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Lifelong Learning in 
Sensor-based Human 
Activity Recognition 

Human activity recognition systems will be 

increasingly deployed in real-world environments and 

for long periods of time. This significantly challenges 

current approaches to human activity recognition, 

which have to account for changes in activity 

routines, evolution of situations, and of sensing 

technologies. Driven by these challenges, in this 

article we argue the need to move beyond learning to 

lifelong machine learning – with the ability to 

incrementally and continuously adapt to changes in the environment being learned. We 

introduce a conceptual framework for lifelong machine learning to structure various 

relevant proposals in the area, and identify some key research challenges that remain.  

A key enabler for many critical ubiquitous computing applications, in areas such as healthcare 
(e.g., mental well-being assessment, and clinical assessment on cognition and mobility) and 
home automation (e.g., automatic heating configurations) is sensor-based human activity recog-
nition (HAR): the ability automatically to recognise and predict users’ current and future activi-
ties from data collected from a wide range of wearable and ambient sensors. Based on inferred 
user activities, applications can deliver customised, in situ services in an automatic and unobtru-
sive manner.  
Activity recognition has been extensively studied, and significant progress has been made 
through the use of modern data-driven techniques, including Hidden Markov Models, Condi-
tional Random Fields, Support Vector Machines, and – more recently – deep neural networks. 
These techniques have achieved promising results in learning complex correlations between sen-
sor data and activities of interest: their success in recognising human activities in lab and testbed 
settings is now enabling the move towards large-scale, in-the-wild, and long-term deployment of 
activity recognition systems [17]. This move however comes with its own challenges, notably 
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that neither the environment being observed, nor the population or pattern of activities being rec-
ognised, remain constant. This creates a need for HAR systems capable of embedding the means 
of automatic adaptation to changes, i.e., lifelong learning.  

On the one hand, lifelong learning in HAR covers the lifespan of a user, by continuously learn-
ing and adapting to changes in the user’s health condition, activity routine, or living environ-
ments; on the other, it also covers the lifespan of a HAR system itself, by responding to the 
changes in sensor technologies, in sensor deployments, and in the operational environment.  
Lifelong learning in HAR will be necessary to enable large-scale, long-term, and sustainable de-
ployment of activity-aware applications. It directly tackles personalised, adaptable service deliv-
ery. For example in mobile health applications, it would be desirable to design care plan, 
intervention or treatment that is customised to individuals’ health conditions and more important-
ly can dynamically evolve responding to the change of their conditions; e.g., the onset of a dis-
ease’s symptoms or the recovery of a disease. Without such adaptation, an activity recognition 
system may fail to detect or misclassify activities, leading to ineffective treatment or to undesira-
ble consequences. For example, failing to adjust rehab exercise in time for patients suffering knee 
osteoarthritis can cause more damage on the injured parts of the knee [5]. 

Lifelong learning will also of course bring with it a whole new set of challenges and opportuni-
ties that have not been properly studied before. These range from sensing technologies, system 
infrastructure, and privacy and security. In this article, we concentrate on how such challenges 
impact on the learning algorithms used for HAR, from which we argue the need for lifelong ma-
chine learning as a field of study, present opportunities and discuss open research questions in 
this new field of learning.  

EMERGING ISSUES FOR REAL-WORLD AND LONG-
TERM HAR 
In its simplest form, human activity recognition can be phrased as a classification problem: map-
ping collections of raw sensor data or sensor features (X) into activity labels (y) through a 
learned or specified correlation model (h: X → y), typically based on datasets containing ground 
truth information.  
The specific challenges in real-world and long-term HAR are driven by the constant, unavoida-
ble, and unpredictable changes in sensors, environments, and human activities. These changes 
result in the evolution in class space, in the correlation model, and in the feature space model, 
which refer to class evolution (y → y’), concept drift (h → h’), and feature evolution (X → X’), 
respectively, also implying the need to continuously collect new ground truth information (Fig-
ure 1).  

Class Evolution  
Most of the current HAR approaches follow a well-established methodology [14]:  

• Deployment: pre-define a closed set of activities of interest, and select a range of am-
bient and/or wearable sensors that can potentially detect the activities.   

• Model training: collect sensor data for a short period of time, annotate them with activ-
ity labels, and build a computational model to correlate sensor data with activities by 
defining expert knowledge or training a machine learning technique.   

