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Abstract

Mobile agents represent a promising techndogy for the devdopment of Internet
apdications. Howeve, mobile computationd entities introduce peadliar problems
w.r.t. the wordination d the appication comporents. The paper outlines the
advantages of Lindalike mordination models, and shows how a programmable
coordination model based on reactive tuple spaces can provide further desirable
features for Internet appications based on mobile agents. Accordingly, the paper
presents the design andthe implementation d the MARS coordination achitedure for
Java-based mohile agents. MARS dfines Lindalike tuple spaces, which can be
programmed to react with spedfic actions to the accesses made by mobile agents.
Sevaal examples in the ontext of a WWWinformation retrieval apgication show the
effedivenessof the MARS appoach.
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1. Introduction

Traditional distributed applications are designed as a set of processes daticdly assgned to
given exeaution environments and cooperating in a (mostly) network-unaware fashion. The mobile
agent techndogy, instead, promotes applicaions made up d network-aware antities (agents)
cgoable of changing their exeation environment by transferring themselves while exeauting
(mohility) [KarT98, FugPV 9g].

The aurrent interest in mobile agents is broadly justified by the alvantages their presence
provides in Internet applications: (i) mohile ajents can dramaticdly save bandwidth, by moving
locdly to the resources they ned, instead of requiring the transfer of posgbly large anounts of data;
(i) mobile agents can cary the @mde to manage remote resources and do no neal the remote



avail ability of a spedfic server, thus leading to a more flexible gplicaion scenario; (iii) mobile
agents do nd require continuows network conredion, kecaise interading entities can move to the
same site when the cnredion is available and then interad withou needing further network
conredion; as a mnsequence (iv) mohile agentsintrinsicdly suit mohile cmputing systems.

In the last few yeas, severa systems and pogramming environments have gpeaed to
suppat the development of distributed appli cations based onmobile agents [KarT98]. Nevertheless
several isales dill need to be facal to make the mobile ayent techndogy widely accepted: seaure
and efficient exeaution suppats, standardization, appropriate programming languages and
coordination models [FugPV 98g].

In mohile agent applications, ore of the fundamental adivities is the @mordination between
one ayent and other agents or resources on the exeaution environments. However, agent mohility
and the openness of the Internet scenario imply problems different from thase occurring in
traditional distributed systems [CabLZ99]. This paper argues that Linda-like cordination models
have the necessary adaptability to suit a wide and heterogeneous networked scenario, and lead to a
simple gplicaion design. In addition, this paper shows that further flexibility and safety can stem
from the definition o a programmable @ordination model, in which the dfeds of interadion
events can be programmed to med spedfic needs, either of the exeaution environments or of the
application agents.

The &ove mnsiderations motivate the design and the implementation d the MARS (Mobile
Agent Reactive Spaces) coordination architedure, based onthe definition d Linda-like tuple spaces,
which agents exploit both to coordinate themselves with ather appli cation agents and to accesslocd
resources. Moreover, urlike raw Linda-like tuple spaces, MARS tuple spaces can be programmed,
either by the locd administrator or by the ayents themselves, to rea¢ with spedfic adions to the
acceses made to them by agents. This charaderistic dlows gedfic and stateful coordination
palicies to be defined and seaure agent exeaution to be enforced, as hown via severa examples
applied to a cae study application.

2. Coordination Modelsfor Mobile Agent Applications

During its nomadic life, an agent neals to coordinate its adivities with ather entities, whether
they are other agents or resources of the exeaution environments. In particular:
. an applicaion may be made up d several mobile agents, which cooperatively perform a task
and are, therefore, in need of exchanging data and knawledge;
. a mohile agent usually roams aaoss remote Internet sites to access resources and services
all ocated there.
While mordination models have been extensively studied in the ntext of traditional
distributed environments [AdI95, GelC92], mohility and the openness of the Internet environment
introduce peauliar problems and redals.



2.1 Coupled versus Uncoupled Coordination Models

Most of Javaagent systems — like Aglets [LanO98] and D’Agents, formerly Agent-TCL
[Kot97] — exploit the dient-server coordination model typicd of the objed-oriented paradigm (even
between remote objeds via Java RMI), and/or spedfic message-passng APIs. These models, by
putting the involved entities in dired conredion, imply both spatial couding and temporal
coufding [GelC92, CabLZ99]: agents have both to explicitly name their communicaion partners
(spatial couding), and to synchronize their adivities in some way (temporal cougding). Thisleadsto
several drawbadks in mobile agent applicaions. In fad, if two mobile ajents want to communicae
diredly on awide scae, they neal to be locdized by means of complex and highly informed traang
protocols. In addition, repeded interadions between agents require stable network conredions; this
makes communicaion hghly dependent on retwork reliability and passbly leals to falure or
unpredictable delays. Finally, several mobile agent applicaions are intrinsicdly dynamic, becaise
of dynamic agent creaion, making it difficult to adopt a spatially couded model that requires the
identification d the communicaion partners. Thus, in the presence of agents moving in the Internet,
dired coordination can be dfedively exploited orly to rule the access to the locd resources of an
exeaution environment, viainteradions with alocd server.

