Engineering the Environment of Multiagent Systems

Mirko Viroli, Alessandro Ricci ({mirko.viroli,a.ricci}@unibo.it)
DEIS, Alma Mater Studiorum — Universita di Bologna, Cesena, Italy

Franco Zambonelli (franco.zambonelli@unimore.it)
Dipartimento di Scienze e Metodi dell’Ingegneria, Universita di Modena e Reggio Emilia,
Ttaly

Tom Holvoet, Kurt Schelfthout

({tom.holvoet ,kurt.schelfthout}@cs.kuleuven.be)
AgentWise, DistriNet, Katholieke Universiteit Leuven, Belgium

Abstract. Whereas the notion of environment is first-class in agent-based systems by
definition, its role and its potential in conceiving and developing multiagent applications
has only recently been recognised.

In this paper, we argue for the need of tackling the environment as a key concern in
engineering multiagent systems. Considering the environment as a separate abstraction is
a recognition of its importance, and creates the field of engineering MAS environments. We
bring together existing work on middleware and infrastructure for MAS, and we present
the concept of “environment abstraction” as the basic building block for one approach
to engineer the environment. Environment abstractions represent functional components,
which can be composed to constitute the environment. We clarify how existing middleware
and infrastructure relates to environment abstractions, and we outline research challenges
both in this approach as well as towards alternative paths for engineering the environment.

Keywords: multiagent systems, agent-oriented software engineering

1. Introduction

Software engineering always calls for exploiting proper abstractions for
modelling and developing the various components of a software system:
abstractions such as functions, objects, components, data items and their
relations have e.g. dominated mainstream software engineering practices so
far. A cornerstone of agent-oriented software engineering (AOSE) is the idea
that the emerging characteristics of modern, complex software systems call
for more powerful abstractions, accounting for the fact that (?; ?): (i) soft-
ware is fruitfully modelled as a composition of autonomous software entities,
whose behaviour can be understood and designed in terms of “achieving a
goal”; (7i) such entities do not live and execute in isolation, but are always
situated for execution in a computational and/or physical environment. De-
spite the environment notion in any basic definition of agent, mainstream
theories, platforms, and methodologies promoted by the agent community
almost entirely neglect the environment as a key constituent of agent-based
systems.

';:‘ © 2005 Kluwer Academic Publishers. Printed in the Netherlands.

jaamas.tex; 14/12/2005; 12:21; p.1

According to standard software engineering practice, engineering such a
quite complex entity calls for a careful treatment (?; ?) which ultimately
requires the notion of environment to be elected as first-class in engineering
multi-agent systems, impacting nearly all stages of development — design,
implementation, and run-time.

Recognizing the environment as a valuable abstraction is one thing, mod-
eling and developing the software that shapes the environment is another.
In fact, the environment can be a complex entity of the system. Its respon-
sibilities are numerous, including ..., and need to be seamlessly integrated.
Engineering such complex entities involves the several phases of develop-
ment, including software architecture, detailed design, implementation, and
execution.

One, although generic, approach to engineer the environments is discussed
in this paper. This approach recognizes the concept of an “environment
abstraction” as a basic building block for modeling the functional decomposi-
tion of the environment. Such a model of the environment can be considered
the software architecture of the environment, as it describes the early de-
sign decisions of this software entity and describes the functionalities and
relationships between the environment abstractions.

Yet it is useless to propose a new generic abstraction without considering
the large body of research that has been conducted on middleware and
infrastructure for MAS. Therefore, we provided an overview of this research,
and clarify and illustrate how existing middleware and infrastructure can
support the environment abstractions.

We open the perspective on engineering the environment by recognizing
that different approaches for modeling and decomposing this complex en-
tity are worth investigating. In particular, advances in research on software
engineering, including research on software architectures and research on
aspect-oriented development, aim to better support the development of large
and complex distributed systems in general. We briefly discuss how this
research could proof its value for engineering the environment of MAS, and
allude to research challenges in these areas.

The paper is structured as follows. In Section 2, we analyse the role of the
environment in engineering multiagent systems, focussing on its relevance
and impact as both a deployment context for agents — a set of legacy
physical and computational components the agent should be designed to
exploit — and as a design dimension — when crucial system parts are
explicitly built and encapsulated in the environment.

We then identify two main areas pertaining (in different ways) the is-
sue of engineering the environment of multiagent systems. The first one,
described in Section 3, discusses the environment abstraction and middle-
ware and infrastructure for MAS for supporting modeling and developing an
environment model. Independently of the details of the specific multiagent
application of interest, there is often the need to factorise an abstract model

jaamas.tex; 14/12/2005; 12:21; p.2

3

of the environment into a separate middleware. This middleware can take
different forms, but can in general be considered as a software layer support-
ing the environment model, providing the designer with an infrastructure
of services and functionalities to be exploited when developing a specific
multiagent application. We describe several such middlewares, each of which
tackles a diverse nature and role of the environment — knowledge sharing,
designed coordination, emergent coordination, and organization.

