Coordination Technologies for Internet Agents

Paolo Ciancarini
DSI - Universita di Bologna
Mura Anteo Zamboni, 7 Bologna, Italy
ciancarini@cs.unibo. it

Andrea Omicini
LIA - DEIS - Universita di Bologna
Viale Risorgimento, 2 Bologna, Italy
aomicini@deis.unibo.it

Franco Zambonelli
DSI - Universita di Modena
Via Campi, 213b Modena, Italy

franco.zambonelli@unimo.it

Abstract

Since its birth the Internet has always been characterised by a twofold
aspect of a distributed information repository, to store, publish, and re-
trieve program and data files, and an interaction medium, including a
variety of communication services. The current trend is to merge the two
aspects described above, and envision the Internet as a globally distributed
computing platform where communication and computation can be freely
intertwined. However, traditional distributed programming models fall
short in this context, due to the peculiar characteristics of the Internet.
On the one hand, Internet services are decentralised and unreliable. On
the other hand, even more important, mobility, either of users, devices, or
application components, is going to impact the Internet in the near future.
Since Internet applications are intrinsically interactive and collaborative,
the definition and development of an appropriate coordination model, and
its integration in forthcoming Internet programming languages, is a key
issue to build applications including mobile entities. We sketch the main
features that such a model should present. Then, we survey and discuss
some coordination models for Internet programming languages, eventually
outlining open issues and promising research directions.

1 Introduction

Traditional computing models and the corresponding programming languages
are evolving in order to match the novel requirements of a networked world
offering, via Internet and the Web, global communication and information ser-
vices. The increasing need of networked applications requires the development
of geographically distributed software systems which can exploit the large avail-
ability of hardware resources at a low cost. However, the growth of wider and
wider networks introduces new issues to face, such as mobile computing [8].

New computing paradigms based on code mobility are not only intrinsically
suited to a world-wide and mobile computing scenario, but they also provide ad-
vantages in terms of efficiency and reliability [16]. However, they introduce the
need for specification methods and languages able to deal with the specific fea-
tures of architectures supporting mobility of code [27, 19, 5]. For instance, since
the original WWW architecture supports very limited forms of distributed pro-
gramming, it has been extended with network-aware programming languages,
like Java, which extends the functionality of WWW browsers in order to support
applets, that are made of code loaded on demand from a remote site. Some Java-
based applications are even based on migratory agents [21], namely processes
which can decide to move to another site in order to look for some resources,
and which need to be controlled in their travelling over the network.

Despite the great deal of activity in this areas, several issues have to be faced
to make mobility used and usable. A key issue when a software system includes
mobile components is the continuous reconfiguration of its software architecture.
Currently there are a few formal notations able to deal with dynamic structural
changes. A paper which analyses a number of formal models suitable for de-
scribing architectures including mobile components is [15]. Another important
issue in all models is how mobile entities interact with their environment [4]
and, in turn, how the environment can control a mobile entity.

These issues are complex also because when dealing with mobility there is
some confusion among three different network concepts, which should be kept
distinct:

e The physical network, made mostly of immobile hosts and reliable and fast
connections, where a mobile entity consists of a piece of hardware using a
wireless connection. The main problem mobility poses at this level is that
wireless connections are usually unstable and offer low bandwidth.

e The middleware network, made mostly of abstract machines and software
services, where a mobile entity consists of a process closure migrating from
a host to another host. Some problems mobility poses at this level are
dynamic re-configuration (eg. dynamic binding of processes to execution
environments) and service reliability (eg. security and quality of service).

e The logical network, made of application code scattered over the mid-
dleware network, where a mobile entity consists of some executable code

migrating from an abstract machine to another one. An interesting prob-
lem at this level is how such a mobile entity can cooperate with other
entities in the application.

In this paper we are interested in the last form of mobility, namely over a
logical network, where the migrating entity is usually called a software agent.
In particular this paper aims to survey and analyse some coordination models
for languages for programming applications including mobile software agents.

The paper is organised as follows. Section 2 discusses two main issues influ-
encing the design of an Internet programming language, namely first class mobile
entities, and a coordination model to control them. Section 3 describes what is
a coordination model suitable to mobile entities, showing that a coordination
model based on tuple spaces exhibits some important features. Section 4 focuses
on the current Web architecture and surveys some architectural solutions to in-
tegrate in the WWW a tuple space coordination model. Some language design
choices are analysed with respect to the intended coordination architecture and
its impact on agent programming. Section 5 sketches an ideal coordination ar-
chitecture for Web-based interacting mobile entities. Finally, Section 6 outlines
some open issues and related promising research directions.

2 Mobility and Interaction in Internet Applica-
tions

The Internet can be no longer considered as a collection of network services,
or as a mere information repository. The continuous advances in network tech-
nologies, along with the widespread diffusion of the WWW/| suggest to see the
Internet as a new, globally distributed computing platform, calling for new pro-
gramming paradigms, models, and languages.

In this section we point out those features of the current Internet architecture
which make traditional distributed programming approaches inadequate for the
development of Internet-based applications. In particular, we argue that the
definition of a suitable coordination model is a key issue to any programming
model and language for Internet application development.

2.1 Structuring an Internet Application

The Internet, even if considered just as a world-wide “network of networks”,
exhibits some features which differentiate it from the traditional infrastructure
for parallel/distributed applications. In particular, the Internet is not under the
management of a single organisation. Consequently, Internet nodes are heteroge-
neous not only in terms of hardware but also in terms of software configuration.
The Internet is also intrinsically dynamic, as new nodes continuously appear
and old nodes either change their configuration or simply disappear. Partially
as a consequence of the above points, and also because of its wide size, the In-

ternet infrastructure is intrinsically unpredictable (eg. sites can join and leave
the network) and unreliable (eg. the network can lose messages).

The above reasons justify the current quest for new programming models and
languages for designing and developing Internet applications. In fact, conven-
tional programming models for “traditional” distributed systems either neglect
the issues of heterogeneity, dynamicity, and reliability, or they deal with these
issues as they were unrelated to the application level.