The medingoriented coordination model, introduced by Telescript [Whi97] and aso
implemented by the Ara system [Pei97], solves the spatia couding problem by making agents
interad in the context of abstrad meding points withou explicitly naming the partners involved.
An agent can open a meding point that other agents can join (either explicitly or implicitly) and
afterwards communicae there and synchronize with ead cther. Medings are usualy locdly
constrained to avoid the problems related to nonlocd communicdion,i.e., unpgedictable delay and
unreliability: a meding takes placein a given exeaution environment and orly locd agents can
participate in it. Always-open medings can abstrad the role of locd services in an exeaution
environment. The major drawbadk of the meding model is that it still usualy enforces a strict
temporal cougding among interading agents, which are boundto be & the same place & the same
time. This mines the intrinsic properties of autonamy and dynamicity of the agents (whose schedule
and paition cannat be eaily predicted) or, if those properties are preserved, makes the risk of
missng interadions very high.

Some propaosals exploit blackboard-based coordination models, making interadions occur via
shared data spaces (blackboards), locd to eat exeaution environment. These include the Ambit
model for mobile computations [CarG98] and the ffMAIN mobile agent system [DomLD97].
Bladkboards can be used as common repositories to store and retrieve messages, as well as a
medium to accesslocdly puldished data and services. Since aents can communicae by leaving
messages on Hdadkboards withou needing to knonv where the crrespondng recavers are and when
they will read the messages, a bladkboard enforces temporal uncouging and suits a mohil e scenario
in which the pasition and the schedule of the agents canna be eaily traced. In addition, Hadkboard
models provide for more seaurity than the ones previously described, becaise aly exeaution
environment can fully monitor all the interadions that occur through its locd bladkboard. However,
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as far as agents must agreeon a common message identifier to communicate and exchange data via
a blakboard (i.e., a file name in Ambit and a URL in ffMAIN), interadions are not spatially
uncouped.

Lindalike coordination models [AhuCG86], exploited in severa recent propcsals in the
context of interadive Internet applicaions, such as PageSpace [Cia98] and JavaSpaes, extend
bladkboard models by introducing asociative medanisms into the shared data space informationis
organized in tuples and retrieved in an asciative way via a pattern-matching medchanism.
Therefore, associative bladkboards (e.g., tuple spaces) inherit all the advantages of the blackboards,
in terms of seaurity and temporal uncougding, and go further, by enforcing spatial uncouging: tuples
are accexd hy content rather than by identifier, thus requiring no mutual knowledge to let agents
coordinate. This well suits mohile agent applications. in awide and dynamic environment, such as
the Internet, a complete and upaited knowledge of exeaution environments and d other application
agents may be difficult or even impossble to aqquire. As agents would somehow require pattern-
matching mechanisms to ded with urcetainty, dynamicity and heterogeneity, it is worthwhile
integrating these mechanisms diredly in the wordination model, to simplify agent programming
and to reduce gpli caion complexity.

2.2 Towards Programmable Tuple Spaces

Despite the potential benefits in terms of spatial and temporal uncougding, the basic Linda
coordination model lads flexibility and control in interadions. In fad, bah agent-to-agent and
agent-to-exeaution environment interadions are boundto the built-in — dbta-oriented — pattern-
matching medhanism provided by the tuple spaces, which may not be the most suitable one for all
kinds of interadions. On the one hand, complex interadion protocols may be difficult to redize and
control by exploiting only Linda pattern-matching. On the other hand, the data-oriented interadion
model of Linda does not provide for simple solution to access besides data, the services provided
by asite.

The @owve problems can be solved thanks to the introduction d programmable tuple space
models [OmiZ98, CabLZ99]. In this context, programmability stems from the caability of defining
spedfic computational adivities to be triggered in readion to spedfic accss events to ore tuple
space In ather words, it implies the caability of dedding which types of access events $oud
trigger which adivities into ore tuple space cother than the built-in and stateless asociative Linda
pattern-matching mecdanism.

Programmable readivity of tuple spaces can provide several advantages in mobile agent
applicaions. A site alministrator can program readions to monitor the accss events to the locd
resources and to implement spedfic seaurity padlicies for the exeaution environment, in order to
adhieve better control and to defend the integrity of the environment from malicious agents. In
addition, readions can be used to implement a dynamic tuple spacemodel, in which tuples are not
staticdly stored data structures but are, instead, dynamicdly produced on éemand. From this point
of view, readions enable asimple data-oriented mechanism for accessng services on a site: the



attempt to readl a spedfic tuple by an agent can trigger the exeaution d alocd servicethat produces
the required tuple & a result. Furthermore, readions can be used to adapt the dfeds of the
interadions to the spedfic charaderistics of the exeaution environment and —even more generaly —
to embed intelli genceinto the tuple space[ OmiZ9g].

Further advantages could be provided by giving applicaions the caability of defining their
own coordination rules: agents can cary along the ade of the readions implementing applicaion
spedfic coordination pdicies, andinstall them in the tuple spaces of the sites visited. Of course, this
cgoability would require fadng pealliar seaurity isaues. Nevertheless the posshility for an
applicaionto define its own coordination rules in the form of readions in the tuple spaces achieves
a sharp separation o concerns between algorithmic and coordination issues [GelC92]. The agents
are in charge of embodying the dgorithms to solve the problems; the readions represent the
application-spedfic coordination rules. This can bah reduce the agent complexity and simplify the
global application design.

A possble drawbad of programmable tuple spacesisthat irrational programming can lead to a
distortion d the gplication interadions, and can make users lose wntrol over the exeaution d their
application agents. However, on the one hand, the aministrator of one site has no interest in
atering the gplication semantics but, instead, (s)he usualy has me interest in exploiting the
programmability of her/his administered tuple spaces to enrich the avail ability of data and resources
while better proteding them. On the other hand, an appli cation-spedfic tuple space programming
shoud (be mnstrained to) confine its effeds to the gplicaion itself, withou influencing agents
belonging to ather applicaions.