The second area, described in Section 4, is about the impact of the en-
vironment in the development of a multiagent system application. Most
existing AOSE (agent-oriented software engineering) methodologies cur-
rently lack the notion of environment, and time is premature for devising a
unified and conceptually general integration. On the other hand, research in
software engineering could also proof its usefulness in developing complex
applications as MAS. Both points of view are discussed.

We conclude in Section 5 outlining main directions for future work in the
context of engineering the environment for multiagent systems.

2. The Role of the MAS Environment in Software Engineering

2.1. COMPLEXITY, AGENTS AND ENVIRONMENT

In order to manage complexity, software engineers leverage three funda-
mental tools: decomposition, abstraction and organisation (or hierarchy)
(7). Briefly, a complex system can be understood, designed and then imple-
mented — in one word, engineered — by abstracting away from its low-level
details, and considering it as decomposed in loosely coupled constituents,
reflecting a specific organization where each such constituent plays a specific
role and has given interrelationships with others. The agent-based approach
to software engineering has been claimed to be a good paradigm to leverage
these tools (?): a complex system is decomposed in agent organizations, each
made of a set of interacting agents with given interrelationships. The agent
abstraction plays a key role in this context, promoting the viewpoint of a
system in terms of autonomous entities in charge of proactively achieving a
goal (?; ?), namely, a sub-goal of the whole application.

Therefore, the multiagent system approach makes applications and their
engineering different from traditional scenarios. In the object-oriented per-
spective, for instance, the “everything is an object” perspective dominates,
and a software systems is globally conceived as a composite functional archi-
tecture of interacting and passive objects, all subject to a sort of centralized
flow of control (?; ?). On the other hand, multiagent systems identify the
agents in charge of accomplishing specific tasks in autonomy — thus relying
on abstractions of a higher level.

From their definition, agents do not live and execute in isolation, but are
always situated for execution in an environment. This is either a “physical”

jaamas.tex; 14/12/2005; 12:21; p.3

4

environment which agents perceive and act upon through proper sensors
and actuators, and/or a “computational” one composed of other software
constituents, namely, digital resources such as knowledge repositories, infor-
mation sources, service providers, and so on (7). However, whereas classically
agents are seen as the true source of complexity in a multiagent system —
even in (?) the notion of agent is given primary importance over that of
environment — a deeper look reveals that successful multiagent applications
take their advantage of complex environments.

Although most of the investigations on environments consider primarily
weak forms of agency (?; ?), there is potentially a strong interplay between
environments and cognitive agents, i.e. strong agency. Supporting evidence
can be found in theories that focus on human societies, such as Activity
Theory (?) and Distributed Cognition (?). Also research in AT and DAI,
in particular the work of Agre (?), Rosenschein (?), Kirsh (?), Dourish
(?) — along with recent works in cognitive sciences, such as the work of
Clark and Chalmers (?) —, clearly remark the fundamental impact that
the environment can have on supporting agent reasoning, changing the way
agent and agent societies solve problems and execute tasks.

This consideration drives us to the need of more carefully applying de-
composition, abstraction, and organization, electing the environment to a
first-class constituent in the engineering of a multiagent system, along with
agents and at the same level. Consequently, we argue that multiagent sys-
tems engineering should feature as a key part the process of (i) decomposing
a multiagent system into agents and environment, (ii) devising the proper
abstract model of the environment, and (7ii) focussing on the interrela-
tionships between agents and environment, as well as between the inner
constituents of the environment structure.

This idea contrasts the typical argument that the presence of different
classes of entities — agents and environment components — is an additional
source of complexity, and should be tackled via a process of “agentifica-
tion” where everything that is not an agent — namely, the environment
constituents — is wrapped inside additional agents, acting as sorts of au-
tonomous managers. The systematic adoption of agentification tends instead
to produce a conceptual abstraction mismatch without actually diminishing
complexity: it applies the agent abstraction to model real world concepts
that do not fit the main characteristics of agents. It is preferable to leverage
the distinct nature of agents and environment towards finding the solution
to a software problem.

The environment can be seen as composed by a set of entities which are
not autonomous and goal-oriented like agents. They are instead “passive”, in
the sense that their function in the multiagent system is exploited by agents
perceiving them and acting upon them: in other words, the environment
constituents are used by the agents and never the opposite. This calls for
a completely different characterisation: features like autonomy, proactivity,

jaamas.tex; 14/12/2005; 12:21; p.4

5

social attitude and goal-driven behaviour simply do not apply to the envi-
ronment, which thus requires different abstract models, and potentially a
different engineering approach.

However, the distinction between the agent level and the environment
level may not always be clear cut. When interpreting an application as a
multiagent system, one can reactive or semi-active entities that cannot be
sharply considered as purely autonomous or purely passive, and they could
therefore be seen either as agents or as parts of the environment. When engi-
neering a system, some tasks can be identified that could be either realised in
an autonomous or proactive way by some agent, or can be automatised and
realised for agent exploitation by a suitably-engineered passive component of
the multiagent system environment. In general, understanding what entities
are to be modeled as passive and part of the environment and what should
be agents is something that may require an accurate analysis that ultimately
depends on the problem’s characteristics.

