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Abstract. The continuous growth in ubiquitous and mobile network connectivity, together with the 
increasing number of networked devices populating our everyday environments, call for a deep 
rethinking of traditional communication and service architectures. The emerging area of 
autonomic communication addresses such challenging issues by trying to identify novel flexible 
network architectures, and by conceiving novel conceptual and practical tools for the design, 
development, and execution of “autonomic” (i.e., self-organizing, self-adaptive and context-aware) 
communication services. In this paper, after having introduced the general concepts behind 
autonomic communication and autonomic communication services, we analyze the key issues of 
defining suitable “component” models for autonomic communication services, and discuss the 
strict relation between such models and agent models. On this basis, we survey and compare 
different approaches, and eventually try to synthesize the key desirable characteristics that one 
should expect from a general-purpose component model for autonomic communication services. 
The key message we will try to deliver is that current research in software agents and multi-agent 
systems have the potential for playing a major role in inspiring and driving the identification of 
such a model, and more in general for influencing and advancing the whole area of autonomic 
communication.  
 
Keywords: Autonomic Communication Services, Self-organization, Self-adaptation, Multi-Agent 
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1 Introduction 

Our everyday world is increasingly being populated with a wide variety of new 
communication technologies and computing devices. On the one hand, several wireless and 
ad-hoc communication solutions are providing people with continuous and ubiquitous 
connectivity. On the other hand, devices such as sensor networks [Est02], RFID tags 
[Wan06], GPS and other location systems [HigB01], are making it easier to dynamically 
acquire information about the physical world and to interact with it.  

These technological enhancements open up a wide range of new applications that are  
demanding more powerful and dynamic communication infrastructures. On-line monitoring 
of the world [Est02, CaRMZ07] and enhanced social experiences [Pen05] (through context-
awareness and dynamic personalization [Dobs04]) are just two examples of such applications. 
It can be easily pointed out that current communication infrastructures and their underlying 
paradigms are revealing all their weaknesses in handling the degree of complexity posed by 
those scenarios. The complexity we are talking about arises from several factors: 

· Heterogeneity of involved entities (hardware and software). The range of new network 
and computing technologies is already wide and it is expected to grow consistently. 
Future network scenarios will see the seamless coexistence of devices as diverse as 
micro computer-based sensors and high-end computers, and communication 
technologies as Wi-Max, Bluetooth, and ZigBee. This introduces the need for proper 
network and computing models flexible enough to integrate all these technologies, 



 

 

along with a major effort to standardize interfaces and protocols and enable full 
interoperability. 

· Dynamics of the Network. As connectivity is becoming ubiquitous and computers are 
getting embedded in our everyday objects, those new communication networks turn 
out to be highly dynamic in terms of topology and usage patterns. From the standpoint 
of network topology, wireless-based technologies, such as sensor networks, are 
dramatically challenging classical IP-based communication protocols and their 
associated routing and discovery services. From the point of view of the end-user,   
access to such transient communication resources (e.g. a localization service provided 
by a geographical sensor network) is characterized by the inevitable presence of 
fluctuations, e.g. caused by peers/devices continuously joining and leaving the 
network or simply by the physical mobility of nodes. 

· Decentralization and control. The highly decentralized and embedded nature of the 
involved devices makes it hard to enforce some forms of direct control over such 
entities. This makes traditional centralized approaches to configuration and security 
management inadequate and economically unbearable, and calls for novel 
decentralized solutions, which can limit the need for direct human intervention.  

This implies identifying suitable models and tools by which communication services (at 
both the infrastructural and the user level) can be made more flexible and dynamically 
adaptable. This implies being able to properly react to the dynamism and unreliability of the 
network without suffering relevant malfunctioning, as well as to increase user satisfaction by 
adapting their behavior to the current context (physical and/or social) of users and to their 
own individual needs. All those characteristics can hardly be accommodated in current 
communication models and architectures.  