3. The MARS Coordination Architecture

MARS (Mobile Agent Readive Spaces), developed at the University of Modena, starts from
the dove @nsiderations and implements a portable and programmable Lindalike @ordination
architeaure for Java-based mohile agents.

The MARS architedure does not implement a whaole new Java agent system. Instead, it has
been designed to complement the functionality of arealy available ayent systems, and it is nat
boundto any spedfic implementation: it can be asciated to dfferent Java-based mobile agent
systems with only a dlight extension. The aurrent implementation, avail able for downloading, has
alrealy been tested with Aglets, Java-to-go and SOMA.

Globhally, the MARS architedure is made up d a multiplicity of independent tuple spaces,
eah ore sciated to a node and accessed by the agents locdly exeauting in that node (see
figure 1). Therefore, the only requirement to integrate MARS with amobile ayent system is to make
the agent server — in charge of accepting and exeauting incoming agents on a node (step a of
figure 1) — supdy agents with areferenceto the locd MARS tuple space(step b of figure 1). Agents
onanocde ca then accessthe locd tuple spacevia awell-defined set of Linda-like primitives (step ¢
in figure 1), while eab MARS tuple space ca reac to these acceses with dfferentiated behaviors,
programmed in a meta-level tuple spaceto mee spedfic needs (step d of figure 1).
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The MARS tuple space ca be exploited bah for inter-agent communication and to let agents
asciatively retrieve primitive data items and references to exeaution environment resources. The
locd tuple spaceis the only resourcethat an agent can diredly accessonto anode, so the problem of
dynamicdly binding locd references to mobhile entities [FugPV 98] isvery limited in MARS.
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Figure 1. The MARS Architecture (smiles represent mobile agents)

3.1 TheMARS Interface

MARS has been designed in compliance with the JavaSpaes spedfication, which is a good
candidate to beaome the de facto standard tuple space interface for Java. Therefore, as in
JavaSpaces, MARS tuples are Java objeds whaose instance variables represent the tuple fields.
Tuple dasses must implement the Entry interface required for tuple management. The eaiest way to
dothisisto derive atuple dassfrom the AbstractEntry class (that defines the basic tuple properties
by implementing the Entry interface and to define, as instance variables, the spedfic tuple fields.
Each fiedld of the tuple is a reference to an oljed that can aso represent primitive data type
(wrapper ojeds in the Javaterminaogy). Any field of atuple can have dther a defined (actual) or
anul (formal) value.

Each MARS tuple spaceis redized as a Java objed, an instance of the Space class which
implements the MARS interface an extension d the JavaSpace interface (figure 2). To accessthe
tuple space the foll owing operations are provided:

* write, to put atuple, suppied asthe first parameter, in the space

* read, to retrieve atuple from the space on the basis of a template tuple suppied as the first
parameter and to be used as a pattern for the matching mecdhanism;

* take, which works astheread operation bu extrads one matching tuple from the space

* readAll, to retrieve dl matching tuples from the space

* takeAll, to extrad al matching tuples from the space



For al the operations, the txn parameter can spedfy atransadion the operation kelongsto. The
timeout parameter of read, take, readAll and takeAll, spedfies the time to wait before the operation
returns a null value if no matching tuple is found while NO_WAIT means to return immediately, 0
means to wait indefinitely. The lease parameter of the write operation sets the lifetime of the written
tuple. The readAll and takeAll operations are not present in the JavaSpaces interface ad have been
added to the MARS interfaceto avoid agents being forced to perform severa reads to retrieve dl the
needed information, with the risk of retrieving the same tuples svera times. This is a well-known
problem of tuple space model, due to the nondeterminism in the seledion d a tuple anong
multi ple matching ones.

public interface MARS extends JavaSpace

{

/ method interface inherited from JavaSpace

/I Lease write(Entry e, Transaction txn, long lease); /I put a tuple into the space

/I Entry read(Entry tmpl, Transaction txn, long timeout); // read a matching tuple from the space
/I Entry take(Entry tmpl, Transaction txn, long timeout); // extract a matching tuple from the space

/I methods added by MARS and not present in the JavaSpace interface
Vector readAll(Entry tmpl, Transaction txn, long timeout); // read all matching tuples
Vector takeAll(Entry tmpl, Transaction txn, long timeout); // extract all matching tuples

}

Figure 2. The MARS interface

The template tuple suppied to the read, readAll, take and takeAll operations can have both
defined and ndl values. A tuple T matches atemplate tuple U if the defined values of U are egual to
the crrespondng ones in T. More in particular, since tuples are objeds in MARS (as in
JavaSpaces), and sincethe dements of atuple can be non-primitive objeds, the matching rules must
take into acourt the presence of classes and oheds. Then, atemplate tuple U and atuple T match
if and orly if:

* Uisaninstanceof either the dassof T or of one of its superclasses; this extends the Linda model
by permitting a match also between two tuples of different types, provided they belong to the
same dasshierarchy;

 the defined fields of U that represent primitive types (integer, charader, bodean, etc.) have the
same value of the mrrespondng fieldsin T;

 the defined nonprimitive fields (i.e., ohjeds) of U are equal — in their serialized form — to the
correspondng ones of T (we can mention that two Java objeds asaume the same serialized form
only if eat of their instance variables have equal values, reaursively including enclosed oljeas);

e anul valuein T correspondsto anul valuein U.

Once atuple is obtained from the space its adual field oljeds can be accesd as any other Java

objed.