2.2. THE ENVIRONMENT AS A DEPLOYMENT CONTEXT

In the current scenario of today’s applications, software systems are rarely
developed to be deployed as stand-alone, isolated systems. In most of the
cases, software systems — and multiagent systems specifically — are con-
ceived for execution in an already existing system of components (?) which
we call the deployment context, and which could be either computational or
physical.

Trivially, even the simplest system conceived for a single workstation or
a PC, has to execute on a specific operating system, rely on existing shared
libraries, and properly exploit the existing structure of the file system. More
generally, modern distributed applications are built to live and interact in an
existing world of data and services, and have to get advantage of them. The
sharper example is that of multiagent systems for Web-based applications, in
which agents are deployed in the Web and are in charge of mining Web data
and exploiting available services in order to achieve specific goals — e.g.,
organizing a trip for the user by discovering appropriate tourist information
and by booking flights and hotels as needed (?). Other scenarios exist or
have been envisioned which share similar characteristics, such as the Grid
(?), P2P Networks (?; ?), computational markets (7). The perspective is
always that of deploying agents or multiagent systems that have to start
executing by properly accessing and acting on existing digital resources and
services.

On the other hand, embedded, pervasive, and mobile computing tech-
nologies are making today’s systems more and more strictly inter-twined
with the physical world as well. Embedded (multiagent) systems for the
control of manufacturing processes are being intensively deployed, to take
care of sensing physical characteristics and of affecting the production and

jaamas.tex; 14/12/2005; 12:21; p.5

6

transformation of physical goods (7). Pervasive computing systems, such
as sensor networks (?) and RFID tags (?) allows to acquire in a digital
form (and put to service of software) a variety of information about the
surrounding environment. Mobile computing technologies, enabling us to
stay connected 24/7 from wherever, require context-awareness and context-
dependency, to have computer-supported activities properly adapted to the
context and situation from which we are performing them (?). In addition to
that, an increasing deal of attention is being paid to mobile robotics systems,
as sorts of physical agents in charge of performing context-aware physical
activities in an environment (?). The impact of the above technologies on
multiagent systems engineering is that agents have to carry on their activities
by continuously processing (and being continuously affected by) what is
happening in the physical world.

Independently of the specific case one considers, it is rather clear that
the design and development of a multiagent system cannot abstract from
the characteristics of its deployment context, whether it is made of com-
putational or physical resources. Thus, the necessity of exploiting the
environment necessarily comes into play simply because such environment
exists as a legacy component, which does not relief designers from a careful
modelling effort.

2.3. THE ENVIRONMENT AS A DESIGN DIMENSION

The deployment context surely forms a crucial environment for multiagent
systems, with a key role in applications. This scenario has been in fact
subject of research investigation since the beginning of AI and DAI, in
particular for what concern situated multiagent systems (?; 7).

However, it is not always the case that the environment is something
already existing, which the engineer is simply subject to as it is and has to
leverage at his/her better to achieve the overall system goals. Instead, as
emphasised in many recent research projects and industrial systems (see the
“Application” paper in this volume), many parts of the environment can
and should be explicitly designed and implemented during the multiagent
system development.

A notable example is the case of stigmergy, inspired by biological sys-
tems such as ant colonies (?; ?). In order to facilitate the interaction of
mobile agents in distributed systems, stigmergic infrastructures are built
which allow agents to deposit and then perceive pheromones — represented
in terms of chunks of information. These are diffused in the distributed
system by the infrastructure and eventually evaporate, allowing agent in-
teraction according to spatial and temporal locality criteria. Examples of
approaches adhering to this scenario include TOTA (?), Parunak’s work in
(?7), and the PROSA architecture (7). Other examples of explicitly designed
environments for multiagent systems include infrastructures for general

jaamas.tex; 14/12/2005; 12:21; p.6

7

purpose coordination (?), e-institutions architectures (?), middlewares for
organization (?) — and others that will be described in next section.
Moreover, even when the multiagent system is immersed in a signif-
icant deployment context of digital resources, it is generally fruitful to
wrap them in an explicitly designed environment. A main advantage of this
approach is to raise the abstraction level of such external resources: agent-to-
environment interaction can be understood and designed at the knowledge
or social level (?; ?) instead of a low level call to an external and existing
service infrastructure. The work on infrastructure integration in (?) or the
work on resource artifacts (?) are example researches along this direction.

3. Supporting the Environment

Since the environment has to be treated as first-class in the engineering of
multiagent systems, this impacts all the stages of the application develop-
ment process, from design-time to implementation-time and run-time. Since
different aspects of environment support arise in each stage, we discuss each
in turn.