• Activity recognition: recognise current activities from real-time sensor data.   
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Figure 1: Emerging issues for HAR driven by constant and unpredictable changes in real-world and 
long-term deployment  

A key assumption in such process is that the set of activities is fixed, which does not necessarily 
hold when we are starting to deploy the system in open and versatile environments for a longer 
period of time. The non-deterministic and dynamic nature of human behaviour can lead to the 
occurrence of new activity patterns or even new types of activities [4]; for example, a user may 
start playing a Kinect fitness game to be more active, or he/she can start having bath rather than 
simply getting a shower. Indeed, the whole point of the HAR system may be to monitor (in the 
case of deteriorating capability), or provoke (in the case of training applications), changes in the 
ways users conduct themselves. These changes in activities can give rise to class evolution – the 
emergence of new activity classes, and the disappearance and recurring of old activities, which 
requires systems with the ability to recognize and incorporate new classes, and possibly to dis-
miss old ones; e.g., users might not be able to run any more due to their knee joint problem. 

Concept Drift  
Another general assumption in the traditional activity recognition methodology is that the com-
putational model for activity recognition is static once defined or trained. However, individuals 
can perform the same type of activities in very different ways over the long term. For example, 
degrading health conditions may affect the way a person walks, or different dietary requirements 
may affect the way they cook dinner.  
These changes in the way activities are performed induce concept drift, i.e., changes in activity 
distribution. The lack of adaptation to it will lead to a degradation of performance in the long 
run, and in the inability to correctly classify existing classes, or misclassify them as new, un-
known, classes, resulting in dissatisfaction of the system as a whole.  

Feature Evolution  
Finally, short-term, HAR can generally assume that the characteristics of the environment, and 
their detection, are both stable and reliable. In real-world environments, sensors are exposed to 
all sorts of unexpected “hazards”, including being interacted with by non-primary users or pets, 
moved, misused, and broken, all of which can lead to unpredictable readings [19]. Also, we 
might deploy new sensors and remove or replace old sensors over time. Environments can 
change with the re-arrangement of furniture; e.g., moving a sofa to make more space, or the 
change with co-inhabitants or visitors, e.g., more frequent visit from carers, or newly introduced 
night “sleep-in” service. All such changes in sensors and environments will lead to unexpected 
sensor stream, which requires the activity recognition model to respond to. These changes often 
lead to feature evolution – the inclusion of new sensor features, and the change in feature distri-
bution to each activity class.  

Lack of Sufficient and High-quality Ground Truth  
To build a robust activity recognition model, most existing data-driven techniques require a large 
amount of training data; that is, annotated sensor data with activity labels. For all the above 
changes, if we could continuously collect sufficient and high-quality annotations, we could re-
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train the model all the time and thus the changes are less a challenge. However, acquiring anno-
tations has been well acknowledged as a time- and effort-consuming task, which either relies on 
users’ constant self-reporting on what they are doing or recording users’ activities via videos that 
are later annotated by the others. Neither of these approaches are a sustainable solution for a high 
volume of users in long-term deployment.  

TOWARDS LIFELONG LEARNING IN HAR: 
FRAMEWORK AND APPROACHES 
Driven by the need to learn a variety of tasks over time and improve learning performance, life-
long machine learning has been identified as a future challenge in the field of machine learning 
[13] and is attracting a rapidly increasing amount of interest. It is defined as “systems that can 
learn many tasks over a lifetime from one or more domains. They efficiently and effectively re-
tain the knowledge they have learned and use that knowledge to more efficiently and effectively 
learn new tasks” [18]. Putting into the context of HAR, we define  

lifelong learning in human activity recognition as being characterised by incre-
mental and continuous learning of new types or variations of activities while also 
adapting to the change in circumstances of users, sensors and environments. 

Lifelong learning in HAR supports continuous learning and is the critical enabler for allowing 
widespread deployment of sensor systems and their use to support human activities and other 
critical applications. It exhibits a substantial challenge due to the combination of challenges in 
change management and the lack of sufficient ground truth presented in Figure 1.  

Lifelong learning in HAR is relevant to a range of machine learning fields, especially online 
learning and transfer learning. Online or incremental learning refers to the ability to learn models 
incrementally from data in a sequential manner. It can be considered part of lifelong learning and 
directly targets concept drift in Figure 1. But the lifelong learning in HAR proposed here has a 
wider scope than online learning, which also needs to tackle ground truth challenge; that is, how 
to acquire annotations on changes in data in order to enable model update.  