As an example, let us suppacse that a file of the locd file system is represented by a tuple of
this type (String PathName, String Extension, Date ModificationTime, File ActualFile). Then, a template
tuple (null, “html”, null, null) matches with the tuple (“/usr/local/htdocs/index”, “html”, 02/01/98:17.34.20,
File@[012a34]) and also with (“/homeljava-to-go-server/mobile_agents”, “html’, 01/10/97:14.12.54,
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File@[0b6c52]); a template tuple (“/home/java-to-go-server/mobile_agents”, “ntml”, null, null) matches only
with the latter tuple.

3.2 TheReactive Moddl

Linda, in its first definition, provided for a limited form of readivity, via aspedfic operation
(cdled eval) used for the dynamic evaluation d tuples [AhuCG86]. However, due to bah the
unclea semantics of the eval and the lack of a suitable model for controlling the cmmputations
performed in a tuple space most implementations (including JavaSpaces) rules out the eval
operation, as well as any form of readivity. MARS, while discarding the eval implementation,
reaognizes the ned for tuple spacereadivity and dfines a flexible and controll able achitedure to
asciate programmable reactions to the events on the tuple space i.e., to the tuple space acceses
performed by agents.

MARS readions are stateful objeds with a known method (namely, the reaction method),
which can access the tuple space itself, change its content, and influence the dfeds of the
operations performed by agents.

The as2ciation d readions to accessevents is represented via 4-ples stored in a “meta-leve”
tuple space A meta-level tuple has the form of (Rct, T, Op, I): it means that the reaction method d
the objed Rct will be triggered when an agent with identity | invokes the operation Op on a tuple
matching T. Putting and extrading tuples from the meta-level tuple spacemeans installing and de-
installi ng, respedively, readions asociated to events at the base-level tuple space

A meta-level 4-ple can have some non-defined values, in which case it associates the speadfied
readion to al the accesevents that match it. For example, the 4-ple (ReactionObj, null, read, null) in
the meta-level tuple space asciates the readion d the ReactionObj instance to al read operations,
whatever the tuple type and content and the agent identity.

The meta-level tuple spacefoll ows associative medhanisms smilar to the ones of the “base-
level” tuple space A meta-level pattern-matching mecdhanism is adivated for any accessto the base-
level tuple space to deted the presence of readions to be exeauted (i.e.,, of metalevel tuples
matching the accesevent) and trigger their exeaution. For example, when an agent with identity |
invokes a single-tuple input operation Op (i.e., read or take) suppdying a template tuple U, MARS
exeautes the foll owing steps (seefigure 3):

1. it iswues the pattern matching medanism of the base-level tuple spaceto identify atuple T that
matches with U;

2. it exeautes areadAll in the meta-level tuple spaceby providing the 4-ple (null, T, Op, 1), where T
isthetuple T that has matched in step 1,if any, the template U otherwise;

3a. if a matching 4-ple is found in the metalevel, MARS triggers the exeaution d the
correspondng readion. The reaction method receves the tuple T, as well asthe Op and | values,
as parameters, and it is expeded to return atuple a aresult.

3b. if no matching meta-level 4-ples are found, MARS lets the invoked operation Op proceed
acording to its normal semantics.
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If severa 4-ples stisfy the meta-level matching mechanism in step 2, al the correspondng
readions are exeauted in a pipeline (seefigure 44), acordingly to their installation ader (sincethe
order in which the readions are exeauted in the pipeline may influence the final result, MARS rules
out nondeterminism for meta-level matches).

In the cae of areadAll or atakeAll invoked in the base-level tuple space multi ple matches can
be produced either in step 1 or by one of the readions triggered in step 3a. If multi ple matches are
produced in step 1, a pipeline of matching readions is asociated to ead matching tuple (see
figure 4b). If no matches are produced in step 1, a single pipeline of readions is adivated; as on
as areadion in the pipeline produces multiple result tuples, the rest of the pipeline is replicaed for
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ead result tuple (seefigure 4c).

In the cae of a write operation, MARS starts diredly from step 2 and wses the tuple T,
parameter of the write operation itself, in the meta-level 4-ple (null, T, write, 1).

A readion hes accessto the base-level tuple space ad can perform any kind d operation onit
(however, operations on the base-level tuple space performed within a readion do nao issue avy
readion, to avoid endessreaursion). This can be used to exploit the base-level tuple space a a
repository of readion state information, in addition to the state that the reation ohed can store &
part of its gate. As a mnsequence, the behavior of the readion can depend bdh on the adual
content of the tuple space ad on @st access events. Also, when the readion exeautes, it has the
avail ability of either the result of the matching mecdhanism isaued by the sssociated operation, o
the template with which an inpu operation was invoked. Then, the readion can influencethe dfeds
of operations and, for example, can return to the invoking agent different tuples than the ones
resulting from the normal pattern-matching mecdanisms.

The @ove daraderistics of the MARS readive model lead to grea flexibility, as the
appli cation example sedionwill show, and substantially distinguish it from the natify mecanism of
JavaSpaces. In fad, far from introduwcing readivity into tuple spaces, the notify mecdhanism can
simply be used to signal external objeds abou the insertion d new tuples into atuple space Thus,
it does nat allow other accessevents to be monitored bu writes and daes nat give the posshility of
controlling and influencing the dfeds of tuple space operations, since the adivities possbly
triggered in anatified ojed are outside the space ad independent of itsinternal adivity.