For the purposes of this paper we model an Internet application using a
three-layers architecture:

e the physical layer, made up of computing and network devices;

e the middleware layer, generally made up of abstract machines, such as
traditional operating systems, network services, language executors (eg.
Java interpreters);

e the application layer, made up of application code scattered over the mid-
dleware layer.

The physical layer is composed of heterogeneous computing resources, let them
be PCs or workstations, and network devices, such as bridges and routers. How-
ever, some recent technological developments will soon make the Internet be
populated of widely different devices. On the one hand, network devices are
becoming more and more “intelligent”, ie. autonomous and adaptable, and en-
close richer computing capabilities. On the other hand, there is a great deal
of research efforts to enable Internet connectivity for mobile devices, such as
laptop and personal digital assistants. In particular, mobility is the feature that
is likely to have more impact on language design. In fact, applications must
take into account the fact that components may execute not only in the con-
text of traditional distributed systems connected to the network, but also in the
context of temporarily (or usually) disconnected systems.

The middleware layer, traditionally made up of UNIX IP services, such as
finger, sendmail, and telnet, is currently being enriched with the possibility
of exploiting a larger number of services and operating environments. Apart
from pervasive WWW services, legacy application can be made available and
provide services to the world, either via CGI or CORBA interfaces. In the
near future, we expect also that most Internet sites will be willing to accept
the execution of mobile components, such as simple fragments of code (as in
current prototype active routers), procedure code (as in the servlets and applets
approach), autonomous agents and whole application closures (as in the case of
Jumping Beans [1]).

All these issues carry interesting problems to solve, such as security and
dynamic binding, since more and more the resources local to a system are likely
to be open for access and execution to foreign entities.

These issues dramatically influence the application layer, since when execut-
ing an application its components have to accomplish their task by cooperating
with other components in a distributed, heterogeneous, unpredictable, and pos-
sibly malicious execution environment. Moreover, the location of the application

components is likely to change over time, so that their execution is no longer
limited to one given site.

2.2 Interaction in Internet Applications

The very nature of the Internet, born as a heterogeneous collection of nodes,
services, and information repositories, all asynchronously working as an ensem-
ble, is intrinsically composite. Correspondingly, typical Internet applications
are made up of a multiplicity of heterogeneous components, which have to work
together in an distributed, heterogeneous, and unpredictable environment. This
raises several issues which call for new abstractions and tools. For instance,

e in traditional distributed applications, each component is explicitly de-
signed for interacting with other known components. Instead, unpre-
dictability and open-ness make usually necessary that agents be able to dy-
namically acquire the capability of interacting with unfamiliar/previously
unknown services and data;

e in traditional distributed applications, components have usually to ex-
change simple data structures for elaboration and synchronisation. In-
stead, the typical complexity of the tasks to be accomplished, and of
the global application strategies, makes Internet agents be often in need
of exchanging more complex information, such as composite documents,
structured knowledge bases, and even planning strategies.

e traditional distributed applications typically restrict user interaction to
few, simple input/output operations. Instead, the user-oriented nature of
most Web technologies makes applications intrinsically open to a multi-
plicity of different interaction patterns.

e traditional distributed applications are typically based on specialised, pos-
sibly proprietary technologies, which are tailored to specific application re-
quirements. Instead, Internet applications have to exploit standard tech-
nologies, like Web browsers and servers, and Java, and to be as much as
possible open to new emerging standards.

Thus, managing interaction and access to resources and services is one of the
key point in the design and development of Internet applications, and raises the
issue of selecting the most suitable coordination model for a given application.
In this context, mobility introduces some peculiar coordination issues.

2.3 Mobility of Internet Agents

Traditional distributed applications statically allocate active entities (processes)
to given network nodes, and force them to cooperate by exchanging data struc-
tures usually marshalled to ASCII. Therefore, mobility of data is intrinsic to
distributed computation and to the Internet itself, which provided facilities for

data communication (eg. the ASCII code) since its birth. The advances in Inter-
net technologies have broken the boundary of the fixed execution environment,
thus leading to new kinds of mobility. Mobility of code permits data and pro-
grams to move and execute on demand on different sites (eg. applets). What
we are interested here, however, is mobility of agents, where stateful entities
can move through the Internet by carrying along their own internal state and
behavior.
Mobility brings several immediate benefits:

e mobile agents can move to the data it needs to manipulate and save band-

width;

e mobile agents execution can proceed without being influenced by the vari-
able latency of the network or even in absence of network connection;

e mobile agents can “lately bind” part of their code, so as to implicitly adapt
to their current local execution environment;

e intelligent mobile agents can deliberately adapt their behaviour to their
current execution environment, and even moving to another one whenever
the availability of the local resources does not match the component’s
needs and requirements;

e mobile agents provide the most suitable abstraction for mobile devices.

The above benefits, along with the fact that mobility of software components
is intrinsically promoted by mobility at the physical layer, make it easy to
predict that Internet applications will be more and more based on software
components (i) exploiting mobility as a dimension of their computational life,
and (ii) featuring different levels of “intelligence” [31]. Correspondingly, new
coordination problems are raised: (i) how mobile and unpredictable software
components can be organised to interact fruitfully and efficiently, and (7i) how
to effectively support intelligence of the components, and possibly embed some
level of intelligence in the coordination itself.

3 Coordination Models for Internet Agents

Coordination is managing the interaction among software agents [30]. A coordi-
nation model provides a formal framework in which the interaction of software
agents can be expressed. Generally speaking, a coordination model deals with
the creation and destruction of agents, their communication activities, their dis-
tribution and mobility in space, as well as the synchronisation and distribution
of their actions over time.

More precisely, a coordination model consists of three elements [9]:

1. the coordinables, which are the entities whose mutual interaction is ruled
by the model. These could be Unix-like processes, threads, concurrent
objects, and even users.

2. the coordination media, which are the abstractions enabling agent inter-
actions, as well as the core around which the components of a coordinated
system are organised. Examples are the classic media like semaphores,
monitors, or channels, or more complex media like tuple spaces, black-
boards, pipes, etc.