Design — One of the main tasks of the design stage is to identify a general
software model of the environment. In this model, the environment is
typically to be seen as decomposed in several constituents which we call
environment abstractions. The term “abstraction” is used here basically
as a synonym for “component” or “constituent”, and emphasizes the
need for a proper abstraction over the actual implementation details
— the knowledge level is e.g. a proper abstraction level to use (?).
This notion of environment abstraction can take different forms and
incarnations according to the functionalities and responsibilities that
are charged upon the environment. In spite of such variability, being
first-class means that such abstractions are used in synergy with the
agent abstraction, forming the two basic building blocks to engineer
multiagent systems. Accordingly, different kinds of models exist to
support the design level, providing basic environment abstractions and
architectures to be exploited along with the agent models and platforms
chosen for the specific multiagent system.

Implementation — Being first-class at implementation-time means that the
abstractions used in the design stage are to be supported in the actual
programming of multi-agent systems, by means of suitable libraries,
frameworks and languages. So, while there exist libraries, frameworks
and languages to program agents, there are also similar support tools
to program environment abstractions. For instance, as a language such
as 3APL can be used to program goal-oriented agents (?), a language
like ReSpecT can be used to specify the coordinating behaviour of tuple

jaamas.tex; 14/12/2005; 12:21; p.7

Figure 1. MAS layers with environment-based supports

centres — which can be framed as environment abstractions used for
coordination (?). As a JADE library can be used to develop FIPA
compliant agents in Java to be executed on top of JADE platform (?),
analogously the TOTA library can be used to enable agents developed
in Java to exploit the TOTA middleware of tuple spaces for handling
computational fields in a network-like logical environment (7).

Run-time — Finally, platforms, infrastructures and middlewares are often
built to “keep abstractions alive at run-time”: they form distributed
run-time environments responsible of environment lifecycle and overall
management, providing services (API) for accessing, using, and adap-
tating the supported abstractions. For instance, as the RETSINA MAS
infrastructure manages the lifecycle of RETSINA agents, and e.g. basic
services for agent direct communication and discovery (?), TuCSoN
environment infrastructure (?) manages the lifecycle of tuple centres,
providing services for their access and use by (heterogeneous) agents.

Keeping abstractions alive at run-time is also important for application
maintenance and evolution. Run-time observability and controllability
are essential properties that software engineers look for when deploying
software systems, but in the case of agent-based software engineering,
agent autonomy and system openness make the effective achieving of
these properties challenging. Environment abstractions can play a fun-
damental role here: they are the natural loci of observation, testing and
control. For example, in the coordination artifacts framework artifacts
are meant to explicitly feature a testing and management interface, with
operations to test for the correctness of its behaviour and to dynamically
observe and control it.

Figure 1 shows a logical view of typical system layers in a multiagent system,
adapting the one in (?) to emphasise the relationship between agent and
environment abstractions, and their support. The MAS application level
is composed by specific application agents and an implementation of the
environment abstractions which interact with one another. This is the level
at which the engineer of a specific MAS application typically works. Below,
there is the execution layer featuring the middlewares and infrastructures
supporting agents and environments. Whereas different infrastructures can
be used for agents and environment, they have an overlapping area of inte-
gration (?) that handles “interface” aspects such as management of actions,
perceptions and general interaction between agent and environment. Lower
layers take into account the deployment context, including legacy software
infrastructure, operating system, hardware and the physical world.

jaamas.tex; 14/12/2005; 12:21; p.8

9

In this paper, we focus on the MAS middleware layer, and more specifi-

cally describe how several environment middlewares and infrastructures are
able to support environment abstractions at the application layer. Method-
ological aspects concerning how the engineer of a specific MAS application
can exploit such abstractions will be considered in Section 4.

3.1. CoMMON PROPERTIES OF ENVIRONMENT ABSTRACTIONS

Although different kinds of environment abstractions can be conceived, cor-
responding to the different kinds of functionalities and responsibilities they
are charged with, some common features can be identified:

Agent-Environment Interaction — if communication is the best way to
characterise inter-agent direct interaction, this is not the case for the
interaction between agents and environment. Rather, this is best framed
— as in the basic agent definition, actually — in terms of actions and
perceptions: typically, agent actions correspond to the execution of an
operation provided by the environment, and in response, the environ-
ment generates events which can be perceived by the agents. From an
higher level point of view, an agent uses the services provided by the
environment, in order to achieve its goals.

Mediation — All environment abstractions realise a form of mediation,
either among agents or among agents and (physical, legacy) resources.
Such a mediation role is the key for enabling observation, control, and
management of the dependencies and the interaction that occur among
the agents or among agents and resources. We will show how from an
engineering point of view, this can be exploited to design and encap-
sulate mediation strategies for a wide range of purposes — as will be
clear in next subsection —, ranging from concurrency management, up
to the management of social dependencies and the enforcement of social
norms.

