situation recognition, so as to improve classification
accuracy and deal with missing labels.

The remainder of this paper is organized as follows:
Section II describes how the vision sensor has been designed
and developed. Section III assesses the effectiveness of the
vision sensor in different types of situations, and discusses
its current limitations. Section IV details our commonsense
approach for multimodal sensor fusion, and quantifies its
benefits with experiments. Section V discusses related work.
Section VI concludes the paper and outlines future develop-
ments.

II. THE VISION SENSOR

A miniaturized wearable camera can be easily embedded
in a suite and configured to automatically collect user’s
environment pictures. Because of this, they could potentially
already be used as sensors enabling situation recognition.

Results presented in [26] and [22] showing that it is
possible to recognize objects, persons and scenes using large
datasets combined with non-parametric algorithms. Such
results inspired us to investigate how to integrate vision in
pervasive systems. However, we immediately faced a notable
problem: images sampled in unpredictable conditions might
be confused or not very informative. The camera might be
out of focus, too close to the target, partially hidden by an
obstacle, pointing to a dark spot, and so forth.

These premises led us to develop a technique able to
make use of a number of low-quality, and eventually low-
meaning images to perform situation and scene recognition.
Specifically, instead of performing classification on a single
good-quality image, we classify a set of images (i.e., the
temporal window in which images have been captured).
The process is based on the extraction of a number of
meaningful details from a set of images, their independent
classification, and the recognition (i.e., classification) of the
global scene using commonsense knowledge. The overall
process is depicted in Figure 1 and can be summarized as
follows:

0) Image sampling: images are sampled at specific rates

to obtain different samples of the overall surrounding
scene.

1) Unsupervised image segmentation: each image is seg-
mented using an unsupervised technique to extract in-
dividual features (e.g. objects) form the overall image,
thus fragmenting the overall classification problem
into the problem of classifying a set of simpler sub-
images uniformly scaled to a tiny size.

2) Image classification: each sub-image is classified, ac-
cordingly to [26], by searching its nearest neighbors
within a loosely labelled dataset of 7.9x107 images
(a). For each sub-image, and based on the labels of
its nearest-neighbors, a voting scheme on the Wordnet
knowledge base is applied to associate a label to it (b).

3) Situation classification: labels assigned to images (and
segmented sub-images) taken within a temporal win-
dow are positioned within the ConceptNet knowledge
base as label nodes. Situation classification is per-
formed by searching the class node with the shortest
average path to the individual label nodes (see Figure
2) so as to eventually identify a label that re-construct
a global comprehensive situation (i.e., a scene).

As a result, a simple camera can become an effective and
usable vision sensor, based on which users can compactly
classifying situations around. For example, as in Figure 1,
by recognizing that the user is currently in a living room.

Let us now detail each of the above phases.

A. Unsupervised Image Segmentation

Image segmentation (Figure 1, step 1), is a key stage in
our approach because of two motivations. The former is
that randomly-taken images usually have low quality and
semantic levels. Because of this, searching them within a
dataset, even within 79 million images, can be unfruitful.
The latter, instead, is related to the very low resolution of
the images of the dataset we have used (i.e. 32x32 pixels).
Moreover, in order to search for neighbors within this
dataset, query images have to match this size. Despite this
resolution is sufficient to perform classification of a scene,
a person or an object [17] it is only possible if the majority
of visible area actually contains the subject. In our case,
randomly-taken images, might contain informative details
that would be completely lost by shrinking image size to
32x32 pixels. Due to these considerations, we implemented
a modified version of Grabcut to isolate the key components
of each image.

Grabcut [23] is an efficient tool for background suppres-
sion. Removing the background surrounding each element
simplifies the contours elaboration of each separable subject
and, as consequence, its bounding rectangle. To discern
automatically between background and foreground of a
single image, it is necessary to define a model of at least one
of them. Grabcut has been designed as an interactive tool
requiring users to select some areas forming the background



Figure 1. The main phases towards classification in our vision sensor. (1) Image segmentation: images periodically taken by the camera are segmented
using an unsupervised technique to extract individual objects/entities from the overall scene; (2) Image classification: each sub-image is classified by
searching its nearest neighbors within a loosely labelled large dataset of images (a) and applying a voting scheme on the Wordnet knowledge base (b); (3)
Situation classification: labels assigned to images (and to segmented sub-images) from within a given temporal sliding window are positioned within the
ConceptNet knowledge base as label nodes. Situation classification is performed by searching the class node with the shortest average path to the label
nodes, so as to obtain a re-constructed comprehensive classification of the overall scene.

model. To enable this process to run without supervision,
we came to the assumption that generally the background
surrounds the subjects that are likely to lay in the center of
the frame. Therefore, we consider an outline 5% inwards
respect to the border of the image, that delimits the initial
pixels belonging the background. Once the background
model is determined, Grabcut retrieves all the remaining
areas composing the background itself. We are conscious
that assuming that the background model is always sit-
uated at the border of the frame produces segmentation
errors. Nevertheless, if the background model contains an
object, the only consequence is that that object will not
be segmented and, thus, ignored in the following phases.
Considering that our approach is based on aggregating and
processing a number of different views of the same scene,
this results acceptable.