The interdisciplinary research area of autonomic communications [Dobs06, Ses06] 
attempts at overcoming the limitations of current communication models and architectures. 
Autonomic communications generally refers to all those research thrusts [ManZ06, CASWeb] 
involved in a foundational rethinking of communications, networking, and distributed 
computing paradigms, to face the increasing complexity, decentralization, and dynamics of 
modern network scenarios. The ultimate vision is that of a networked world, in which 
networks and associated devices and services can work in a totally unsupervised – i.e., 
autonomic – way, being able to self-configure, self-monitor, self-adapt, and self-heal. Such 
ambitious research goals are somewhat shared by the close research area of autonomic 
computing [KepC03]. Although overlaps exists between the two areas, autonomic computing 
typically focuses on application-level software and services and on the dynamic management 
of computing resources, and assumes the capability of acting in closed systems where full 
control over software and resources can be exerted. Autonomic communications, instead, 
considers open and decentralized systems, and focuses on the management of network 
resources and services at both the infrastructure and the user level [Dobs06]. With this regard, 
among the topics of interest to autonomic communications we can include: semantic 
communication models [Dobs04], dynamic and non statically-layered protocol stacks 
[Sco06], adaptive and evolvable architectures for network components [Ses06]; and, last but 
not least, the search for suitable paradigms and tools for the design, development, and 
execution of autonomic communication services (at both the infrastructural and the user level) 
to flexibly and autonomically act in open and decentralized scenarios [ManZ06].  

In this paper, we specifically focus on autonomic communication services and on their 
relations with multi-agent systems, and will try to achieve several goals. First, in Section 2, 
we introduce a simple communication scenario and analyse some tangible reasons that 
motivate our search for a novel approach to the design of autonomic communication services. 
Specifically we identify the need for a general-purpose “component model”, to act as the 



 

 

basic building block for autonomic communication services, and that will have to exhibit the 
typical properties of agents. Following (Section 3), we survey and critically analyse current 
research approaches in the area of autonomic communications and (being somewhat related) 
of autonomic computing, with the aim of outlining the strict relations of these research with 
those in the area of multi-agent systems and of agent-oriented software engineering. In 
particular, we show that agent-based approaches can effectively overcome the dichotomy 
between self-adaptive and self-organising approaches, and take advantage of both. Eventually, 
in Section 4, we try to synthesise the key desirable – yet challenging – features that we expect 
from a general-purpose component model for autonomic communication services. 

The key message we hope to deliver is that current (and past) research in software 
agents and multi-agent systems have the potential for inspiring and driving the identification 
of such a model, and more in general for influencing and advancing the whole area of 
autonomic communications.  

2 Autonomic Communication Services 

The vision of autonomic communications is that of a networked world, in which networks, 
devices and services will be able to work in an autonomic way [Dobs06, Ses06, KepC03]. 
The idea is to consider networks as sorts of immense organisms. Components (both hardware 
and software) are conceived as parts of these organisms, and are expected to be able to 
prosper and survive contingencies autonomously [ManZ06]. To motivate such a vision, we 
sketch in the following subsection a pervasive communication scenario, where several and 
diverse devices are involved. On this basis, we stress the compelling need for a new software 
component model for autonomic communication services (hereafter abbreviated as ACSs), 
capable of meeting some key requirements. The section ends with a presentation of some 
selected “software agent” ideas that will significantly influence our ACS model throughout 
the rest of the paper.    

2.1 Scenarios of Autonomic Communications 
Traditional communication and distributed computing paradigms were conceived to target a 
now obsolete perspective of computer networks: wired networks of (rather homogeneous) 
medium/high-end computers and routers; network disconnections and failure of components 
were considered exceptions, and network and system managers were able to act on the system 
for reconfiguration and fault-recovery.  