Composition and Topology — Figure 1 shows that the environment ab-
stractions can be linked together. On the one hand, this is useful to
reflect the physical or logical topology of the environment — e.g. when
the environment itself is distributed. On the other hand, as already
mentioned, decomposition is key to handle complexity of environments:
different functions of the environment can be encapsulated in differ-
ent environment abstractions, promoting separation of concerns and a
better scaling with complexity.

jaamas.tex; 14/12/2005; 12:21; p.9

10

Figure 2. Overview of some state-of-the-art approaches introducing a notion of environ-
ment in MAS

3.2. FROM ABSTRACTIONS TO INFRASTRUCTURES

The goal of this section is to consider some of the main scenarios where
the environment plays a crucial role in multiagent systems, and describe the
main features of the corresponding environment abstractions, examples of
specific models adopted, and the related middleware support.

It is worth noting here that the terms “middleware” and “infrastruc-
ture” play an almost interchangeable role in the context of supporting the
environment of a multiagent system. In distributed systems, middleware is
generally defined as the software layer that lies between the operating system
and the applications on each site of the system (7). Also in multiagent
systems middleware is given this meaning (?; ?). On the other hand, the
term infrastructure in MAS (?; ?; ?) more specifically focuses on the idea
of supporting services and related functionalities in a distributed software
system. In this paper we use both terms: “middleware” is mostly used to
stress the structure of the layer supporting the environment, and “infras-
tructure” for the resulting services as provided to agents and multiagent
system engineers.

PROPOSAL: remove this figure + references to it. It is not clarifying,
and is not referenced or used any further in the text. As a reference frame-
work, Figure 2 provides a comprehensive (even if not exhaustive) overview
of models and corresponding middlewares as found in well known research
approaches on environment, with a possible classification according to the
functionality provided — this classification should not be intended as a
strict classification, some models can be classified in different ways accord-
ing to the different perspective adopted. A more detailed discussion of the
characteristics of some of these approaches is reported in the following.
PROPOSAL: give here an overview + explanation of the catergorization
used in the following subsections.

3.2.1. Environment-Based Communication and Knowledge Sharing
Environment abstractions can be used to design and support various kinds
of agent interaction besides direct communication, such as indirect commu-
nication and implicit communication, providing some degrees of uncoupling
that are particularly effective for open and dynamic domains.

An important example is given by tuple-based approaches. Generally
speaking, in such approaches communication is supported by shared infor-
mation spaces (tuple spaces), where agents can insert, read and retrieve
information chunks (tuples) by means of a basic set of space primitives.
Various families of this approach exist, with different models and languages
used to encode knowledge in tuples (first-order logic, XML, records, Java

jaamas.tex; 14/12/2005; 12:21; p.10

11

Figure 8. The AGV Application Layers

objects, etc.), different ways to structure the spaces, different extensions to
the basic set of primitives (adding for instance event oriented functionalities
such as publish/subscribe) — a comprehensive survey can be found in (?).
As a main property, this form of environment-based communication provides
temporal and spatial uncoupling, i.e. the capability of easily supporting the
communication between agents that are not simultaneously present and
that do not know each other or each other’s location. For these reasons,
this approach is seen as particularly useful for engineering mobile agent
applications. In particular, tuple spaces can be considered as the environ-
ment abstractions provided to agents by an infrastructure, with services for
creating, destructing, and accessing tuple spaces — see e.g. (7).

Besides communication, i.e. knowledge exchange, the environment can
be used to support knowledge sharing: environment abstractions can be
designed as repositories of agent shared knowledge, providing specific func-
tionalities for their exploitation and management, including observation,
search, and update. Tuple-based approaches naturally support forms of
knowledge sharing.

Instead of being merely passive repositories, such abstractions can be
designed and implemented so as to provide specific functionalities which be-
come essential for supporting agent awareness and the coordination of their
activities. As an example, we can consider the AGV application described in
(?), where unmanned vehicles controlled by agents transport various kinds
of loads through a warehouse. An environment abstraction called “virtual
environment” is used to keep a consistent and updated map of the physical
environment (such as the vehicles’ location) on the one hand. On the other
hand, it encapsulates important functionality to support the coordination
of agents. Agents can e.g. put marks in the virtual environment to avoid
collisions, and the virtual environment takes on the burden of handling
the interaction protocol between various AGVs in the mobile network to
synchronize these marks. Figure 3 represents the AGV application, with
the various layers in evidence. ObjectPlaces (7) is the middleware adopted
to implement the distributed environment abstraction for the agents op-
erating in a mobile network. By using this middleware, the designer can
define interactions in terms of roles, and can define conditions under which
such interactions need to be started between the distributed virtual environ-
ment instances on the various AGVs. The middleware then activates these
interactions given the current situation.

3.2.2. Environment-Based Designed Coordination
Multiagent system coordination is perhaps one of the aspects where the
environment abstraction has been most studied and adopted in the engi-

jaamas.tex; 14/12/2005; 12:21; p.11

12

Figure 4. The distributed Workflow Management application on top of TuCSoN

neering of applications. For coordination here we mean its most general
acceptation coming from organisational sciences, that is the management
of dependencies among autonomous actitivies (?). The mediation role of
environment abstractions makes them the ideal place where to encapsulate
functionalities to manage agent dependencies, and effectively support a wide
range of agent coordination activities.