Given one input image, this stage produces a set of
32x32 images composed by the initial image itself and all
sub-images that have been identified by the segmentation
algorithm.

B. Image Classification

Each tiny image is then classified by applying the process
detailed in [26]. Here we provide a small summary. We use a
visual database containing 7.9x107 images (32x32, 24-bit).
Each image is loosely labeled with a keyword belonging to
the Wordnet knowledge base. Due its size, the dataset can
not be manually labelled and optimized. Thus, it contains
noise in terms of duplicate images and not relevant labels.
Furthermore, duplicate images might have different labels.
The classification process can be decomposed in two parts:
neighbors search and voting.

Neighbors are searched (see Figure 1, step 2a) by execut-
ing an exhaustive search on the whole dataset. Images are
represented as ordered vectors of 3072 elements, normalized
to have zero mean and unit norm. Then, the sum of squared
differences is computed:∑

x,y,c(I1(x, y, c)− I2(x, y, c))
2

This process is extremely expensive in terms of computa-
tional resources. To begin, we made all the computations off-
line. Nevertheless, recent in-memory indexing techniques
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Figure 2. Situation classification within ConceptNet. Each class candidate for classification is marked on ConceptNet as a class node Ci (living room,
kitchen); each label coming from the image classification phase is marked as a label node lj . For each class node Ci is computed the average shortest
path pli to every label node lj . Classification is performed by selecting the class Ci with the lowest pli. In this figure the transition process between two
domestic environments is exemplified.

such as spectral hashing [29] can be used to speed up the
process of several magnitude orders.

Given a set of neighbors, each one associated to a label,
the classification is performed by voting on the Wordnet
tree (see Figure 1, step 2b). Wordnet provides semantic
relationships between the 75,062 nouns for which we have
collected images. For simplicity, we reduce the initial graph-
structured relationships between words to a tree-structured
one by taking the most common meaning of each word.
The result is a large semantic tree whose nodes consist of
the 75,062 nouns and their hypernyms, with all the leaves
being nouns.

Given a query image, each neighbor image votes for its
branch within the tree. In this manner votes are accumulated
across a range of semantic levels and the effects of the
labeling noise are averaged out over many neighbors. Clas-
sification is performed by assigning to the query image the
label with the most votes at the desired height (i.e. semantic
level) within the tree. The number of votes acts as a measure
of confidence.

The result of this process is a set of keywords, each one
associated to an image, or sub-image, taken in input.

C. Situation Classification

Classifying a single image is not enough for our purposes.
As already mentioned, images sampled in unpredictable
conditions are often not informative. Additionally, the seg-
mentation phase described above actually splits the global
situation in a number of details. For example, a living room
can be associated to a set of labels such as table, chair, lamp,
mirror, window, television.

To mitigate this problem, we considered a set of images
collected within a temporal window instead of a single one.
We can safely assume that every user spends a minimum
amount of time (i.e. minutes at least) in a given situation.
In this way, even though specific images are not properly
segmented or classified, it is likely that the whole set of

labels is informative. Furthermore, in order to reconstruct
the global situation from commonsense labels, the ideal
knowledge base should exhibit two main features: (i) it
should include a vocabulary covering a wide scope of topics,
and (ii) it should also incorporate semantic relations between
concepts.

WordNet lacks, however, semantic relations. For instance,
it does not provide obvious information that a “dog” “barks”.
We argue that for our problem, information on contextual
rather than structural relations are of greater need. Concept-
Net is a semantic network designed for commonsense con-
textual reasoning. It is organized as a massive directed and
labelled graph. It is composed by about 300,000 nodes and
1.6 million edges, corresponding to words or phrases, and
relations between them, respectively. Most nodes represent
common actions or chores given as phrases (e.g., “drive a
car” or “buy food”).