However, as stated in the introduction, modern network scenarios more and more 
include a large number of very heterogeneous entities, interacting over a variety of wireless 
channels, and in the presence of mobility (of both devices and users exploiting them). There, 
failures and network disconnections are the norm rather than the exception, and the possibility 
for network and system managers to intervene in the system is challenged by its intrinsic 
decentralization and complexity. 

Just to reach a better understanding of what such scenarios could look like, consider 
how our cities are evolving (see Figure 1). First, a variety of computer-based sensors are 
increasingly spread around in every street, crossing, square, and within buildings. We already 
find a variety of simple sensors around in our cities (e.g., to measure traffic intensity and 
pollution), but the future will see these sensors become wireless-enabled, and dramatically 
increase in density and diversity. It will be possible, for instance, to determine in real time 
how many free benches are there in a specific park or how long is the queue at the nearest 
post office. Second, wireless-enabled computing devices are increasingly being worn by 
people and embedded in cars. Such devices, beside the capability to access the Internet, will 
also be able (through ad-hoc wireless communications) to directly interact with each other, 



 

 

and localize themselves by way of GPS or other means. Third, all of these devices will be able 
to mobilize data from and to the Internet, based on a variety of communication channels, from 
WiFi, to UMTS, or satellite communications. 

 
 

Figure 1. An urban scenario of autonomic communication 
The heterogeneity of entities and network technologies involved in the above scenario is 

evident, as it is the fact that the resulting network is highly dynamic (due to the ephemeral and 
mobile nature of wearable and embedded devices) and highly decentralized (no system 
manager can enforce a strict control over dispersed sensors and over personal devices). These 
factors clearly justify the efforts of autonomic communication research towards the 
identification of more evolved ways of modeling communications by means of ACSs, as 
explained in the following subsections.    

2.2 Towards Autonomic Communication Services 
The term communication service refers to a functionality available within a network to access 
and exploit communication resources and devices. For instance, IP datagram routing, DNS, 
socket-based point-to-point communication, cryptographic tools and P2P data delivery can all 
be considered communication services. The definition applies independently of the fact that 
such services act either as “user-level” services or as “infrastructural” ones. In the sketched 
scenario, we can consider “communication services” all those services that should be put in 
place to properly access and exploit the available networked resources at the best1:  

· At the more infrastructural level, one can think at localization services that, by 
exploiting GPS, WiFi signal strength, or other localization tools, are able to provide 
the location of users, cars, or other devices. In addition, a variety of routing services 
can be made available to deliver data and messages across the network. From 
traditional routing services, offering delivery to a specific network/host ID, to more 
advanced routing services, capable of delivering messages to and across mobile 

                                                 
1 The distinction between “communication service” and “computing service” is not and has never been clear-cut, 
being mostly dependent on the observation point. In our case, for instance, services used to access sensing 
devices are better considered as communication services. They are in fact exploited to integrate such devices into 
the networked scenario, to improve the behavior of the network, and/or to add functionalities and properties to 
other communication services. 



 

 

devices, at specific locations in the physical environment, or at specific groups of 
nodes or users.  

· At the user level, one can think of enhancing “traditional” communication service with 
ubiquitous/mobile access and contextual (i.e., location-based) adaptation. In addition, 
one can think of making available to users various services to query the physical world 
and obtain several information about the surrounding situation (there included other 
users). Those pieces of information can possibly be integrated with information 
dynamically downloaded from the Web [CaRMZ07]. Another relevant example is that 
of services to alleviate traffic congestion in the cities. This implies devices in cars (for 
computing, sensing and visualization) to interact with devices in streets and crossings 
(for sensing the current traffic situation and communicating it to vehicles). Cars can 
also interact with each other and form wireless ad-hoc network that can be used to 
properly forward information across the town. A global traffic service can then exploit 
all these available data to map in real-time the status of streets in the city, and 
calculate on-the-fly faster routes for users that avoid congested or likely to become 
congested areas.  