Transfer learning – how to transfer and adapt an activity model from a source domain to a target 
domain [8] – has recently been widely applied to HAR. The main difference is that lifelong 
learning in HAR puts emphasis on dynamic adaptation of a model over time, which requires con-
tinuous model adaptation and automatic identification of when and what adaptation to be needed.  

General Reference Framework  
Taking a holistic view on tackling the above challenges in Figure 1, we identify three key com-
ponents: change detection, change annotation, and change adaptation, and propose a conceptual 
architecture that extends a traditional activity recognition framework and enables to frame these 
key components to enable lifelong learning in Figure 2.  
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Figure 2 A general reference framework for lifelong learning in human activity recognition. It 
presents three key components (in green boxes) and shows how they are fit with the classical data-
driven activity recognition framework (in black boxes).  

• Change detection – to detect changes in feature space, classes, and correlation. This often 
involves  

o characterising sensor data for existing activities;   

o detecting anomalous data; i.e., those that do not conform to the existing characteristic 
patterns; and   

o identifying data for a potentially new activity from all the anomalous data; e.g., dis-
tinguishing from  sensor noise.   

• Change annotation – to learn semantics or labels of detected changes. This concerns a 
wide range of questions, including  

o what data to annotate; i.e., how to select representative data for annotation, assuming 
that we cannot query each identified data point;   

o from who or where to get annotations; i.e., whether we query users for their own ac-
tivities, domain experts, or other sources (such as other users’ data or web resources); 
  

o when to annotate; i.e., if we assume to query users, what is the right moment to query 
them so that they are most likely to attend the query;   

o how to annotate; i.e., what form to query, such as free text or multimedia input; 
whether to enable multi-labels for one activity instance, or restrict to one label; how to 
guarantee semantic consistence and correctness of user annotations.   

• Change adaptation – to incrementally adapt the activity recognition model to recognise 
and respond to the discovered changes. This often involves  

o dealing with concept drift and class evolution;   

o working with imbalanced, insufficient data for new activity classes; i.e., building a re-
liable activity  recognition model for new emerging activities, when at the early stage 
there often exists a limited number of data points for a new activity class, which can 
be much fewer than those for existing classes.   

These three components form the core of lifelong learning in HAR. More importantly, they ena-
ble an iterative and incremental update to the original activity model with newly discovered and 
annotated activity data, rather than one iteration from training to recognition. The framework in 
Figure 2 can serve as a reference to design future sensor-based human activity recognition sys-
tems. In the extreme situation, the system could start with no pre-defined activities at all and in-
crementally learn a personalised set of activities for each user.  To understand the existing 
research activities towards the emerging field of lifelong machine learning, we discuss some rep-
resentative works devoted to directly targeting sensor-based lifelong, unbounded, unknown, un-
seen activity discovery or recognition.   