Generally speaking, we can divide the environment-based approaches in
two different families, which reflect different ways to engineer the systems:
designed coordination and emergent coordination.

In the case of designed coordination, the environment abstractions are
designed to encapsulate some kind of coordination functionality or service
explicitly defined at design-time (for instance in terms of coordination rules
or laws), and that can be suitably exploited by agents at run-time. So, the
coordination strategies are explicitly designed by engineers, and are encapsu-
lated and enacted by some kind of environment abstraction. In literature, the
notion of coordination artifact has been introduced to model and generalise
over this kind of approach (7). Coordination artifacts can be understood as
tools that societies of agents can use to execute their social activities. On the
one side such entities are the basic bricks that can be used to engineer agents’
cooperative working environments, on the other side in competitive contexts
they can be used to encapsulated and enforce ”the rules of the game”. Most
of the existing environment-based coordination approaches can be described
in terms of coordination artifacts design and exploitation.

An example support for this model is given by TuCSoN infrastructure (?).
The abstractions provided by TuCSoN are called tuple centres, which can be
framed as kinds of coordination artifacts. Technically, tuple centres are pro-
grammable logic based tuple spaces (?): they are general purpose logic-based
coordination artifacts whose coordinating behaviour can be dynamically
specified and customised using the ReSpecT logic language. The TuCSoN
infrastructure supports the creation, access and manipulation of tuple cen-
tres, distributed among the infrastructure nodes. The inspiring principles
of the coordination artifact notion come from socio-psycological theories
developed in the context human society, Activity Theory and Distributed
Cognition in particular (?; ?).

Designed coordination approaches are useful when it is possible to clearly
identify the rules that characterise the social activities — independently of
the specific agent behaviours and tasks — which can then encapsulated in
suitable environment abstractions separated from the agents participating
to the social tasks. An application example over TuCSoN is given by dis-
tributed Workflow Management Systems (W{fMs) (?), in particular in open
and dynamic scenarios. In a WfMS, workflow engine components embed

jaamas.tex; 14/12/2005; 12:21; p.12

13

Figure 5. The Intelligent Museum Application on top of TOTA middleware

and enact the workflow rules — defined by designers — for the coordination
of the tasks assigned to workflow participants, which are meant to execute
such tasks autonomously. This kind of applications can be suitably engi-
neered as a multiagent system where agents play the role of the workflow
participants, and workflow engines are designed and built as coordination
artifacts, embedding and enacting the workflow rules. Adopting TuCSoN,
workflow engines can be implemented on top of tuple centres, programmed
so as to enact the coordinating behaviour described by the workflow rules.
Figure 4 shows WfMS as a MAS application, with TuCSoN used at the
middleware layer. Compared to other agent-based solutions, this approach
to WEMS provides a better separation of concerns between individual level
and social level, and therefore a better encapsulation.

3.2.3. Enwvironment-Based Emergent Coordination

Differently from the designed coordination case, in the case of emergent coor-
dination the environment abstraction does not directly encapsulate the laws
defining the coordination activities — which are typically hard or impossible
to define — but provide specific mechanisms that promote the emergence
of coherent coordinated global behaviour. These approaches typically take
inspiration from models and theories coming from physics or biology. Two
main kinds of approach are stigmergy and field-based coordination. In the
first case, the environment abstractions take the shape of pheromone en-
vironments, supported at runtime by some pheromone infrastructure (7),
providing services for injecting and perceiving pheromones, and functional-
ities to program the laws for diffusion, aggregation, and evaporation of such
pheromones. In the second case, which can be considered to some extent
a particular case of the former as remarked in (?), the environment based
abstractions represent sorts of fields of forces, influenced by agents actions
and influencing agent perceptions.

Typical applications of stigmergy and field-based approaches are used for
the engineering of mobile agent applications, in particular in domains re-
quiring the frequent dynamic adaptation of the coordination and movement
strategies, following the general self-organisation approach. As an applica-
tion example we consider the “intelligent museum” application of field-based
coordination, which is a system supporting the visitors of a museum in
retrieving information about art pieces, to orientate inside the museum,
and meet other people in the case of organised groups. This application
can be suitably engineered on top of a situated multiagent system using a
field-based computational environment, supported by a middleware such as
TOTA (?). Each agent can inject in the net tuples encapsulating rules for
diffusion and evaporation, which can later be perceived by other agents. The

jaamas.tex; 14/12/2005; 12:21; p.13

14

Figure 6. A Market Application on top of AMELI middleware

distribution of such tuples really models a field — like e.g. the gravitation
one — which can be navigated to retrieve resources and/or other agents.
Figure 5 shows the intelligent museum as a MAS application, on top of
TOTA middleware.

3.2.4. Environment-Based Organisation

One of the most challenging issues concerning the engineering of agent-based
systems is balancing agent autonomy and social order (?), in particular in
the context of open multiagent systems. Open multiagent systems can be
regarded as complex systems where (possibly) large and heterogeneous popu-
lations of agents interact which exhibit possibly deviating or even fraudulent
behaviours. This issue can be tackled by introducing some kind of regulatory
structure establishing permission and denials for agents, namely, a normative
system (7).