Many of the mentioned communication services are already a reality or are being 
actively experimented [AndFMIH05]. Yet, following the current traditional networking 
approach, network services are rigidly organized in layered communication stacks, with 
somewhat rigid hard-coded logics, predefined interaction patterns, and strict limitations in 
accessing information across layers. Unfortunately, supporting autonomic features in services 
with such rigidity can either end up in a worthless effort or lead to tricky and inefficient 
solutions. An autonomic behavior means, in fact, dynamic interactions, flexible logics and 
flexible access to information.  

Thus, future autonomic communication scenarios require the adoption of an innovative 
software component model, to design and implement flexible communication services 
according to dynamic patterns. Such components should live and interact in the network 
without being tied to rigid or layered structures and without being constrained in information 
access. They should self-configure and self-adapt as needed to provide the needed 
functionalities. Each component should act as an access point to the actual service, regardless 
of layering constraints. Moreover, depending on the service, a component should be able to 
implement the service either in autonomy or by interacting with other components. For 
instance, a component implementing an autonomic localization service should always be able 
to provide information in a best-effort fashion; it should not rigidly require the availability of 
specific localization devices (like an adjacent service layer in the stack), but it should rather 
opportunistically exploit a variety of available services. As another example, a routing service 
should guarantee message delivery in very dynamic and mobile networks, without requiring 
manual reconfigurations, and should possibly tune quality-of-service depending on the 
specific needs of the user/application exploiting it.   

2.3 Requirements for Autonomic Communication Components 
Provided that ACSs are designed as software components, our next step is to identify a 
number of essential requirements that such a component model should satisfy. In particular: 

· Self-management. A component model for ACSs implies the capability of components 
(both at the individual level and at an aggregate social level) to continuously manage 
their internal functional and/or non-functional properties independently of 
contingencies, just like a living organism is able to maintain its internal balances. 

· Self-reconfiguration. ACSs execute in highly dynamic and unpredictable network 
scenarios, due to the presence of wireless channels, mobile and ephemeral nodes. For 
a component model, this means the capability of supporting the dynamic self-



 

 

reconfiguration of components and of their composition/interaction patterns, without 
requiring a predefined schema and/or explicit human intervention.  

· Situation-Awareness. To achieve self-management and to reconfigure at need, the 
component model should be aware of the surrounding context. The technologies 
needed to capture contextual data are becoming increasingly available (e.g., sensorial 
data, location systems, network monitoring tools, user profiling tools). However, there 
is a need to evolve from simple models of “situated” or “context-aware” components 
(expressing the simple capability of accessing contextual information) to models of 
“situation-aware” components, in which components are given access to properly 
elaborated and organized information concerning complex “situations”. 

· Abstraction and Technology-independence. As the sketched scenario identifies, it is 
expected that ACSs will run on a variety of heterogeneous devices and interact 
through a variety of communication technologies. Therefore, for a component model 
to be technology-independent, it must tolerate a design that can abstract from the 
actual characteristics of the underlying hardware. Deployment and execution of ACSs 
should be possible on diverse devices, such as embedded sensors and high-end 
computers, without forcing design and developers in adopting radically different 
conceptual and practical tools in dependence of the target.  

· Scalability. Given the possibly very large scale of the target scenarios, a component 
model for ACSs must promote scalability of both design (i.e., software engineering 
scalability) and execution complexity (i.e., performance scalability). In other words, 
the component model should be based on design principles that can be practically 
applicable to small systems as well as very large systems, and should promote 
organizing services according to patterns that exhibit scalable performances (or quality 
of service).  

2.4   Agents as Autonomic Communication Components 
Based on the above discussion, it emerges that ACSs can hardly be modeled and implemented 
as “passive software components”, like in standard layered protocols stacks and service-
oriented architectures [HuhSin05]. Rather, they should be exposed by “active” components 
endowed with inherent autonomic features of self-management, adaptivity, and situation-
awareness, and capable of dynamically interacting with each other.  