3. the coordination laws, which define the behaviour of the coordination me-
dia in response to interaction events. According to [22], the laws can be
defined in terms of a communication language, that is a syntax used to
express and exchange data structures, and a coordination language, that
is a set of interaction primitives and their semantics).

i From a software engineering viewpoint, a coordination model should work
as a source for design metaphors, abstractions, and mechanisms effectively sup-
porting the development process of distributed, multiagent applications. The
choice of a suitable coordination model is a crucial issue when dealing with
software architectures allowing agent mobility over the Internet, where issues
such as distribution, heterogeneity, unpredictability, integration with standard
technologies, and so on, require some specific criteria for the choice of the most
suited coordination model.

3.1 Internet Agent Coordination

In spite of the above considerations, among the several programming languages
and systems aiming to support and facilitate the design and development of ap-
plications including mobile agents [27], only a few focus on the explicit definition
of a coordination model.

Instead, in the context of both mobile agent systems and AT multi-agent
systems, direct (peer-to-peer) communication is usually adopted as the main
interaction protocol between application components. However, direct commu-
nication does not suit Internet agents, since it implies a strict coupling between
interacting entities in terms of naming rules (who the partners are), space con-
trol (where the partners are) and time control (when to interact).

The interposition of a specialised communication middleware infrastructure,
such as in CORBA, is not satisfactory either, since this approach does not
provide any of the abstractions and metaphors needed to effectively support the
design of complex applications based on Internet agents.

Meeting-oriented coordination models, implemented by the ARA [24] and
MOLE [3] systems, constrain direct interactions to occur in the context of well-
known meeting points. However, this only partially solves the above problems,
given that agents still need to share the knowledge about the meeting point
identity and location.

Instead, tuple-based coordination models seem particularly attractive, as dis-
cussed in the next subsection.

3.2 Tuple-based Coordination

This mainstream research field originates from the work on the Linda program-
ming language [6]. Linda relies on the notion of tuple space as an associative
blackboard used by active components to communicate, synchronise, and coop-
erate by reading, writing, and consuming tuples.

The tuple space model is especially attractive because it scales: multiple
tuple spaces can be considered a coordination media populating a coordination
space, the communication language is made up of tuples, and the coordination
language provides coordinated entities with the primitives for tuple space access
and modification. The coordination language includes the out operation, to
write a tuple in a tuple space, and the in and rd operations, to send a tuple
template and wait for the tuple space to return a tuple matching the template,
respectively either deleting it or just copying it from the tuple space. Since the
semantics of in and rd implies that a coordinable agent blocks until a matching
tuple is found, the Linda coordination language provides for synchronisation,
too.

The tuple space metaphor is best understood as a coordination model em-
bedded in a conventional programming language. For instance, when Linda is
embedded in Java, as in [11], coordinables are active Java objects, the coordi-
nation medium is a multiset of Java objects, the coordination laws are those
describing the semantics of Linda-like primitives on reading, writing, and con-
suming Java objects in the tuple space.

Many extensions, derivations and implementations have followed the original
model, trying to exploit and maximise the benefit of its many features, such as:

e cleanness and expressiveness of the communication language [7];
e separation between computation and coordination [6];

e generative communication [17], leading to spatial and temporal uncoupling
between coordinables;

e associative access to communication information [10].

While Linda originates in the field of parallel programming, its underlying co-
ordination model is well-suited also for open, distributed systems. For instance,
the clean separation of the computation and coordination issues simplifies the
design of complex software agents. Moreover, by uncoupling interacting enti-
ties, coordination models based on tuple spaces solve many problems related to
mobility, since agents can interact without knowing who and where the partners
are. Last but not least, associative access enables agents to retrieve data from
the tuple space via some data-matching mechanism (like pattern-matching, or
unification) integrated within the tuple space itself, and makes it easier to deal
with data incompleteness as well as with dynamicity and heterogeneity which
are typical of Internet nodes, when seen as information sources.

4 Coordination on the Web

The World Wide Web is currently the most popular platform to access Internet
services, so it has the potential to become the standard infrastructure to build
integrated applications. In fact, most application domains are turning to the
Web as the environment of choice for building innovative applications leverag-
ing on the open standards, their diffusion, and the programmable nature of the
available services. For instance, there is a growing interest in active document
management systems based on the Web infrastructure [16]. These applications
typically exploit multiagent technologies, meaning that they are highly concur-
rent, distributed, and based on mobile code.

However, the Web in its current state does not provide enough support
for those applications based on agent-oriented programming, like groupware or
workflow, which require sophisticated agent coordination.

In fact, most Web-based applications are either server-centric (interfacing
applications via CGI to a mainframe-like central server machine), client-centric
(applets providing application services to users without a real distribution con-
cept), or not integrated at all with the Web (applications whose user interface is
implemented by applets or plug-ins connecting with some proprietary protocol
to a proprietary server). All these approaches do not really satisfy the idea of
a structured configuration of (autonomous) agents: they are either not really
distributed, or not integrated with the Web.

Several issues arise when facing the problem of designing an effective Inter-
net programming language. In fact, several design choices may be in principle
adopted when defining the coordinables, coordination media, and coordination
laws in a Web-based software architecture. More precisely:

e Which entities, in addition to application-specific agents, should become
the coordinables of the architecture? In particular, what role should Web
services assume w.r.t. the coordination architecture?

e Should the coordination architecture define a single or a variety of — pos-
sibly independent — tuple spaces? In the latter case, how should they be
distributed and how can coordinables identify and refer to tuple spaces?

e Given an architecture including a coordination medium and some coor-
dinables; what primitives should be included in the coordination language?
Moreover, what communication language and primitives better suit the
Web scenario?

e Should the coordination laws be fixed once and for all by the model or
should they be adjustable at the application level? In the latter case, how
can we specify the coordination laws?

In the rest of this section, we discuss the above design issues and survey
some solutions recently proposed. In particular we will analyse the following
proposals:

<VWW Server : Tuple Space

@@ DN
XX

Figure 1: Tuple spaces as additional Internet services.