Change Detection 
Change detection has been mainly regarded in terms of an anomaly detection problem. There 
exist many anomaly detection techniques [6], among which clustering, one-class classifiers, and 
sequential pattern mining are the most popular approaches.  
Clustering. Clustering is one of the commonly used techniques for unsupervised anomaly detec-
tion; i.e., without the need of training data on anomaly classes. Its basic principle is to partition 
normal data points into multiple clusters, and any data point that falls outside and is far away 
from the clusters is considered as “abnormal”. These abnormal data points can potentially map to 
new activities.  
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Abdallah et al. propose a system called AnyNovel that applies incremental clustering model to 
discover and learn new physical activities, including sitting, walking, standing and lying from 
accelerometer data [1]. An Expectation-Maximisation (EM) clustering technique is used to clus-
ter real-time data streams and identify a newborn cluster that lies outside the existing cluster de-
cision boundary. Then a cohesion and separation criterion is utilised to validate whether this 
newborn cluster forms into a cohesive and dense group while keeping a considerable separation 
from the existing classes. The criterion is assessed through the cluster’s density, weight, and 
temporal characteristics.  
Similarly, Gjoreski et al. [10] and Ye et al. [14] have used a clustering technique to enable real-
time clustering of streaming data. To validate clusters for potential new activities, Gjoreski et al. 
have proposed two temporal assumptions on human activities; that is, a human activity usually 
lasts for a certain period of time and there should not be frequent transitions between activities. 
With these assumptions, they have filtered short outliers and been able to more accurately dis-
cover meaningful clusters.  
One-Class Classification (OCC). OCC is another common technique to detect new activities. 
The main difference from the above clustering technique is that with the support of sophisticated 
kernel functions, OCC has a capacity of modelling complex, nonlinear class boundary.  
Yin et al. apply One-class Support Vector Machines (OSVMs) with a Radian Basis Function 
(RBF) kernel to discover abnormal activities such as falling or slipping on a wet floor from 
body-worn sensors that collect light, temperature, sound, and acceleration data [20]. An OSVM 
is trained to find a hypersphere that contains most data points corresponding to pre-defined nor-
mal activities. Then a Hidden Markov Model (HMM) is built to estimate the maximum likeli-
hood of the current data trace by the existing model. If the likelihood is below a threshold, the 
new data trace is considered abnormal.  
Sequential Pattern Mining. Sequential pattern mining is to discover sequences of frequent oc-
curred itemsets by searching through the whole dataset. Rashidi et al. have combined a compres-
sion-based sequence mining with clustering algorithms to discover new activity patterns on 
binary sensor events collected from a smart home environment [16]. Using the minimum de-
scription length principle, they have found patterns that best compress the dataset and with suffi-
cient frequency and length. A new activity is detected, if the current sensor sequence is not 
similar to the mined patterns, where the similarity is measured in edit distance.  

Change Annotation  
Change annotation concerns acquiring annotations to discovered changes so that we can update 
the activity model. Most of the current approaches focus on selecting the right data points for 
annotation.  
Active Learning. Active learning is to alleviate the labelling effort by selecting the most in-
formative instances to annotate, which can be the most uncertain instances; e.g., lying between 
the boundary of classes, or the most representative instances; e.g., lying right in the centre of a 
class.  
Alemdar et al. have applied active learning strategies to select the most uncertain instances for 
annotation and iteratively update a HMM to infer daily activities [2]. Extending the basic activity 
learning strategies, Cheng et al. have proposed a density-weighted method to ensure the selected 
instances are representative of the underlying data distribution [7]. Hossain et al. have also ex-
tended the basic strategies with Silhouette Coefficient so as to select the instances that have 
formed into a cohesive cluster [12]. Both extensions have demonstrated an improved recognition 
accuracy with reduced labelling effort.  
Mixture Model. Nguyen et al. propose a supervised activity discovery system, called SuperAD, 
which can identify both uncertain and unseen instances from the unlabeled data pool [15]. A su-
pervised classifier is trained on labeled data and then predicts temporary labels on unlabeled da-
ta.  Then a Gaussian Mixture Model (GMM) is trained on the pool of temporally labeled 
instances and estimates their likelihood by their corresponding submodel. A low likelihood on an 
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instance suggests the uncertainty of its temporary label and this instance will be selected to be re-
annotated as either pre-defined activities or new activities. SuperAD has been demonstrated out-
performing active learning strategies and random selection on selecting instances for annotation.  

Change Adaptation  
Once the changes are annotated, an activity recognition model needs to be extended and updated 
to incorporate these changes. For clustering-based techniques, it is less a problem in that a new 
activity is just another cluster(s) and it is easier to extend the activity recognition model. Most 
classifiers do not have the capacity of accommodating new classes. There exist classifiers that 
support incremental or online learning, including decision tree, naive Bayes, and neural net-
works. They allow updating and tuning parameters of their models from new pieces of data; that 
is, changing the distribution of classes or weights on features to predict classes. Also constrained 
programming has been applied to enable self-adaptive sensor configuration responding to the 
changes in environmental context [11]. Rarely do they support the evolution of their structure 
with new classes.  
Evolving Classifiers. Andreu et al. have applied evolving fuzzy-rule-based classifiers, also 
known as eClass family, to support real-time, online learning of human activities from accel-
erometer data collected from wearable sensors [3]. Each activity is composed of a set of fuzzy 
rules, each of which captures a correlation with specific features generalised from accelerometer 
data. The rules are not fixed and can evolve over time with the change in correlations based on 
dynamic streaming data. Also it is flexible to introduce new rules for new activities or remove 
one if the activities are no longer relevant.  
Zero-Shot Learning. Learning a model for new activities often suffers from the scarcity of 
training data. Zero-shot learners can be applied to deal with these problems by learning previous-
ly unseen activities with a few labelled instances or even without any training data. They are 
built by combining data-driven and knowledge- driven approaches. The data-driven model can 
be first trained on data of pre-defined classes and transferred to recognise a new class based on 
the knowledge-driven model, where the knowledge about new classes may come from text cor-
pus [7], or domain experts.  
Cheng et al. have adapted a zero-shot learner to recognise a new activity with limited training 
data [7]. A knowledge-driven model encodes the semantic relationship between high-level ac-
tivities and low-level sensor attributes generated from accelerometer data. To include a new ac-
tivity, domain experts and developers need to manually add new attributes and update the 
activity-attribute matrix with manually specified relationship between attributes and this new 
activity.  