These considerations directly bring us to the key point of the paper: a component model 
for ACS should exhibit those characteristics that are widespread recognized as key 
distinguishing characteristics of agents and multiagent systems: autonomy, situatedness, and 
sociality [Jenn01]. Thus, independently of whether the “agent” keyword will ever make it 
through the autonomic communication community, many ideas and approaches developed 
within the agent community can indeed be of great inspiration to our ACS component model, 
and the design and development of ACSs can indeed be considered as a process of building 
distributed multiagent systems. 

For instance, agent-based software engineering have always highlighted the importance 
of modeling systems drawing inspiration from human and ecological societies: agents live and 
interact (being proactive and autonomous entities) in complex social organizations and react 
to events and situations generated into the environment [ZamJW03, WeyOO07]. Indeed, this 
is what we also search for autonomic communication services immersed in dynamic network 
environments. As another example, in multiagent systems economies individual agents with 
rational behaviour interact with other agents accordingly to specific mechanisms to ensure 
that a stable economic market emerges [HeJL03]. Again, this is something that relates to the 
search of self-regulatory mechanisms to ensure network stability. Similar examples could be 



 

 

found for the areas of cooperative agents and robots [KraST03], for trust and reputation-based 
systems [YolS05], and for swarms and emergent agent systems [BruePS04].  

To push the discussion forward, the following section surveys and analyses the key 
research directions that have been pursued so far in the areas of autonomic communication 
(and autonomic computing) to realize the vision, and relate these with research proposals in 
the area of multiagent systems.   

3 Approaches to Autonomic Communications 

Several strategies have been studied to integrate autonomic features in software and 
communication systems. As depicted in Figure 2, two opposite viewpoints have emerged, if 
we take into account the degree of emphasis either on individuals or on groups (horizontal 
axis). At one extreme, the idea of self-adaptation puts the emphasis on individuals: the basic 
idea is of inherently autonomic components [KepC03], which continuously monitor the 
environment and spontaneously trigger corrective actions whenever needed. At the other 
extreme, self-organization puts the emphasis on groups and considers instead that adaptive 
behaviors can emerge from the interactions among simple components, without any central 
control (i.e. the so called swarm intelligence [Parun97, Mam06]). 

These two “extreme” proposals, being the foundation stones for autonomic 
communications, are surveyed in the next two subsections. They are also compared to similar 
research in agent and multi-agent systems, again distinguishing between proposals with the 
emphasis on individuals (i.e., on proactive and intelligent agents) and on collectives (i.e., on 
systems of simple reactive agents). Yet, these two approaches are far from representing the 
whole spectrum of possible solutions. Multi-agent systems research has studied, identified 
and proposed models that can hardly fit into any of these. Such models tend to properly mix 
and integrate features of both self-adaptation and self-organization.  

 

 
Figure 2. Group behaviour versus individual self-adaptation 

3.1 Self-adaption and Autonomic Component Models 
IBM, in its “manifesto” for the autonomic computing initiative [AutonIBM01], first raised the 
issue of defining proper component models for innovative “autonomic” software systems. The 
autonomic communication research area inherits from autonomic computing the keyword but, 
as already stated in the introduction, it differs from it in its being more oriented to open and 
decentralized systems and to management of network resources at both the infrastructure and 
the user level [Ses06]. Nevertheless, both research areas recognize that traditional software 
systems get less and less advantages by continuous technology advances (e.g. powerful CPUs, 
large memory availability and so forth), because the complexity of development and 
management are indeed becoming overwhelming.  

Autonomic computing starts from the assumption that, to enforce an autonomic 
behavior, a complex software system should exhibit “self-*” properties at both the level of 
individual components and of the whole system.  