3.3 The Security Model

Seaurity is a very important issle in the mntext of mobile agent applicaions. In MARS,
seaurity concerns proteding the tuple spaces from unauthorized or malicious accesses. MARS
asumes that the mobile agent system — like most of the available systems — provides for agent
identificalion and authenticaion kefore dlowing any agent to exeaute on ore nocde. On this basis,
the main seaurity medhanism provided by MARS is the asciation d one Access Control List
(ACL) to ead tuple. Such ACL defines who can do what on the @rrespondng tuple, and the
system administrator can dedde whether a given operation onagiven tupleis authorized or not.

Starting from the ACL medhanism, MARS integrates saurity policy based onroles. Agent
identiti es can be mapped into roles, in which case MARS uses roles as de facto identiti es of agents.
Trandating identities into a few well-defined roles smplifies the management of the ACLs and
leads to a better uncougding between the agent system and MARS. As an example, threeroles of a
very general nature, which can be defined for any tuple space are reader, writer and manager.
Agents with a realer role can rea tuples of the space bu they can neither insert new tuples nor
extrad alrealy stored tuples. Agents with a writer role have the right to read tuples and store their
own tuples in the space bu they canna extrad tuples gored by agents with a different identity.
Agents with a manager role, typicdly owned by the locd administrator, have full rights on the
space they can rea, write and extrad any tuple. In addition, they also have full accessto the meta-
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level tuple space thus being enabled to dynamicdly install and urinstall readions.

Other roles can be defined which give or deny accessto spedfic dasses of tuple aad which
allow agents to install and uninstall readions only with regard to a limited set of accessevents. In
general, the administrator of one site shoud define proper role aiuthorization pdicies for external
application agents, so as to guarantee that an external agent canna influence — by installi ng/de-
installi ng readions — the adiviti es of other agents but those of its pedfic goplicaion.

4. Using MARSIin Mobile Agent Applications

An applicaion example in the aeaof WWW information retrieval can show the ea&e of use
of MARS and its cgpability of leading to a simpler and more flexible gplicaion design than ather
coordination models. The gplicaion exploits mohile agents to read remote Internet sites and
locdly access HTML pages of interest, analyzing them and extrading the required information
withou any nedl to transfer the pages over the network. For instance a seacher agent sent to a
remote site can analyze the locd WWW pages and come badk with the URLs of the pages that
contain a spedfic keyword. To speal upthe reseach, the gplicaion can be shaped after a tree of
concurrent seacher agents. If a seacher agent on a site finds HTML links to aher possbly
interesting pages on dfferent sites, it clones itself and has the dones follow these links, to
reaursively continue the seach work on dfferent sites (figure 5). In this context, agent-to-exeaution
environment coordination is needed to make ayents accessand retrieve information ona site, while
inter-agent coordination is nealed to avoid dupicaed work performed by different clones on the
same sites, as could occur in the mmon case of crossreferencesin HTML pages.

Searcher agent

Searcher agent

Cloned searcher agent

To user

A Link

-

Cloned searcher agent

Figure 5. An agent arrives at a site (a), accesses the local HTML pages (b) and creates a new agent for

any link to be followed before returning to the user site (c).

4.1 Agent-to-Execution Environment Coordination

When relying on dred or meding-oriented coordination, the accesto the loca resources of
an exeaution environment isto be based onlocd servers, which are requested to provide gpropriate
services to retrieve the data of interest, the HTML pages in the spedfic example. However, a server
may not always provide the gpropriate services neaded for an applicéion. For example, most of

11



today’s WWW servers cannd (or are not configured to) provide the index of the URLs avail able on
a site. S0, an agent is forced to explicitly navigate page by page in the site, from the root HTML
page to the leaves, to retrieve dl available HTML pages. Code mobility can make it possble for
agents to cary the ade of the needed services dong and install them in the sites visited. This
cgoability, however, introduces aurity issies and requires exception handing, in case the
exeaution d the services on asite fails. As a further drawbadk, the solution forces agents to adopt a
control-oriented pant of view, i.e., to request services while they require data/files. With the
adoption d a bladkboard or a tuple spaceon ead site, HTML pages on a site can be accesd
withou requiring the presence of peauliar services andin amore natural data-oriented style.

class FileEntry extends AbstractEntry [/l AbstractEntry is the root class of the tuple hierarchy
{ [/l tuple fields

public String PathName; /I pathname of the file represented by this tuple
public String Extension; /I representative of the file type

public Date ModificationTime; /I date of the last update of the file

public File ActualFile; /I a file object to access the content of the file

/I constructor of the tuple. The order of the parameters defines the tuple field order
public FileEntry(String name, String extension, Date modificationTime, File file)
{ PathName = name; Extension = extension;
ModificationTime = modificationTime; ActualFile = file;
}

Figure 6. The FileEntry class for the tuples representing files in the tuple space

In the cae of MARS, the locd exeaution environments can provide accssto the HTML
pages via tuples that make available general file information, such as pathname, extension and
modificaiontime, and that contain areferenceto aFile objed to be used to accessthe wntent of the
file. Instances of the FileEntry class siown in figure 6 can represent this tuples.