As in the case of coordination, the mediation role of environment ab-
stractions makes them a possible and effective place where to encapsulate
and enact norms and — more generally — organisational rules. Taking
inspiration from human societies, Electronic Institutions (?) implements
one such vision, defining the institution as first-class abstraction shaping
the environment where agents interact, and where the norms are specified
and enacted. The relationship with coordination is evident, since norms
can be formulated as rules constraining agent interaction, a definition that
is often use for coordination (?). An example of infrastructure supporting
Electronic Institutions is AMELI (?). AMELI can be framed as a compu-
tational normative environment, general purpose — in the sense that the
same infrastructure can be deployed to realise different institutions — and
architecturally neutral. An application example is given by markets, where
traders (buyers and sellers) meet to trade their good under the supervision
of trade manager agents, and where auctions are used as trader protocols.
The institution as computational environment can be effectively adopted to
specify and enforce the norms that are characteristics of the trade. Figure 6
shows a market as a MAS application, where at the middleware layer is the
AMELI infrastructure.

Other examples of environments for normative and organised systems
include the abductive logic-based SOCS model (?), the work on roles as
AGRE (?) and Agent Coordination Contexts (?), and even the MMASS
framework for physical organization (7).

jaamas.tex; 14/12/2005; 12:21; p.14

15
4. The Environment in MAS Application Development

The notion of the environment in MAS obviously impacts the development of
applications using MAS. We describe two complementary aspects of dealing
with the environment in application development. First, we indicate how
AOSE methodologies, which are tailored for application development using
MAS, can be extended in order to incorporate the environment in the de-
velopment process. This allows the application developer to explicitly relate
functional and non-functional requirements to architectural decomposition.
Second, we illustrate the added-value of exploiting advances in software en-
gineerin research (in casu, software architectural approaches) to engineering
the environment.

4.1. THE ROLE OF THE ENVIRONMENT IN (AGENT-ORIENTED)
SOFTWARE ENGINEERING

Disciplined software engineering methodologies for agents in general are in
their infancy, and extending these techniques to include environments is
quite challenging. Most of the AOSE methodologies proposed so far, such
as MASE (?), TROPOS (?) and the earlier version of Gaia (?), suggest
modelling and building multiagent systems simply as sets of interacting
agents, and do not pay any attention at modelling the environment in which
agents are situated. As a result, they are not suitable for engineering those
applications that can take advantage of the environment abstractions as seen
in previous section. Two notable exceptions are SODA (?) and GAIA v.2

(7).

PROPOSAL: instead of both, choose SODA or GAIA and discuss one
of them in more detail, linking much more explicitly to the middlewares
discussed in sect. 3. As it is now, neither of them is clear.

Yet, few exceptions exist. One methodology that explicitly cope with the
environment is SODA (?). Soda takes the environment into account and
provides special abstractions and procedures for the design of environment
infrastructures. The environment is defined as the space in which agents
operate and interact, and is formed by abstract resources — namely, environ-
ment abstractions — providing services: the environment model maps such
services to infrastructure classes. An infrastructure class is characterised
by the services, the access modes, the permissions granted to roles and
groups, and the interaction protocols associated to its resources. Infrastruc-
ture classes can be further characterised in terms of other features: their
cardinality (the number of infrastructure components belonging to that
class), their location (with respect to topological abstractions), and their
owner (which may be or not the same as the one of the agent system, given
the assumption of decentralized control).

Another methodology that explicitly takes the environment into account
is Gaia v.2. (hereafter Gaia) (?). Modelling the environment in Gaia involves

jaamas.tex; 14/12/2005; 12:21; p.15

16

determining all the entities and resources that the multiagent system can
exploit, control or consume when it is working towards the achievement
of the organizational goal. The identification of the environment model is
part of the analysis phase and is intended to yield an abstract, computa-
tional representation of the environment in which the multiagent system
will be situated — namely, the deployment context. During the subsequent
architectural design phases, the output of the environmental model is inte-
grated in the system’s organizational structure that includes the real-world
organization (if any) in which the multiagent system is situated. Such an
integration leads to a final model for roles, interactions and organizational
rules. During the detailed (and final) design phase, the definition of the
agent model and services model are derived from the completed role and
interaction models. As (?) recognises the difficulty in providing universally
applicable modelling abstractions and techniques for the environment, a
possible general approach is proposed. The environment is described in
terms of abstract computational resources, such as variables or tuples, made
available to the agents for sensing (e.g. reading their values), for acting (e.g.
changing their values) and for consuming (e.g. extracting them from the
environment). As such the environmental model is represented as a list of
resources, each associated with a symbolic name, characterized by the type
of actions that the agent can perform on it and possibly associated with
additional textual comments and descriptions.

A key point of both these methodologies, which should be included in any
methodology aimed at considering the environment as a first-class notion,
is the attempt of finding a general model for the environment abstractions,
to be used from design to implementation.