Summary  
From the above overview, we can see change detection is the most well-studied with a similar 
principle; that is, characterising existing data patterns either in the form of a cluster, a hyper-
space, or frequent sequential itemsets, and identifying any data that does not conform to the pat-
terns. Few works have directly targeted at change annotation, only with a focus on selecting the 
most informative data points for annotation to reduce the annotation burden. However, most of 
them assume that users are always available to provide accurate annotations. None of them has 
conducted real-world experimentation on annotation acquisition. In change adaptation, the prob-
lem with imbalanced, insufficient training data for newly discovered activities has been 
acknowledged, but few targets concept drift and class evolution. This gives the motivation of this 
paper to present an overview of where the research is towards a lifelong learning system.  

CHALLENGES AND OPPORTUNITIES  
Beside existing proposals, many open research questions exist towards lifelong learning in HAR, 
pointing to potential research directions.  
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Distinguish Meaningful Change from Noise  
Due to the pervasive problem with sensor noise – which is something that it’s impossible fully to 
engineer away – the key challenge in change detection is how to differentiate noise from “mean-
ingful” changes in patterns. Beyond the attempted validation-based approaches, another possible 
direction to address this challenge is extension of decision boundary of existing classes. A 
boundary can be as simple as the union of existing clusters’ boundaries; that is, any data lying 
within this delineated global boundary is considered as normal. The global boundary might work 
well if the already identified clusters are close enough [6]. Another approach is to draw a slack 
space around the boundary of each cluster. The challenge is how to decide the threshold on the 
width of a slack space. A general approach is to adapt the threshold based on the false alarm 
rates; that is, the percentage of outliers are incorrectly inferred within an existing cluster [18]. 
However, this can be difficult for emerging activity recognition when there might not be enough 
ground truth to measure false alarm rates.  

Informed Change Discovery  
Finding out the cause of any anomaly is another significant difference between change detection 
in HAR and a general anomaly-detection problem. “Cause” here can refer to sporadic sensor 
noise or systematic sensor fault due to sensor recalibration or dislodgement [19], changes in an 
environment, new patterns for an existing activity class, and new types of activities. Each of the-
se specific causes to anomaly might trigger different system-level actions; e.g., repairing or re-
placing sensors, or updating an activity recognition model. This brings us to another direction, 
i.e., informed change discovery. To achieve this, we might look into how to make use of the 
knowledge mined on both sensor data and activity patterns to supervise and explain the newly 
discovered anomaly. Existing work has demonstrated the value of domain knowledge such as 
temporal characteristics on human activities and sensor events in detecting new activities [1, 10] 
and sensor fault [19]. However, their main limitations are that (1) the knowledge is either manu-
ally crafted or based on simple statistical techniques, and (2) the knowledge is assumed to be 
fixed and will not change over time. To overcome these two limitations, we could investigate 
evolving knowledge mining techniques. For example, with the support of dynamic topic models 
[6] to track evolution of activity routine and sensor performance over time, we might be able to 
locate the root cause of a change in sensor features either as sensor failure or the change of rou-
tine.  

Opportune Moment for User Annotation  
When to annotate can be a rather difficult task, given that users might not be able to attend anno-
tation requests all the time. To address this problem, it might be useful to look at the recent intel-
ligent notification work; that is, finding the opportune moment when users are most likely to 
attend the query. The prediction of the opportune moment can be based on contexts including the 
time of day, location, the current physical activities, and the social company. Activity annotation 
is different from the message notification application, as it does not only require the user to at-
tend to the query, but also to be able to provide the right activity label, which might incur extra 
effort from them. One way to integrate a notification system with activity annotation is to select 
the instance that is not only most informative but also closest to the query time so that the user 
might still be able to remember their activities. In addition, we can further leverage the context 
management in a notification system by presenting context as a clue to remind the users of their 
activities.  