FileEntry FilePattern = new FileEntry(null, “htmI”, null, null); // creation of the template tuple

Vector HTMLFiles = LocalSpace.readAll(FilePattern, null, NO_WAIT);
[/l read all matching tuples and return a vector of tuples

if (HTMLFiles.isEmpty()) // no matching tuple is found
terminate(); /I the agent has nothing to return to the user and can terminate
else
for (inti=0; i < HTMLFiles.size(); i++) /I for each matching tuple
{ FileEntry Hfile = (FileEntry)HTMLFiles.elementAt(i); // Hfile: tuple representing the file
if (this.SearchKeyword(keyword, Hfile.ActualFile))  // search for the keyword in the file
{ FoundFiles.addElements(LocalHost, Hfile); // store the file in a private vector
/I to be returned to the user and
this.SearchLink_and_Clone(Hfile.ActualFile); // search for remote links and
} /I send clones to remote sites

go_to(home); /Ireturn to the user site

Figure 7. Code of the searcher agents (fragment)

Agentsthat look for HTML pages can oltain references to them by accessng the tuple spaces,
12



in a suitable data-oriented way. A fragment of the Java wde for the ayents of the gplicaion
example is srown in figure 7. The seacher agents invoke the readAll operation in a nonblocking
mode, by providing atemplate FileEntry tuple in which orly the Extension field is defined and hes the
“html” value. The operation returns al matching tuples — i.e., the ones representing HTML
documents — in a vedor. For ead matching tuple, the agent accesses the wrrespondng file viathe
ActualFile field, to search for the keywords of interest in its content. Finally, the agent searches for
remote links in the files and clones itself to foll ow these links before going bad home.

Note that, in the cae of nonassciative bladkboards, there would na have been a way for an
agent to seledively accessHTML files only: instead, an agent would have been forced to read from
the bladkboard all the data, and seled HTML fil es by programming a pattern-matching algorithm on
the file name extension.

The a&owe basic scheme for agent-to-exeaution environment coordination can be made more
flexible and seaure by exploiting the MARS readivity, withou influencing the agent code.

As afirst example, let us suppase one site stores al its HTML pages in files having “htm”
extensioninstead of “html”. In this case, the administrator can exploit readivity to enable the acces
to its HTML files to agents requesting the more standard “html” extension, withou being forced to
change locd fil enames or dugicae the FileEntry tuplesin bah “html” and “htm” forms, and without
forcing agents to explicitly ded with this kind o heterogeneity. To this end, (s)he can install a
readion that transforms any request for file tuples with “html” extension into a request for tuples
having “htm” as extension field. This readion, implemented by the HTML2HTM shown in figure 8,
can be awciated to the spedfic requests for “html” tuples via the metalevel tuple
(HTML2HTM _instance, (null, “html”, null, null), readAll, null).

class HTML2HTM implements Reactivity

{

public Entry[ ] reaction(Space s, Entry Fe, Operation Op, Identity Id)

/I no match already occurred if the site has only htm files

{ Fe.Extension = “htm”; // modifies the extension of the required files
return s.readAll(Fe, null, NO_WAIT);

35

Figure 8. The HTML2HTM reaction class

As a seaond example, let us suppase that either a badly programmed o an intentionally
mali cious agent (which o the two caegories an agent acualy fits into canna be distinguished from
the hasting environment’s perspedive) tries to perform a takeAll operation onthe “html” tuples. In
this case, the system administrator can dedde not to raise aly exception, and to let the ayent read
the content of the matching tuples withou deleting them. To this purpose, (S)he ca install a
readion that transparently transforms any disruptive takeAll operation, performed by a foreign agent
on the FileEntry tuples, into a nondisruptive readAll operation. This readion, implemented by the
TransformTake classin figure 9, which also includes the recording of the bad attempt on a system
register, can be installed by writing the 4-ple (TransformTake_instance, (null, “html”, null, null), takeAll,
null) in the meta-level tuple space
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The aministrator can combine the HTML2HTM and TransformTake readions by inserting the
4-ple (HTML2HTM_instance, (null, “htmI”, null, null), takeAll, null) into the tuple space before the dove
introduwced 4-ple for the TransformTake readion. This makes the tuple space reads with an
HTML2HTM-TransformTake pipeline to takeAll operations requesting for “html” tuples, and hes the
TransformTake readion exeauted for ead of the “htm” tuples returned by the HTML2HTM readion
(asinfigure 4c).

We anphasize that JavaSpaces canna achieve the behavior of the éowve readionsin any way,
sincethe natify mechanism can neither capture inpu events nor modify their effeds.

class TransformTake implements Reactivity

{
public Entry reaction(Space s, Entry Fe, Operation Op, Identity 1d)
/I the parameters represent, in order:

I the reference to the local tuple space

I the reference to the matching tuple

1 the operation type

I the identity (or the assigned role, if any) of the agent performing the operation

{ if(matched(Fe)) { // if a match has been produced
if (Id.equals(manager)) Il check for the identify of the agent performing the operation
return s.take(Fe, null, NO_WAIT);// the tuple is deleted from the space
/I because the administrator has full rights
else {SecurityRegister.add(“takeAll”, Fe, Id); //log the access
return Fe } /I the tuple is returned but it not extracted
else return null; } /I no match has been produced

35

Figure 9. The TransformTake reaction class

4.2 Inter-Agent Coordination

In the cae of inter-agent coordination — realed to avoid dugicaed work on a site — the
adoption d a direa coordination model forces odd aesign solutions for the cae study. Because
agents are dynamicdly creded and are aitonamous in their movements, it is not possble for an
agent to knov who and where other appli cation agents are. Then, the only way for an agent to know
whether other agents that have drealy visited a site eist is to integrate aspedalized dredory
server in the gplicaion design. The diredory server, alocaed for example in the user home site,
keeps tradkk of sites alrealy visited and hes to be remotely accessed by applicaion agents to know
whether a site has been visited or not and to updite the list of sites visited. This lution nd only
complicates the gplication design bu, by requiring nonlocad communications, also makes it less
efficient and reliable.