JavaSpaces [28], proposed and implemented by Sun Microsystems, T Spaces
[32], developed by IBM, WCL [26], developed at the University of Cambridge,
Lime [25], developed at the University of Washington, PageSpace [12], developed
Jjointly at TU Berlin and at the University of Bologna TuCSoN [23], developed at
the University of Bologna, and MARS [4], developed at the University of Mod-
ena. The main features of these systems are summarised in Table 1, and they
will be analysed in more detail in the following. The analysis will be made by
keeping in mind that and any proposal in this context should be well-integrated
in the Web scenario and allow a simple integration with all the services and
tools already available and widely used, such as WWW servers, browsers, CGI
applications, and CORBA services.

4.1 Coordinables

The definition of a coordination model should start from the identification of the
coordinable entities, i.e., the active entities accessing the coordination media.

Since we are interested in models including mobile entities, it is important
to define first non-mobile coordinables. In fact, as stated in Section 2, even if we
focus on applications based on mobile agents, in general an Internet application
could include several non-mobile entities, such as WWW servers and CORBA-
compliant services, which an agent may be in need to interact with in order to
perform its task.

A possible choice is to consider all these non-mobile entities as simply server
objects, by defining their coordination medium as merely another Internet ser-
vice.

The Figure 1 depicts a situation in which agents can use indifferently as a
coordination medium a Tuple Space, a WWW server, or a CORBA ORB.

However, this approach is not satisfactory. On the one hand, the language

10

Tuple Space

CORBA App.

Figure 2: Internet services masked behind tuple spaces.

designer would be forced to provide a large number of mechanisms to enable
agents to access not only tuple space services, but also any other service. On
the other hand, such a proposal would not enforce an incremental approach to
Internet-application construction, as it would complicate the definition of ap-
plication agents. Admittedly, this solution is better for Intranet applications,
which seldom require access to the “open” Web world, and mostly require coor-
dination among agents specifically defined for a given application (for instance,
this is the case with the WCL system).

As an opposite approach, the coordination architecture could be designed as
to become “The Internet” service, masking and providing access to any existing
service via the tuple space itself.

Figure 2 abstracts this situation, showing a tuple space used as main coor-
dination medium among agents and Internet services.

This is the choice adopted by MARS, which associates a single global tuple
space service to each node of the network able to accept and execute agents.
MARS gives an agent the possibility of interacting with the execution environ-
ment, its resources and services only via the tuple space.

The above solution enforces a very simple programming style, and conse-
quently leads to the definition of a very simple programming language, by mak-
ing Linda-like coordination the only possible way of interaction in Internet ap-
plications. However, it may turn out to be not appropriate for all applications,
as components (for example proxy-servers) may require to act as both clients
and servers, thus making complex their integration into an application.

Between the above two extremes, a more suitable approach could conceive

11

Tuple Space

Figure 3: Tuple spaces as middleware.

the coordination model as a sort of middleware, selecting as coordinables all the
entities populating the Web and offering a uniform underlying infrastructure.
However, since legacy entities have not been explicitly designed to access a
tuple space, their integration into the architecture may require special-purpose
agents in charge of mediating and ruling the access to the tuple spaces from
other entities.

Figure 3 depicts such situation, that is typical of the PageSpace system.

To the best of our knowledge, PageSpace is the only research proposal which
explicitly addresses the problem of defining and characterising coordinables, i.e.,
Internet agents, and all the other classes of agents that must be part of model.
Instead, both JavaSpaces and T Spaces only aim to define an architecture for
the coordination medium, implicitly assuming the presence of coordinables, i.e.,
agents that can access the space. However, these proposals lack in identifying
all the entities which are part of the coordination architecture and, then, do not
properly face the problem of Web integration.

In most cases, the only explicit reference to this problem relates the presence
of special-purpose agents, e.g., applets executing inside Web browsers, to enable
access to a coordination medium via a browser [25, 23].

4.2 Coordination Media

A simple, not widely-distributed application may take advantage of a single
tuple space, where all the application components can be coordinated in a cen-
tralised way. This may simplify the application design, and may not require

12

tcRefl

/

Tuple Space Tuple Space

Figure 4: Transparent access to tuple spaces.

to take into account the issue of denoting tuple spaces, since there is just a
single default tuple space. However, building widely-distributed and complex
applications by using a single tuple space is not feasible.

On the one hand, this would create remarkable latency and reliability prob-
lems. On the other hand, this would not enforce any modularity principle, and
would make difficult the application management. In this case, applications
should be built around a multiplicity of tuple spaces, appropriately distributed
in the Internet and accessed by agents according to their specific needs.

The availability of multiple independent tuple spaces enables de-centralisation
and modularity, but introduces novel problems. In particular, a coordination
model including multiple tuple spaces requires for agents a suitable way to de-
note and access the spaces themselves.

Many systems (e.g., JavaSpaces, PageSpace, and WCL) define an object-
oriented tuple space model in which tuple spaces are objects themselves.

Figure 4 represents the fact that application agents can exchange tuple space
references and use them to access a given tuple space, transparently to location.

This solution is very simple and intuitive, and provides for a transparent,
location-independent way to access to tuple space. However, in the context of
Internet applications, network-unawareness is not the most natural choice, as
argued by [29]. In fact, enforcing transparency in a wide-area network does not
lead to an efficient programming paradigm, because the unpredictable latency
times would make the application performances hard to be predicted.

The WCL proposal addresses the problem of communication latency by pro-
viding for transparent migration of tuple spaces, in order to enforce locality of
the accesses: either tuple spaces are migrated to the clients that need to access
them, or clients can be migrated transparently to a given tuple space. This
requires a complex run-time support, and it is not integrated in the Web at all.