 

 

At the individual component level, such an assumption leads to an “autonomic 
component model” in which every component of the system must be inherently self-
managing. This implies that each component is responsible for: (i) configuring itself 
internally; (ii) healing over internal failure where possible; (iii) optimizing its own behavior; 
and (iv) protecting itself from external probing and attack. To this end, a generic architectural 
model for such autonomic component model considers two logical parts [KepC03]: the 
managed resource and the autonomic manager (see Figure 3). The managed resource can 
represent the internal data and functional logic of the software component, or the services 
provided by it. More in general, the component model considers the possibility of wrapping 
any resource into a component (e.g. a CPU, a database, etc.). The autonomic manager acts as 
a “supervisor”, in charge of understanding if everything is working fine, and in charge of 
actuating configuration actions whenever needed, to ensure the safety of the managed 
resource. The most assessed model describes the autonomic manager as the driver of a so-
called “MAPE-K” (Monitor, Analyze, Plan, and Execute, based on Knowledge) feedback 
loop on the managed resource.  

At the level of software system, the general idea is to enforce coordination between 
components according to a service-oriented model [HuhSin05]: components are assumed to 
be characterized by well-defined interfaces, described sometimes as web services [Booth04] 
(e.g. exchanging SOAP messages between WSDL service interfaces) or with standard OGSA 
interfaces [NickFKT02]; no other means of communication between the elements is 
permitted, no backdoors or undocumented interfaces. The latter principle allows to completely 
specify the interactions between the elements in terms of the interfaces that they support and 
the behaviors that they exhibit through these interfaces. 

Although the above component models have been studied mostly in the area of 
autonomic computing (i.e., with a focus on closed systems and on the application level only), 
many of such considerations can apply to autonomic communication systems as well.  

 

 
Figure 3. Autonomic components in the IBM perspective 

 
 The similarities of the above “autonomic component models” with assessed multi-
agent systems models are sharp, at both the individual and the system level [Wooldr97, 
Jenn01]. Autonomic components are goal-driven autonomous entities, able to sense and react 
to their surrounding environment (the “K” of knowledge in the “MAPE-K” feedback cycle) 
[Wooldr97]. “MAPE-K”-based autonomic components can thus be considered as a sort of 
reference agent architecture, explicitly conceived to enforce internal autonomic behavior in 
components. However, the question arises of whether – among the large number of agent 
architectures conceptualized and studied in the past few years – more suitable architectures 



 

 

can be defined. For instance, we feel that the well-assessed BDI architecture [RaoGe95] can 
subsume in many aspects the “autonomic component model”. The BDI architecture considers 
agents as intentional entities, whose behavior can be modeled and explained in terms of  
beliefs, desires, and intentions. Functional and non-functional desiderata of an ACS can be 
modeled in terms of “desires”; the knowledge acquired from internal self-monitoring and the 
external context can be considered as “beliefs”. Consequently, the expected autonomic and 
situated behavior of the ACS is achieved by simply defining those plans of actions (i.e., 
“intentions”) that enable self-configuration, self-adaptation, self-healing and self-protection.  

Shifting to the system level, many mentioned ideas have much in common with several 
(e.g., FIPA-based [BelPG01]) agent infrastructures. However, autonomic computing research 
also recognizes the need for special supervisor components (e.g., the sentinel in Figure 3), 
devoted to control and rule interactions at the system level. Only recently [BarBMN06]  
multi-agent systems research has started to recognize the need for infrastructure-level tools to 
monitor and drive agent interactions [RicOD03, NorS02]. Others have also defined 
methodologies to engineer systems based on such infrastructures [RicOD03, ZamJW03]. 
However, so far, most of these tools and methodologies are oriented to ensure organizational 
coherence and respect of social rules [Haegg96], while the issue of exploiting them to enforce 
autonomic and adaptive behavior at the system level is mostly unexplored. 

3.2 The Self-Organization Approach   
Adopting complex components fully equipped with the logic for self-adaptation is not the 
only possible choice to enforce self-management. Indeed, at the opposite side of the spectrum 
of Figure 2, an increasing number of proposals suggest the possibility of enforcing some 
forms of self-management through nature-inspired phenomena of self-organization. 