Having in mind our goal of reconstructing a global
situation starting from a set of loosely related classification
labels, we consider labels produced by the two stages above
as a sort of cloud of labels. As situations change over
time, the cloud of labels moves through the ConceptNet
graph. Thus, the class node better approximating the cloud
changes as well and dynamic classification can be performed
by searching which class node better approximates a given
cloud (i.e., labels collected within a given temporal window).
The classification process is detailed below and depicted in
Figure 2.

1) Each class, interesting for classification, is marked on
ConceptNet as a class node Ci;

2) Each label coming from the previous phase is marked
as a label node lj . Labels that do not correspond to
any node within ConceptNet are discarded;

3) For each class node Ci, it is computed the average
shortest path pli to every label node lj .

4) Situation classification is performed by assigning to



the time window taken into account the class Ci with
the lowest pli.

At the end of this process, a set of images has been
converted into a single ConceptNet label describing the
most likely situation. This scheme, proved to be effective in
dealing with (i) dynamism of unpredictable environments,
and (ii) a number of noisy and misleading labels coming
from automatically collected images.

III. EVALUATION

In this section we describe experiments to evaluate the
system we developed. We collected a small dataset using a
GoPro HD camera able to collect 720p images at periodic
intervals with an extremely low power consumption (around
two days, with batteries fully charged, sampling every 30
seconds). We collected a dataset of 1920 images during
16 hours (not contiguous, we extracted from the whole
recordings only relevant segments) of ordinary life, by
sampling one image every 30 seconds. Images have been
automatically timestamped and manually labelled. We took
care of having at least one hundred time-contiguous images
for each class we analyzed. Images of different instances of
each class have been collected by three different persons.
It is worth noting that being images collected from a first
person perspective, overall performance do not degrade if
multiple users concur in training set aquisition.

Given the dataset we collected, in each experiments we
have at least one hundred images for each class against
a dataset counting 1920 images overall. We considered
a temporal sliding window of 300 seconds (10 images
each). Neighbors search has been configured to retrieve 64
neighbors. We have chosen to retrieve 64 neighbors because
the overhead introduced by searching more of them did not
produce significant improvements. This evidence has been
validated in [26] as well. Performance are expressed in terms
of precision / recall ratio and each line averages precision
and recall. Precision is defined as the fraction of retrieved
instances that are relevant, while recall as the fraction of
relevant instances that are retrieved. More specifically, for
each image, we stored the first 16 labels associated with their
confidence measure (the number of votes on Wordnet). De-
creasing the minimum confidence allowed, recall increases
while precision diminish. A perfect classifier is expected to
achieve precision = 1, recall = 1. The most of the curves
we plotted pass around (precision = 0.5, recall = 0.5).

Although our approach is general, we focused on specific
everyday life aspects that are usually relevant for scene
recognition. In particular, we investigated performance in
recognizing (a) general types of location, (b) domestic and
(c) working environments, (d) vehicles used. To roughly
quantify our contribution we compared results achieved
using our approach with a modified version of [26]. Specifi-
cally, instead of segmenting images, classify each and every

sub-image and identify candidate situations using Concept-
Net, we searched 64 neighbors for all the images belonging
to a specific temporal window and used all the retrieved
labels for voting on Wordnet.

Figure 3(a) illustrates results for general scene classifi-
cation. Specifically, we used the following 8 classes: road,
square, park, shop, cinema, mall, restaurant, gym. In this
experiment, the two approaches are almost comparable. The
reason is that these are mainly large locations, without many
obstacles. Thus the average quality of sampled images is
high and details (usually emphasized through segmentation)
are small compared to the scene.

Figure 3(b) shows results for domestic environments (i.e.,
kitchen, living room, bathroom, bedroom, garden). In this
experiment, our approach based on splitting the scene in
a number of details and reconstructing it through com-
monsense knowledge outperforms the voting approach. As
already discussed, the main reason behind these results is the
randomness of the sampled images. If fact, while voting is
effective with images with a reasonable semantic level (e.g. a
good picture showing a whole living room), its performance
degrades with the semantic level of considered images.

Figure 3(c), summarizes results obtained for working
environments classification (i.e., meeting room, office, cor-
ridor, leisure room). As for Figure 3(b), and with the
same motivations, our approach outperforms voting. It is
interesting to note that because of the 79 million images
dataset contains less images related to these concepts, the
average results of this experiment are slightly worse than
for domestic environments.

Figure 3(d), finally, illustrates results for vehicle classi-
fication (i.e., bike, car, bus, train). It is important to note
that we classify vehicles from a first-person perspective. The
most of considered images depict what users see when they
are using the vehicle. The 79 million images we use for
neighbor search, instead, associate vehicles labels to images
representing them from the outside. From the perspective
of a user actually watching them instead of using them.
Because of this reason, identifying details within images
(e.g. the steering wheel, other people biking) leads to better
results.