In the presence of network-aware mobile agents, explicitly moving through a
collection of different execution environments, a transparent choice is even more

13

Tuple Space Tuple Space

Figure 5: Implicit access to the local tuple space in MARS.

odd: if agents move to increase locality with the needed resources, enforcing a
transparent, network-unaware access to the coordination media — without the
possibility of knowing where the tuple space is — would void the agents’ mission.
The organisation of the tuple spaces, as well as the related way of accessing
them, must take into account the network-aware mobility of agents. In this
context, we can distinguish two main approaches: the implicit one and the
explicit one.

The implicit approach alleviates the agent from the need of explicitly refer-
ring to a tuple space, and automatically lets the agent access a default tuple
space, possibly depending on its current position in the Internet. Therefore, the
implicit approach tightly connects the issue of agent mobility to the coordination
model.

The MARS system adopts an implicit, context-dependent, approach to iden-
tify and access a tuple space

Figure 5 shows a single tuple space associated to each execution environment;
a reference is bound to any incoming agent. The tuple space can be used to
access to resources and services on that node, as well as to enable inter-agent
coordination, in a implicit way, without needing to name it or to explicitly
maintain a reference to it. When an agent migrates and arrives to a new site, a
new connection is established with the tuple space of the new node, while the
old connection gets lost. There is no way for an agent to access to a remote
tuple space but by explicitly migrating to that node.

Lime adopts a different implicit approach: an agent carries a private tuple
space during its movement, and this is the only tuple space it can access during
its life (Figure 6).

As the agent arrives on a node, its private tuple space is automatically
merged with the one associated to the execution environment. Then, the private
tuple space of the agent can be used to implicitly access the resources of that
node. In addition, different nodes can federate and merge their associated tuple

14

Tuple Space

Tuple Space

Tuple Space

Tuple Space Tuple Space Tuple Space

g The Internet

Figure 6: Tmplicit access to the agent-own tuple space in Lime.

spaces, thus allowing an agent to access to a remote resource via the federated
tuple space.

The main drawback of the implicit approach is that it forces an agent to
migrate to access a specific tuple space. Sometimes this is not the most efficient
choice. For example, if an agent needs a single access to a given tuple space, it
may be not appropriate to migrate the agent towards that node, and enabling
a remote access would be preferable.

The ezxplicit approach, while maintaining a network-aware architecture, en-
ables remote access to tuple spaces by associating a global naming scheme to
tuple space. The most natural choice for naming a tuple space would be a Web
compliant one (i.e., URLSs).

When adopting an explicit approach, the implicit approach has not to be
necessarily discarded: although it is always possible to refer to a tuple space by
its global identifier, the possibility for an agent to implicitly refer to a “default”
tuple space, depending on its current location, may reduce the complexity of the
agent and permit applications to be based on “context-dependent” coordination
actions (Figure 7).

TuCSoN adopts the above approach and enables both implicit and explicit
access to a tuple space.

4.3 The Coordination Language

When adopting a coordination model based on tuple spaces, defining the coor-
dination language means to define the data types and language primitives to
access the spaces.

With regard to the latter point, the original Linda model, mostly oriented
to parallel programming, defines a simple language based on a limited set of
typed primitives, to be used to compose tuples.

The current trend, followed by PageSpace, JavaSpaces, and MARS;, is to
define object-oriented tuple space models, in which both tuple spaces, as well
as tuples and their component fields are Java objects. This means that a large

15

tcQURL

Tuple Space Tuple Space

Figure 7: Implicit and explicit access to tuple space in TuCSoN’

number of different data items are in need to be managed and exchanged during
coordination actions.

However, this may be not always the most appropriate language for all ap-
plications. Some specific application problems may require different typed coor-
dination mechanisms. For instance, the T Spaces system is oriented towards the
management of large data, and the adopted model is a relational one: a tuple
type identifies a table schema, whereas a tuple is one row in a table. TuCSoN
that is oriented to the coordination of intelligent information agents, defines a
tuple space model in which tuples are terms, namely uninterpreded first-order
logic predicates.

Concerning the communication primitives, most of the systems define a static
and limited set of primitives to be used to access the coordination media. Typi-
cally, this set includes operations having the same semantic of Linda primitives,
and a limited number of additional operations, such as collecting all the tuples
matching a given template, as in MARS.

In the case of applications based on autonomous agents, asynchronous op-
erations like notification mechanisms as in WCL and JavaSpaces are useful:
an agent can require a tuple to a tuple space without being blocked waiting
for a matching tuple. The agent goes on with its execution, and can retrieve a
matching tuple later, when available. However, when mobile agents are involved,
notify mechanisms (i.e., the tuple space signals an agent about the availability
of a previously requested tuple) are not suitable, because they would require
the run-time support tracking agents’ movements to locate and notify them.

Due to the simplicity of Linda primitives, performing complex coordination
on large set of tuples may be difficult and may require the composition of a
large number of primitive operations. For this reason, T Spaces enables agents
to to add any new primitive to a tuple space, in order to implement any needed
operation on the tuples stored in it. However, this approach cannot generally
suit Internet applications, based on autonomous agents, because either only

16

the agent that has installed the new primitive can invoke it or some form of
strict coupling between the agents has to be provided, to let them know which
operation the other agents have installed in the tuple space.

4.4 Coordination Laws

Given a coordination medium, the coordination laws specify the behaviour of
the medium itself in response to communication events, i.e., the invocation of
communication primitives by one of the coordinables.

In the standard Linda model, the coordination medium embeds fixed, stati-
cally defined, and not modifiable coordination laws. In particular, these laws are
based on the concepts of associative access, and make an input request for data
be supplied with one tuple, if any, matching on the basis of a pattern-matching
mechanism with a specified template.

Since its first definition, different extensions to the Linda model have been
proposed defining different coordination laws, often directly driven by the adopted
data model for tuples. In the context of Internet coordination systems, the
object-oriented tuple space model adopted for instance by JavaSpaces substi-
tutes the classical Linda pattern-matching mechanism by making two objects
match each other if their serialised forms are equals. Instead, logic unification is
assumed as the basic matching mechanism in the logic-based coordination space
in the TuCSoN model [14].