Many natural and biological systems are able to spontaneously produce forms of 
structural and/or functional self-organization; those behaviors emerge in the system without 
any explicit control, but they simply descend from local interactions among a large number of 
very simple individuals (e.g., ants, bees, termites) [BonDT99, Mam06]. Many of these 
systems are also adaptive, in that they spontaneously react to changes by dynamically 
reshaping their internal structure without having the structure lose its specific properties. In 
the past few years, several potential applications of nature-inspired form of self-organization 
have been documented, most of which of direct interest to the area of autonomic 
communications [BabCD06]. Examples include adaptive routing algorithms inspired by the 
phenomena of ant-foraging [DiCDor98], security services inspired by the human immune 
system [Mart99], self-aggregation and differentiation algorithms for load balancing of 
distributed resource usage [BabCD06]. 

At the level of individual components, the enforcement of forms of self-organization 
typically requires the presence of active components; they are just capable of executing 
simple algorithms in reaction to environmental events and of locally interacting with each 
other. At the level of software system, some sort of infrastructure must be provided supporting 
local interactions between components. In many cases, though, naturally inspired forms of 
self-organization take place with indirect interactions through a shared environment [KeilG06, 
VirHRSZ07]. This is the case of interactions mediated by pheromones in ant colonies or 
occurring by spreading of chemicals in multi-cellular organisms (a mechanism known as 
stigmergy [HollMel96, BonDT99]). It is worth outlining that the environment plays an active 
role in stigmergic interactions, in that it is doing duty for supporting the diffusion of 
chemicals and their evaporation. Accordingly, a computational infrastructure to support 
nature-inspired forms of self-organization has to embed processes devoted to support similar 
forms of diffusion/evaporation.   



 

 

In the area of multi-agent systems, such phenomena of self-organization have been 
extensively studied and pioneered [PlaMSHP07]. The simple components of a self-organizing 
system can be indeed considered as simple autonomous reactive agents [Parun97]. However, 
despite the large number of theoretical and simulation studies, a few practical tools exist to 
support the development of software systems with reactive agents and (stigmergic) self-
organization. The DIET platform, conceived within the EU DIET project and now donated to 
the open-source community [DIETPlat], defines a simple model of reactive agents and the 
corresponding infrastructure, as a general framework to build self-organizing agent systems. 
The TOTA (Tuple On The Air) middleware [MamZ04], not interested in defining a new agent 
model, focuses instead on creating a flexible and usable infrastructure for supporting a wide 
variety of stigmergic interactions.  

3.3 Discussion 
The above survey strongly suggests that both inherently self-adaptive components and 
swarms of simple self-organizing agents can be fruitfully exploited to implement future 
ACSs. Moreover, it is likely that hybrid forms of the two approaches will emerge, trying to 
balance benefits and drawbacks of each one. The heterogeneity of resources and devices in 
autonomic communication scenarios requires a critical comparison of the pros and cons in 
these approaches. This subsection analyzes self-adaptation and self-organization in the light 
of the requirements identified in subsection 2.3, with a twofold purpose: (i) giving the reader 
some elements/recommendations to choose the best approach for his particular case; (ii) 
motivating the need for a unifying agent-based model that allows the designer to seemingly 
use both self-adaptive and self-organizing ACSs (and any solution in-between). 

Self-management. Both component-level self-adaptive approaches and system-level 
self-organizing ones exhibit forms of self-management. On the one hand, autonomic behavior 
in self-adaptive approaches is enforced “by design”, and is made explicit through specific 
behavioral rules embedded in components. On the other hand, self-management in self-
organizing approaches is only implicitly encoded into the local interaction rules of 
components, which can ensure the achievement and the preservation of some global emergent 
behavior in the system. The enforcement of autonomic behaviors at the component level is 
much easier in self-adaptive approaches, because designers are given direct control over them. 
In self-organizing approaches the designer has instead nearly no control over individual 
components, but he can only influence the convergence of the system to a certain status.  