IV. MULTIMODAL SENSOR FUSION

Despite the vision sensor we presented in this paper
proved to be effective for scene recognition, it is far from
being perfect. Current methodologies deal with inaccurate
sensors by fusing diverse sources of information. Sensor
fusion is here used as the combining of sensory data or data
derived from sensory data from disparate sources such that
the resulting information is in some sense better than would
be possible when these sources were used individually. The
term better in this case can mean more accurate, more
complete, or more dependable, or refer to the result of an
emerging view.
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Figure 3. Precision/Recall curves for different situation recognition experiments. The system has been analyzed using a dataset comprising 1920 images
collected along 16 hours (not contiguous) of ordinary sampling one image every 30 seconds. We tested ddd specific problems: (a) general types of location,
(b) domestic environments, (c) working environments, and (d) vehicles used.

In this section we describe how commonsense can be used
as a tool enabling sensor fusion and how it can be used
to integrate the vision-based sensor presented with other
sources of information. Specifically, we apply former results
of our group to evaluate the benefits that can be achieved by
using a vision-based location sensor in a real-world problem
concerning both user activities and locations.

A. Commonsense Multimodal Sensor Fusion

The approach, detailed in [1], extracts well-know cor-
relations among different facets of everyday life from a
commonsense knowledge base. It can be applied to a number
of cases for the sake of: (i) ranking classification labels
produced by different classifiers on a commonsense basis
(e.g., the activity classifier detects that the user is running
with an high confidence and the place classifier outputs two
possible labels: “park” and “swimming pool”. In this case,
using commonsense, it is possible to infer that the user is
more likely to be in a park that in a swimming pool); (ii)
predicting missing labels (e.g., if a user is running but the
location data is missing, “park” is a likely location).

For activities we made use of data collected from 3-
axis accelerometers, sampling at 10Hz, positioned in 3 body
locations (i.e., wrist, hip, ankle) and classified activities
using instance-based algorithms [3]. The system has been
trained to recognize 8 activities (i.e., climb, use stairs, drive,
walk, read, run, use computer, stand still, drink). Classes has
been described using 400 training samples each.

To classify locations we used two different sensors. The
former [16], [9] samples GPS coordinates and classifies
locations by querying Google Maps’ API. Specifically, this
API takes as input a couple of geographic coordinates and
a radius, returning a list of points of interest associated to
a label coming from a predefined set. The latter, samples
first-person images using a GoPro HD camera embedded
into the user’s suite in front of her chest. Both of them are
configured to recognize 8 locations (i.e., road, square, park,
shop, cinema, mall, restaurant, gym) using a sampling period
of 30s. Ground truth data have been manually annotated
during 8 hours of ordinary life. The whole dataset has been
split into 5 minutes long windows. The experiment consisted
in automatically associate each time window to the right
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Figure 4. Experimental results. While the Activity Recognition system stand alone (a) provides reliable classifications, the Place Identification (b) can
rarely provide a correct classification. Experimental results combining the Activity Recognition and Place Identification in a naive way (c) shows that there
is the need for some intelligent mechanism to combine the data, indeed (d) proves that commonsense can be effectively used in this application.

(activity, location) tuple.

B. Evaluation

Experimental results have been organized according with
the following four categories: Correct Classification: correct
classification; Undefined Classification: more than one clas-
sification labels produced, including the correct one; Wrong
Classification: correct classification label missing; Missing
Data: no labels have been produced.

First, we discuss the performance of all three modules
considered independently. The activity module (Figure 4a)
is the most precise: around 85% of the samples are correctly
classified. Location sensors provide less accurate results.
However, while the vision-based sensor is able to correctly
classify around 55% of the samples, the GPS-based one clas-
sifies around 80% of the samples as undefined (i.e., it returns
multiple labels, including the correct one). Low accuracy of
the GPS-based sensor is due to intrinsic localization errors
of commercial GPS devices. To mitigate them, the system
has been setup to use a search radius of 250m. Clearly, the
number of reverse geo-coded locations is proportional to
the search radius. The bigger the radius, the more the re-
turned location labels. Because of this, especially in densely
populated areas, the system might produce numerous false
positives (i.e., undefined classifications).

Once activities and locations are transformed into struc-
tured data (i.e. classification labels), the source of informa-
tion is not relevant anymore. Due to this, labels produced by
all three modules can be treated in the same way and fused
together on a commonsense basis using results presented
in [1]. Specifically, when both location and activity labels
are combined, four cases can occur: (i) both are available,
(ii) only activity is available, (iii) only location is available,
and (iv) no data is available. The first case allows to apply
commonsense sensor fusion. In both the second and the

third case, instead, commonsense can be used to identify
a possible place or activity to complete the (activity, place)
tuple.