4.2. THE ROLE OF SOFTWARE ENGINEERING IN ENVIRONMENT
ENGINEERING

The environment constitutes an important part of the overall MAS applica-
tion. Applications for which MAS are employed are typically quite complex
applications: issues including distribution, fault-tolerance, security are to be
integrated with the aspects of the environment as a model of the deployment
context and with the aspects of the non-trivial mediating and coordinating
functionality of the environment as a design dimension. For some appli-
cations, the abstractions offered by middleware and infrastructure do not
suffice for describing the software architecture for the environment. In that
case, the MAS designer can in the design stage be helped by architectural
support.

This section looks at the insights of software architecture (?) on this non-
trivial engineering task. To quote Paul Clemens: “Architecture is design,
but not all design is architecture. That is, many design decisions are left
unbound by the architecture and are happily left to the discretion and

jaamas.tex; 14/12/2005; 12:21; p.16

17

good judgment of downstream designers and implementers.” This line of
research aims to systematically deal with various, often conflicting functional
and non-functional application requirements. An architecture captures the
most essential early design decisions, according to the priorities that the
application stakeholders impose.

In this perspective, a multi-agent system model of an application is
considered a model of a solution for a particular application, encompass-
ing particular stakeholder requirements. Both types of components in such
a model - agents and environment - need to be engineered from the
architectural analysis phase onward.

A software architecture is defined as “the structure or structures of the
system, each of which comprises elements, the externally visible properties
of those elements, and the relationships among them”. A software archi-
tecture typically consists of multiple views (?; ?). Four typical views are
the following. The logical view describes the component model, the process
view describes the concurrency and synchronization aspects, the physical
view describes the mapping of the software onto the hardware and shows
the system’s distributed aspects, and the development view describes the
software’s static organization in the development environment.

ROOM FOR EXAMPLE OF VIEWS FOR AGV CASE (avaliable in
techrep) 7

An important form of support at the architectural level is reference archi-
tectures. A reference architecture defines an abstract architecture that serves
as a blueprint to develop software architectures for a family of applications
that are characterized by specific functional and quality requirements. Here
an explicit, but generic decomposition of the system is given that can be
tailored towards specific applications in the reference architecture’s chosen
application domain. A reference architecture can also be supported further
by a middleware or a framework.

Two examples of reference architectures briefly illustrate this. One refer-
ence architecture that incorporates a first class environment abstraction, as
well as guidelines for designing its internals, is the reference architecture for
situated MAS described in (?). The reference architecture is applied in a real
world application of automatic guided vehicle control. In this application,
the concrete software architecture was realized on top of the ObjectPlaces
middleware.

A second example of a reference architecture is the MAS reference ar-
chitecture for manufacturing control, called PROSA (?). This reference
architecture defines the basic agent types, their functionalities and their
relationships. Coordination in PROSA can be achieved through so-called
“delegate MAS”, i.e. fine-grained agents (called ant agents) which roam the
environment to retrieve and distribute information about other agents and
resources. The PROSA agents as well as the delegate MAS share the same
environment, which is modeled as a directed graph.

jaamas.tex; 14/12/2005; 12:21; p.17

18

If an environment is to be a first class abstraction in the MAS application,
it should be incorporated in the reference architecture as well. The FIPA
reference architecture for MAS does not take an explicit environment into
account, instead e.g. relying on brokers and direct interaction for discovery
and coordination.

In conclusion, from the software architectural point of view, an important
contribution for environments in MAS would be the definition of appropriate
reference architectures for environments, and for MAS with an environ-
ment. Although several reference architectures incorporate an abstraction
of environment in the MAS architecture, there is room for a more de-
tailed architectural description of the “inner” structure of the environment
abstraction. Suitable starting points for such an endeavor can be the mid-
dleware and infrastructures described earlier in this paper. Another way to
approach this is aspect-oriented software development. Aspect-orientation
aims to modularize crosscutting concerns, as well as systematic mechanisms
for integrating these concerns. For environment engineering, concerns that
typically crosscut the system components (agents and environment) include
coordination, distribution, security, fault-tolerance. Research in this area is
promising but still in its infancy (?; 7).

5. Conclusions

In this paper we surveyed the main issues that raise when considering the
environment as a first-class abstraction in the engineering of multiagent
systems. In spite of the infancy of this issue and of general solutions to
date, several consolidated frameworks and practices can be identified, as
well as open research directions towards a better integration of the agent
and environment notion. These include (i) the development of a widely
applicable model of environment — and related infrastructure, tools and
methodologies —, (i) the study of theories, formal models and languages to
integrate environment and strong agency, (iii) the extension of mainstream
platforms, frameworks and programming languages to include useful envi-
ronment abstractions, and finally (iv) the use of environment as driving force
in emerging and new applications of multiagent systems, such as simulation,
self-organising systems, and bioinformatics, to mention some.

jaamas.tex; 14/12/2005; 12:21; p.18