In the cae of meding-oriented coordination, a more distributed solution can be sketched.
However, this requires the introduction o further speaa-purpose attities in the gplicaion. In
particular, when an agent has explored a site, it has to creae another agent, i.e., a "meding" agent,
which isforced to reside onthe aedionsite to naify — via an ad ha opened meding-point— further
incoming agents abou a previous visit. Since the meding agents open meding-points to basicdly
ad as dared information spaces, if the cordination model itself is based onshared dataspaces — as
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in the cae of bladkboards or tuple spaces — inter-agent coordination can be simply redi zed withou
pealiar design solutions.

In particular, in the cae of MARS, any seacher agent arriving on a site can ched in the locd
tuple spacefor a “marker” tuple, written by ancther agent of the same gplication and having the
form (my_application_id, “visited”). If the agent obtains the tuple, it knows that the site has aready
been visited and terminates; otherwise, it isin charge of putting the marker tuple in the tuple space

To redize the @ove scheme, seacher agents must be asdgned a role that permits them to
write tuple in the tuple space i.e., a writer role. However, this makes a node & risk of being
overwhelmed with tuples left by agents that no ore will ever use and that no ore will ever care to
delete from the space To facethis problem, the administrator can dedde to exploit the MARS
readivity to install areadionthat overrides the write operation performed by the agents and write the
tuple in the tuple space by spedfying a site-spedfic dlowed lifetime, disregarding the lifetime
possbly spedfied by the writer agent via the lease parameter. This readion, implemented by the
LifeTime class $iown in figure 10, can be assciated to al write operations performed by the agents
with a writer role, by writing the 4-ple (LifeTime_instance, (null, null), write, writer) in the meta-level
tuple space

class LifeTime implements Reactivity {
long LifeTime;

public LifeTime(long Lifetime) // constructor
{ this.Lifetime = Lifetime;}

public Entry reaction(Space s, Entry Fe, Operation Op, Identity Id) {
return s.write(Fe, null, Lifetime);
}

}

Figure 10. The LifeTime reaction class

class IncrementalVisit implements Reactivity
{
private Date visit; /I date of the last visit
public IncrementalVisit() // constructor
{ visit =new Date(); } // when the reaction is installed by an agent, the date of last visit is
/I automatically set by the constructor

public Entry reaction(Space s, Entry Fe, Operation Op, Identity Id)
{ if (s.matched(Fe) && !(FileEntry)Fe.ModificationTime.before(visit))
/I is this a matching document having been modified after last visit?

{ visit = new Date(); I set the time of the last visit
return Fe; } /I return the tuple representing the updated page
else
return null; /l'if no, no tuple has to be returned
}
}

Figure 11. The IncrementalVisit reaction class

A more sophsticaed way of avoiding dugicaed work on the same site can be atieved by
allowing agents to install applicaion-spedfic readions asciated to access events performed by
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agents of the same gplication and related to “html” tuples. In this case, application agents could
install a stateful readion that does nat simply avoid the retrieval of dugicaed information, bu aso
takes into acourt the possble update of HTML pages. In particular, when an agent accesses the
tuple spaceto retrieve the references to the HTML pages, the readion can ched —for any matching
FileEntry tuple — whether the crrespondng file has been modified o nat since the last visit of
ancther agent of the same gplication. If the file has nat been modified, the crrespondng tuple is
naot returned to the agent. This readion, implemented by the IncrementalVisit readion class $iown in
figure 11, can beinstalled by writing the 4-ple (IncrementalVisit_instance, (null, “htmI”, null, null), readAll,
my_application_id) in the meta-level tuple space

5. Performance Evaluation

We have performed several measurements to evaluate the times required to accessone MARS
tuple space ad, in particular, to evaluate the overheal introduced by the MARS readive model.
Figure 12 shows the time needed by an Aglets agent, runnng on a Sun ULTRA 10, to perform a
read operationin the locd MARS tuple space ad return amatching tuple, in dfferent cases:

* by completely deadivating the meta-level adivities (read — pasve tuple space case), as
happens in any nonreadive tuple spaceimplementation;

* by adivating the meta-level adivities, withou any readioninstalled (read — Oreactionissued —
O reactionsinstalled case);

* by adivating the meta-level adivities, with dfferent numbers of readions installed, and by
making the read operation issie one null-body readion (read — 1reaction issued — 1, 20, 50
reactions install ed cases).

For al cases, as expeded, the acces times to the MARS tuple space incresse nealy
logarithmicdly with the number of tuples gored in the base-level tuple space(from 4 to 10ms in
the tests performed), due to the larger amount of information to be dedt with in the pattern-
matching process

By comparing the accestimes to the tuple spacewith and withou the meta-level matching
mecdhanisms adivated, ore can seethat the overheal introduced by the MARS readive model is
very limited, independently of the global number of tuples in the base-level. The overheal
introduced by the adivities of the meta-level tuple spaceis abou 10% when there ae no readions
(i.e., meta-level tuples) installed, and grows very dightly with the increase of the number of
readions installed. For instance, in the cae that 50 readions are installed in the tuple space (a
number that, in our opinion, owerestimates the normal situation d a tuple spaceg, and a null-body
ore is triggered by the read, the overheal introduced is well below 30%. The dove measurements
of the overheal introduced by readivity onthe spedfic MARS implementation are likely to apply to
other tuple spaceimplementations (for example JavaSpaces), whenever they are extended towards
programmabilit y.
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Figure 12. Overhead introduced by reactions (the case of 50 reactions starts from 50 tuples in the

base-level space)