Figures 4(d,e) show results obtained by fusing activities
with locations classified by the GPS-based and vision-based
sensors respectively. In both cases, the number of samples
correctly classified increases while missing and undefined
samples decrease to zero because of the commonsense cor-
relations among activities and locations. As expected, vision-
based location sensor produces better fused data because of
its higher stand-alone accuracy.

In this experiment we demonstrated how the vision-based
sensor we presented can be used in a real-world situation
recognition problem and how it can be flawlessly fused with
other sensors using commonsense knowledge.

V. RELATED WORK

Many research works focus on sensor fusion at different
levels, either for acquiring diverse aspects of the context
or for reasoning about them to achieve a finer grained un-
derstanding or detecting inconsistencies. Early works define
sensor fusion as an aggregation of logically related context
data based on simple name transformation [8] either for con-
text disambiguation [7] or complexity reduction [12]. More
recent works, instead, propose to represent contextual data
with a common structure in order to transparently manage
diverse sources and simplify reasoning processes[5], [6]. For
example, [27] proposes a model for multimodal sensors in
a smart home environment that exploits the combination
of multiple techniques to reduce the number of model
parameters to be taken into account when a large number
of sensors are used. Proact [25] combines data coming from
RFIDs and an accelerometer mounted on the RFID glove
in order to identify user activities. RFID tags are used to
restrict the number of possible actions based on the specific



object manipulated. In [11] a system for multimodal sensor
fusion specifically designed for smartphones is proposed.
It uses microphone and inertial sensors data to infer user
activities with light-weight bayesian learning algorithms.
A similar system, also based on bayesian networks, that
exploits a wider number of sensors is presented in [13].
A similar work [24] proposes healthcare applications based
on bayesian networks and ontologies. An different, yet
interesting, approach is presented in [2]. The core idea is
to exploit trained sensors that already have a classification
model in order to provide a ground truth to untrained sensors
that are running learning algorithms.

On the other side, few works make use of commonsense
for context recognition and classification. An interesting ap-
proach that uses commonsense to improve the activity recog-
nition is presented in [20]. The proposed system employs
models to infer user activities on the basis of the objects the
user touches (as revealed by the sensing of RFID tags stick to
the objects). The relations between objects and activities, is
estimated using the proposed concept of Google Conditional
Probability (GCP), i.e., counting the co-occurrences of the
names of objects and activities across Web pages. This
approach is in a similar direction of the one proposed in
this paper to find relations among concept in ConceptNet
. A similar approach is presented in [28], however the
commonsense knowledge base has been generated by the
authors, and consists of a fixed number of words for each
supported action. To the best of our knowledge [16] is the
only paper that tries to apply commonsense reasoning to the
place identification problem. This paper uses Cyc to improve
automatic place identification on the basis of the user profile,
the time of the day, what happened before, etc. Both these
approaches are interesting and are in the same direction of
the work presented in this paper, but they limit the use
of commonsense to improve a single context recognition
aspect. In this paper we go further and try to exploit the
commonsense to integrate different context classifiers.

To best of our knowledge there is only a work that uses
commonsense to integrate different context sources. In [19]
is presented a pervasive computing system to automatically
discover the situation of the user by continuously over-
hearing his conversation. The system uses ConceptNet as
the commonsense reasoning system. ConceptNet contains
entities describing situations (aka. gists) and concepts related
to such situations. For instance, the gist “looking for a
restaurant” might have links to the “restaurant”, “map”,
“street” and “place” concepts. The system being presented
tries to spot concepts associated to gists in the users’ current
conversation and to classify the situation by counting the
concepts. The proposed approach appears more general-
purpose and can be applied to different context classifiers
other than the ones proposed in the case study presented.

VI. CONCLUSIONS

Although current classifiers are still inaccurate, pervasive
services often rely on multimodal classification to implement
situation-recognition capabilities. In this paper we discussed
the design and implementation of an innovative vision-based
sensor, presented its standalone performances, and shown
how it is possibly to integrate it with other well established
classifiers using a commonsense knowledge base. The ap-
proach seems capable of promising classification accuracies
in a number of open-ended situations.

Our future research work will include:
• Apply in-memory techniques (e.g., spectral hashing

[29]) to dramatically speed up the classification process
in the vision sensor, and make it usable in real-time.

• Extend out study to different kinds of sensors and to
the recognition of a larger variety of situations.
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