Independently from the adopted coordination laws, most of the tuple space
systems presented in the literature adopt the Linda approach of embedding fixed
coordination laws into the coordination medium. The same choice has also been
adopted by most of the proposals we discussed in the context of Internet-oriented
coordination, including PageSpace, WCL, Lime, and JavaSpaces. However, in
a wide and unpredictable word as the Internet, this choice may not be the
most appropriate one if mobile agents roaming through heterogeneous execution
environments have to interact.

Other proposals, such as T Spaces, TuCSoN and MARS, conceive the co-
ordination medium as a configurable kernel. The idea is to make the coordi-
nation medium configurable, by allowing new coordination laws to be defined
and embedded in it. This choice is driven by the consideration that Linda-like
coordination lacks flexibility and control, since interactions are constrained by
the built-in data-access mechanisms provided by the tuple space. Thus, any
coordination policy not directly supported by the model has typically to be
programmed inside the agents. In an open, heterogeneous and unreliable envi-
ronment as the Internet, this is likely to notably increase the agent complexity,
which are forced both to implement in their code the peculiar coordination
protocols required by an application and to solve Internet related issues, such
as heterogeneity and dynamicity of the information sources on the execution
environments. In addition, this makes somehow coordination rules distributed
between blackboards and the agents, thus affecting the global application de-
sign and breaking the logical separation between coordination and algorithmic
issues.

17

i From this perspective, T Spaces make it possible to change the basic as-
sociative mechanisms, and to define new communication primitives, which, as
already stated, seems not well suit an open Internet scenario. Instead, TuCSoN
and MARS forbid both the introduction of new primitives and the modification
of the matching mechanism, but provide full programmability of the coordina-
tion laws by enabling the definition of a new behaviour in response to communi-
cation events. In particular, in TuCSoN the coordination media are suitable to
be programmed by intelligent, meta-level agents, which could then be exploited
to dynamically tune the global behaviour of a coordinated application.

In its turn, MARS, coherently with its OO tuple space model, follows an
object-oriented approach to coordination laws programming: a specific method
of a specific interface class can be implemented and associated to specific com-
munication event. The method overrides the default OO associative mechanism
and implements the specific behaviour the tuple space should exhibit at the
occurrence of the associated communication event. The above characteristics
make the MARS tuple space programmability suitable to high-level service and
system management.

5 Discussion

In the above section, we identified several design solutions and the pros and
cons of the different solutions in different contexts. Starting from those consid-
erations, we can summarise which design solutions better suit a scenario where
tuple-space-based coordination models rule the Web.

Coordinables

A coordination model for the Web must precisely define the coordinables of the
model. In particular, an appropriate role must be assigned to Internet services to
enable a real integration of the model with the Web. The PageSpace proposal
for a tuple-based middleware, where any Internet service can find its specific
role as special-purpose coordinable (possibly with the mediation of specifically
designed agents) is the only concrete attempt in this direction. PageSpace,
without having the ambition to provide a definitive answer, identifies a suitable
direction towards an engineered approach to Internet applications development.
However, the option of masking Internet services behind a tuple space (instead
of defining them as coordinables) should not be a priori excluded, since it may
be useful to provide a simple tuple-based access to already existing services.

Coordination Media

A coordination architecture on the Web should be based on a multiplicity
of independent tuple-space abstractions, distributed across Internet sites and
possibly independently managed. Application agents can take advantage of a
network-aware architecture, in which they can implicitly refer to tuple spaces
depending on their current position. In addition, they could also be given the
possibility of explicitly referring to a given tuple space, independently from their
current position, by explicitly locating it via an URL, as in TuCSoN.

18

A transparent, network-unaware choice, making agents use generic refer-
ences, should be generally discouraged in the case of Internet applications.
However, small-size network domains, i.e., intra-organisation ones, can take
advantage of transparency when opening to the execution of Internet agents. In
fact, a transparent coordination architecture can be useful to distribute internal
resources (as in WCL) and possibly by controlling intra-domain agent migra-
tions, in order to achieve the best internal resources structure without forcing
application agents to be aware of the internal organisation of the domain. An in-
teresting alternative solution for intra-domain coordination management which
is worth to be evaluated can be inspired by Lime: if the tuple spaces of different
sites can merge together, this can enable an agent to access transparently the
resources of other nodes, as if they were local.

Coordination Language

In general a coordination model should always be kept as simple as possible,
in order to achieve a simple and clean integration within a programming lan-
guage. A small; Linda-like set of coordination primitives is usually sufficient
for most application needs, and we discourage the adoption of complex coor-
dination languages with a lot of primitives, each devoted to solve a peculiar
problem. Similarly, we feel that the coordination language should not be dy-
namically extensible (by integrating new primitives not originally defined by the
coordination model, as in T Spaces), since this makes application management
more complex and limits agent uncoupling.

Instead, if new functionalities have to be added to the coordination model,
a better solution consists of embedding them as coordination laws in the media,
without affecting the coordination language.

A design choice that is more difficult to evaluate relates to the data model
for tuple spaces. Among several models (such as object-oriented tuple spaces,
logic tuple-space, relational tuple-space), a single model cannot answer to all
application needs. The best solution would be to define a coordination architec-
ture in which different tuple spaces based on different data models could co-exist
under the same coordination language, so that the adoption of multiple tuple
spaces would not only be a way to better modularise and distribute coordina-
tion activities, but also a way to define special-purpose coordination media to
be used depending on application needs.

Coordination Laws

While the simplicity of the Linda coordination language well suits Internet appli-
cations, constraining coordination laws to the built-in data-access mechanisms
provided by tuple spaces can be sometime to restrictive: any coordination policy
not directly supported by the model has to be charged upon agents. Therefore,
a programmable tuple space model should be integrated into a Web coordina-
tion architecture: with no change to the coordination language, one should be
able to tune the behaviour of the tuple space in response to agents’ invocation
of communication primitives to the specific needs of both the application agents
and the execution environment. Also in this context, programmable coordina-

19

tion media based on different programming models and languages, let them be
the logic programming model provided by TuCSoN or the object-oriented one
provided by MARS, should be allowed to co-exists, to meet the needs of different
application areas.