Quality of Annotations  
It is challenging to allow users to annotate their own activities in free-text style. On the one 
hand, simply asking users “what are you doing at the moment” might not guarantee a relevant 
answer, which is different from annotation at the training phase where we have a set of prede-
fined labels and simply ask the user to select whatever applies. The difficulty is that we might 
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not be able to foresee what new activities users are doing, so we cannot provide them with the 
predefined label set. Users might come up with all sorts of inconsistent expressions for their cur-
rent activities; e.g., “boiling water”, “cooking a pasta”, or “preparing dinner”. On the other hand, 
users often multi-task where one activity can be interleaved with another activity concurrently; 
e.g., if a user is reading a book on a train, then possible answers to their current activities can be 
“reading a book”, “on a train”, or “reading a book on a train”. Therefore, the questions are how 
to guide or constrain annotations from users, how to extract relevant labels from their input, or 
both. The approach to check semantic correctness of user annotations might help but more 
thoughts should be put into the direction; e.g., should we allow multiple labels for each activity 
instance? This practice has been used in computer vision, which encourages capturing all the 
visual concepts in an image [4]. We might consider it in activity recognition to capture relevant 
contextual or situational information and concurrent activities. In addition, in real-world de-
ployment, we randomly sample annotations from users [17], which are often not bounded to a 
temporal interval. Then the challenge is how to correlate these annotations with sensor data and 
to what temporal granularity.  

Multiple Sources for Annotations  
Rather than users themselves, we could consider gaining annotations from other users or other 
datasets with similar sensing technologies and activity recognition missions. Various transfer 
learning techniques have also been applied to HAR [8], which allows transferring an activity 
recognition model from one user to another user, or from one type of sensors to another type of 
sensors. This direction has a potential to reduce annotation burden on each user but the perfor-
mance of these transfer learning approaches still needs a significant improvement, especially 
when faced with heterogeneous sensor feature sets and heterogeneous activity sets. To address 
the challenges, one core idea is to learn feature transformations so as to project feature spaces 
from different domains onto a common space to enable model adaptation. However, the majority 
of these techniques need some sort of ground truth to bridge the feature spaces; e.g., the same 
output labels or the co-occurrence of labels, or are built on strong assumptions; e.g., the domains 
share the same distribution. None of these always hold in the context of activity recognition. To 
address this problem, we could explore Structural Correspondence Learning (SCL) techniques, 
which link class labels through their semantic meaning [9], and instance transferring techniques, 
which borrow examples from similar but not the same activities [9].  

Ensemble Learning for Evolving and Emerging Activity 
Classes  
Managing emerging classes can be a challenging task. Ensemble learning techniques on stream-
ing data classification have demonstrated its potential in dynamically including new classes 
without major changes to the already-learned model. In terms of HAR, the main challenges will 
involve accounting for the variety and dynamism of patterns in each type of activity. The key to 
address these challenges is to maximise the flexibility of an ensemble, which can be achieved 
through diverse ways of constructing base learners and decomposable structures of constructing 
an ensemble. For example, each base learner can be built on different sets of features; i.e., the 
ones with the most discriminating and predictive power, which will reduce the impact of the 
change in sensor deployment and thus significantly enhance the flexibility in feature space. A 
hierarchical ensemble can be designed to support dynamic composition of base learners with dif-
ferent semantics; e.g., temporal or causal dependencies. This will allow for flexibly adding a new 
emerging pattern or activity class, and/or remove a disappearing pattern or activity class.  

CONCLUSION  
Activity recognition has long been a popular research topic in pervasive computing, and lifelong 
learning in HAR moves towards dynamically and intelligently adapting to feature evolution, 
concept drift, and class evolution in a constantly changing environment. We have identified re-
search challenges centred around learning, which are synthesized from the limitation of the re-
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cent attempts. However, taking lifelong learning to reality and performing the real-world evalua-
tion will set out more challenges to the interdisciplinary nature of pervasive computing, includ-
ing user interaction on how to annotate and de-annotate activities based on their own preference 
and privacy concerns, system design on how to adapt applications responding to the new activi-
ties without much re-engineering effort, to name a few.  
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