By considering other interadion medanisms that can be posshly exploited by Java mobile
agents, the advantages of MARS-mediated interadions become deaer. For instance, a null-body
locd RMI costs, onthe same nodg, at least 18 ms, well over the average time for aread in MARS.
In the cae of remote interadions, an RMI between a SUN Ultra 10 and a SPARCstation 5
conreded through a 10Mb Ethernet costs about 30 ms; even worse, the proxy-mediated Aglets
messaging system makes this costs increase to 37ms. By considering that the roundtrip time for the
migration d an Aglets agent of 2.5 Kb is, in the same achitedure, abou 250 ms, it is easy to
cdculate that, as 0nas an agent neads more than a dozen interadions with the resources of a site
to cary out its task, it is chegper to migrate the agent to that site and let it interad locdly via
MARS, rather than letting it interad remotely.

6. Related Work

Apart from JavaSpaces, whose main feaures have been aready discussed thoroughou the
paper, other propcsals exist which exploit tuple spaces in the cntext of agent-based Internet
applications.

The PageSpace architedure for interadive Web applicaions exploits Linda-like wordination
[Cia98]: tuple spaces can be used by both mohile and fixed agents to store and asociatively retrieve
objed references; furthermore, agents can crede private tuple spaces to interad privately withou
affeding haosting exeaution environments. Though na readive in itself, PageSpaceidentifies the
limit of the raw Linda model and defines gedal purpose aents, in charge of accessng the space
and changing its content, to influencethe cordination adivities of appli cation agents. However, the
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potentialities of these speda-purpose aents are very limited, in terms of both monitoring
interadion events and tuning their effeds.

The T Spaes projed at IBM defines Lindalike interadion spaces to be used as general-
purpose information repaositories for networked and mobile gplicaions. In particular, rather than
aiming at defining agent-oriented coordination media, T Spaces aims at providing a powerful and
standard interface for accessng large anourts of information aganized as a database. For this
resson, T Spaces reaognizes the limits of the basic Linda model and integrates a peauliar form of
programmability, by enabling new behaviors to be added to a tuple space However, these new
behaviors are alded in terms of new admissble operations on a tuple space (typicadly complex
gueries), rather than by programming the dfeds of the basic Linda operations, asin MARS. In ou
opinion, this makes T Spaces less usable in the open Internet environment, since it requires
applicaion agents either to be avare of the operations available in a given tuple space or to
somehow dynamicdly aayuire this knowledge.

An important charaderistic that distinguishes MARS from al of the éove systems concerns
the way agents refer to tuple spaces. In MARS, eat agent halds a single referencethat is implicitly
boundto the tuple space of the locd exeaution environment. Instead, in bah PageSpace ad T
Spaces (as well asin JavaSpaces) agents can refer to multiple tuple spaces, whether locd or remote,
via different tuple spacereferences, and access them in a locaion-unaware fashion. On the one
hand, this can make it more difficult to manage gplicaions, since the agent code has to explicitly
manage tuple spacereferences. On the other hand, this makes agent exeaution lesscontrollable and
reliable, sinceinteradions occur transparently to the locaion d agents and tuple spaces.

The TUCSAN model [OmiZ98], developed in the mntext of an affili ated reseach projed, faces
the &owve problem by making agents refer to tuple spaces via URLS, as an Internet service thus
enforcing network-awareness With regard to the tuple spacemodel, TUCSoN resembles MARS in
its full programming cgpability of tuple spaces. However, TUCSON defines programmable logic
tuple spaces where both tuples and readions are expressed in terms of untyped first-order logic
terms. This charaderistic of TUCSON complements MARS and makes it very well suited for the
development of applicaions based on intelligent information agents, in charge of accessng and
managing large and heterogeneous information sources.

The MOLE system [Bau99, adthouwh defining a meding-oriented coordination model rather
than a tuple-based ore, is worth mentioning in this context. MOLE medings (cdled "sessons’)
occur via shared, nornmobile, oljeds, which agents must access to send'recave messages.
However, urlike Telescript and Ara ones, MOLE medings enforce temporal uncougding — by
permitting asynchronots natificaion d messages to agents — and can be programmed in order to
integrate spedfic padlicies for the management of the messages exchanged. These daraderistics
lead to an urcouded and pogrammable @ordination mode, like MARS. However, MOLE
enforces a control-oriented coordination style, in contrast with the data-oriented ore of MARS, and
requires the gplicaion-level definition d meding-points.
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7. Conclusionsand Work in Progress

Linda-like aordination models, passbly enriched with the caability of programming the
behavior of the tuple spaces, well suit mobile agents applicaions and leal to simple and flexible
application design. In this context, MARS defines a general and patable aordination architedure,
which fadlit ates the design and development of Internet appli cations based onJava mobile ayents.

We ae presently extending MARS for integration into a proxy-based framework for computer
suppated cooperative work. This integration is going to leal to a general framework for the
exeaution d interadive Web applicaions based on mobile agents [Cia98]. In addition, we ae
currently trying to solve some open seaurity problems that may arise if foreign applicaion agents
are dlowed to program tuple spaces. In particular, while MARS can currently confine the dfeds of
agent-installed readions, it canna avoid spamming of endess and computationally intensive
readions. Moreover, it is nat clea which garbage olledion mecdhanisms can be defined to avoid a
site being overwhelmed with readions installed by application agents that are no longer useful.
However, these sean to be genera open problems of the mobile agent techndogy rather than
peauliar problems of the MARS readive model.
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