6 Conclusions and Open Directions

The power of tuplespace-based coordination models makes them a suitable tech-
nology to enable and facilitate the design and development of Internet applica-
tions where mobile agents spread over a Web scenario. Such a power is confirmed
by the number of proposals that, to different extents and following different ap-
proaches; aim to define and integrate the Web with Linda-like coordination
models and languages.

In this paper we tried to identify the language design solutions that can
better suit the current Internet scenario. However, several other research is-
sues, not relevant for the systems surveyed and (consequently) neglected by this
paper, have still to find an appropriate solution before these technologies be-
come practical for Internet languages, and an effective component of Internet
applications.

As a first consideration, it is clear that any proposal should take into con-
sideration any existing standard as well as emerging ones in order to gain ac-
ceptance. Therefore, since the forthcoming XML technology is likely to become
a de-facto standard for data structure representation and exchange across the
Internet world, any coordination model should become XML compliant, not
only for data exchange, but also for any coordination related issue. In fact, it
is possible to represent in XML not only data but also agents and services, as
well as high-level interaction protocols. This by no means implies that XML is
likely to mine the role of a coordination model. Instead, a coordination model
integrating the XML technology, both at the architecture and at the language
level, could provide a framework where a wide range of agent-based proposals
in the area of Internet computing will find a coherent role.

Another promising research direction concerns security, which is an issue
intrinsically connected to coordination. In fact, while coordination technologies
for the Internet aim at enabling interaction and making it fruitful, security is
meant to control and limit interaction, so to make it harmless [13]. In other
words, while a coordination language may allow an agent to perform any com-
munication primitive and access any available data structure, a security policy
would instead limit the interaction protocol, for instance by forbidding the ac-
cess to some resource or communication media. A coordination framework for
an Internet programming language should enable the application-level manage-
ment of security policies, to achieve the best compromise between expressive
power and safety in interactions. Still, the research communities of coordina-
tion and security are separated worlds and a few projects have already explicitly
addressed in a uniform way coordination and security issues.

The Internet is likely to be soon populated by agents, roaming through the

20

nodes, accessing structured documents and services, and therefore consuming
resources. Consequently, market-oriented techniques for assigning prices to re-
sources, currency exchange mechanisms as well as techniques to rule the accesses
and controlling the consumption of Internet resources will become necessary.
Otherwise, the Internet would soon experience the problem known as “tragedy
of the commons” | i.e., a global degradation in the quality of Internet services,
whatever the amount of available resources [18]. In this respect, a coordination
model should also take into account economic issues when enabling and ruling
interactions, such as assigning prices to interaction events, dealing with limited
resources (possibly with the help of auction-based protocols), handling virtual
currencies carried by agents. These issues cannot be solved simply adopting
a suitable run-time support, but will influence the application level, strongly
impacting on the coordination model and language.

Last but not least, we remark that no Internet programming language, in
itself, in sufficient for developing large and complex Internet applications. In-
stead, as already recognised by the software engineering community, high-level
tools and suitable design patterns are needed. Some preliminary works on de-
sign patterns including mobile agents are [2, 20]. However, to be effective, any
possible definition of a set of patterns for Internet agents requires some pre-
cise assumptions on the underlying software support and, in particular, on the
coordination model and its architecture.

Acknowledgments: This paper has been partially supported by Italian
MURST and by a grant of the Univ. of Bologna. We would like to thank

Davide Rossi for his helpful comments.

References

[1] Inc. Ad Astra Engineering. Jumping beans v.1.04, 1998. http://wuw.
jumpingbeans.com/.

[2] Y. Aridor and D. Lange. Agent design pattern: Elements of agent appli-
cation design. In Proc. Int. Conf. on Autonomous Agents. ACM Press,
1998.

[3] J. Baumann et al. Communication Concepts for Mobile Agents Systems. In
K. Rothermel and R. Popescu-Zeletin, editors, Proc. First Int. Workshop
on Mobile Agents, volume 1219 of Lecture Notes in Computer Science, pages

123-135, Berlin, 1997. Springer-Verlag, Berlin.

[4] G. Cabri, L. Leonardi, and F. Zambonelli. Reactive Tuple Spaces for Mobile
Agent Coordination. In K. Rothermel and F. Hohl, editors, Proc. 2nd Int.
Workshop on Mobile Agents, volume 1477 of Lecture Notes in Computer
Science, pages 237-248, Stuttgart, Germany, 1998. Springer-Verlag, Berlin.

[5] L. Cardelli and A. Gordon. Mobile Ambients. Tn M. Nivat, editor, Proc.
of Foundations of Software Science and Computation Structures (FoS-

21

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[18]

SaCS), Furopean Joint Conferences on Theory and Practice of Software
(ETAPS’98), volume 1378 of Lecture Notes in Computer Science, pages
140-155, Lisbon, Portugal, 1998. Springer-Verlag, Berlin.

N. Carriero and D. Gelernter. Coordination Languages and Their Signifi-
cance. Communications of the ACM, 35(2):97-107, February 1992.

N. Carriero, D. Gelernter, T. Mattson, and A. Sherman. The Linda Alter-
native to Message-passing Systems. Parallel Computing, 20:633-655, 1994.

D. Chess et al. Itinerant Agents for Mobile Computing. [EFEFE Personal
Communications, 2(5):34-49, October 1995.

P. Ciancarini. Coordination Models and Languages as Software Integrators.

ACM Computing Surveys, 28(2):300-302, 1996.

P. Ciancarini and D. Gelernter. A Distributed Programming Environment
based on Multiple Tuple Spaces. In Proc. Int. Conf. on Fifth Generation
Computer Systems, pages 926—933. Institute for New Generation Computer
Technology, Tokyo, 1992.

P. Ciancarini and D. Rossi. Jada: Coordination and Communication for
Java agents. In J. Vitek and C. Tschudin, editors, Mobile Object Sys-
tems: Towards the Programmable Internet, volume 1222 of Lecture Notes
in Computer Science, pages 213-228. Springer-Verlag, Berlin, 1997.

P. Ciancarini, R. Tolksdorf, F. Vitali, D. Rossi, and A. Knoche. Coordi-
nating Multiagent Applications on the WWW: a Reference Architecture.
IEEFE Transactions on Software Engineering, 24(5):362-375, 1998.

M. Cremonini, A. Omicini, and F. Zambonelli. Modelling network topology
and mobile agent interaction: an integrated framework. In Proc. 1999 ACM
Symposium on Applied Computing (SAC’99), S. Antonio, Tx, 1999.

E. Denti, A. Natali, and A. Omicini. On the Expressive Power of a Lan-
guage for Programming Coordination Media. In J. Carroll et al., editors,
Proc. ACM/SIGAPP Symp. on Applied Computing (SAC 98), pages 169-
177. ACM Press, 1998.

G. DiMarzoSerugendo, M. Muhugusa, and C. Tschudin. A Survey of The-
ories for Mobile Agents. World Wide Web, 1(3):139-153, 1998.

A. Fuggetta, G. Picco, and G. Vigna. Understanding Code Mobility. IFFE
Transactions on Software Engineering, 24(5):342-361, 1998.

D. Gelernter. Generative Communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1):80-112, 1985.

A. Gupta, B. Jukic, M. Parameswaran, D. Stahl, and A. Whinston. Stream-
lining the Digital Economy: How to Avert a Tragedy of the Commons.
IEEE Internet Computing, 1(6), Nov.-Dec. 1997.

22

[19] N. Karnik and A. Tripathi. Design Issues in Mobile-Agent Programming
Systems. IEEFE Concurrency, 6(3):52-61, 1998.

[20] E. Kendall, P. MuraliKrishna, C. Pathac, and C. Sureash. Patterns of
intelligent and mobile agents. In Proc. Int. Conf. on Autonomous Agents.

ACM Press, May 1998.

[21] J. Kiniry and D. Zimmerman. A hands-on look at Java mobile agents.
IEEE Internet Computing, 1(4):21-33, July— August 1997.

[22] A. Omicini. On the semantics of tuple-based coordination models. In Proc.
1999 ACM Symposium on Applied Computing (SAC ’99), S. Antonio, Tx,
1999.

[23] A.Omicini and F. Zambonelli. Coordination for Internet application devel-
opment. Autonomous Agents and Multi-Agent Systems, (to appear), 1999.
Special Issue on Coordination Mechanisms and Patterns for Web Agents.

[24] H. Peine and T. Stolpmann. The architecture of the Ara platform for mobile
agents. In Mobile Agents ’97, volume 1219 of Lecture Notes in Computer
Science, pages 50-61. Springer-Verlag, Berlin, 1997.

[25] C. P. Picco and G. Catalin-Roman. Lime: Linda meets mobility. In Proc.
Internation Conference on Software Engineering, page (to appear). IEEE
Computer Society Press, 1999.

[26] A. Rowstron. WOCL: A co-ordination language for geographically dis-
tributed agents. World Wide Web, 1(3):167-179, 1998.

[27] T. Thorn. Programming Languages for Mobile Code. ACM Computing
Surveys, 29(3):213-239, 1997.

[28] J. Waldo et al. Javaspace specification - 1.0. Technical report, Sun Mi-
crosystems, March 1998.

[29] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A note on distributed
computing. In Mobile Object Systems, volume 1222 of Lecture Notes in
Computer Science, pages 49-64. Springer-Verlag, Berlin, 1997.

[30] P. Wegner. Interactive Software Technology. Technical Report CS-96-20,
Dept. of Computer Science, Brown Univ., 1996.

[31] M. Woolridge and N. Jennings. Intelligent agents: Theory and practice.
Knowledge Engineering Review, 10(2):115-152, 1995.

[32] P. Wyckoff, S. McLaughry, T. Lehman, and D. Ford. T spaces. IBM
Systems Journal, 37(3):454-474, 1998.

23

Table 1: Coordination Systems for Internet Agents

Systems Coordinables Coordination Coordination| Coordination
Media Language Laws

JavaSpaces Java Agents - Transparent OO0 (Java) Fixed
No explicit as- | architecture, Linda
sumptions on the | explicit (network-
role of Internet unaware) access
services to tuple spaces

(OO referencing)

Lime Mobile Agents - | Network-Aware Linda Fixed
No explicit as- | architecture,
sumptions of the | implicit access
role of Internet | to tuple spaces:
services agents access

a private tuple
space, which can
be transparently
merged with other
tuple spaces on
the current node
of execution

MARS Java Agents - | Network-Aware OO0 (Java) Programmable
All services are | architecture, im- | Linda (Java reac-
masked behind | plicit access to tions to com-
the tuple spaces | tuple spaces: an munication
and accessed via | agent can only events)
them access the tuple

space associated
to its current node
of execution

PageSpace Agents+ Services Transparent OO0 (Java) Fixed
- Tuple spaces | architecture, Linda
act as a middle- explicit (network-
ware and Internet unaware) access
services becomes | to tuple spaces
coordinables too, | (OO referencing)
with the interme-
diation of special
purpose agents.

T Spaces Agents - No ex- Transparent Linda Programmable
plicit assumptions architecture, + User- (primitives
on the roles of In- | explicit (network- | defined overriding)
ternet services unaware) access | Primitives

to tuple spaces via
(OO referencing)

TuCSoN Information Network-Aware Logic- Programmable
Agents - Some | architecture, both | oriented (Prolog re-
Internet services | implicit and ex- | (Prolog actions to
can be masked | plicit access: an | terms) communica-
behind the tuple | agent can im- Linda tion events)
spaces and ac- | plicitly access
cessed through the tuple space
them associated to its

current node of
execution and
can also explicitly
access, via URL,
a remote tuple
space

WCL Agents, Applica- | Transparent archi- | Linda + | Fixed
tion Space tecture, automatic | Asyn-

re-allocation of | chronous
agents and tuple | Primitives

spaces

24