Self-reconfiguration. Services can reconfigure themselves to adapt to changed 
conditions (e.g., different user needs or changed network conditions). This can occur by 
proper coding of specific “adaptation rules” in self-adaptive approaches, while it occurs via 
spontaneous reconfiguration of the structure in self-organizing systems. Also in these cases, 
there is not a definite answer to what approach is to be preferred. Self-adaptive approaches 
ensure a higher-degree of programmability, since it is possible to code how individual 
components and the whole system should reconfigure in response to what changed conditions. 
However, taking into account all possible reconfiguration patterns, notably for very large 
systems, can become an overwhelming effort. In the latter case, a self-organizing system can 
simplify things because it can reshape its internal structure, when perturbed from the outside. 
This capability is nonetheless given at one precise cost: there is usually little possibility for 
designers to drive the natural adaptation of such systems, e.g. to control how and when they 
should change their behavior and structure. 

Situation-awareness. Both self-adaptive and self-organizing behaviors are often 
enforced by making components and systems aware of their surrounding context. As already 
stated, this implies not only having access to contextual information, but also understanding 
and elaborating complex knowledge about the surrounding status of the system. Self-adaptive 



 

 

components are easier to design in such a way that their internal behavior (both their 
functional and self-adaptive behavior) is continuously fed by contextual information. Self-
organizing components, on the other side, rely on very limited contextual information. For 
instance, in stigmergic models of interactions, the only contextual information available to 
components is the local gradients of diffused pheromones/chemicals. Of course, this does not 
enable components to perform complex elaborated reasoning about situations, which may be 
instead desirable in several cases. Anyway, the limited information available to self-
organizing agents can be more than enough in several applications. For instance, a local 
gradient of pheromones condenses in itself information about what other ants have passed by 
recently carrying food, and what directions they have taken to reach the nest.  

Abstraction and Technology-independence. This requirement has been defined in 
Subsection 2.3 as the capability of the component model to suit the development and 
deployment of service components on a wide range of computing devices and with a variety 
of communication technologies. Clearly, self-organizing approaches, being based on simple 
components with mostly simple local interaction patterns, are the ideal candidates for this 
requirement. On the contrary, it is less natural to deploy complex self-adaptive components on 
a network of small sensors, due to their internal knowledge reasoning capabilities and their 
need for heavyweight middleware infrastructures.  

Scalability. Considering execution scalability first, self-organizing approaches offer 
more advantages. Self-organizing systems are inherently scalable to very large networks, 
because components act independently of each other and make decisions based on locally 
available information only. At the opposite, self-adaptive approaches, in which the global 
adaptive behavior of a system often takes place through “behavioral contracts” between 
components, can difficultly scale to very large systems. However, when shifting to software 
engineering scalability (i.e., modularity), it appears that self-organizing approaches have 
currently very little to contribute. In fact, in self-organizing approaches, issues such as 
encapsulation of behavior, composability, confinement of effects, have never been properly 
addressed. This makes it difficult to (i) conceive and design services in terms of self-
organizing components, and (ii) to develop complex networks of services, composing 
different classes of self-organizing systems. On the opposite, self-adaptive approaches, 
grounded on more traditional software engineering lessons, explicitly tolerate encapsulation 
and can achieve software engineering scalability, at least in the presence of careful design 
choices (e.g. the usage of proper design patterns).   

To summarize the discussion, our model for ACS should give the designer abstractions 
to implement in his services a behavior that can range from self-adaptive to self-organizing 
according to the problem at hand. The features of self-adaptive approaches are needed to 
enable the development of components and systems, which can provide high-level 
knowledge-based services at the best of their possibilities and can enforce flexible and 
controllable adaptive behaviors. The features of self-organizing systems are needed to enable 
the development and deployment of lightweight and fine-grained services, suitable for low-
end devices and for large-scale networks, as well as to enable the achievement of adaptive 
behaviors in more limited and simple ways.  

4 Towards a Unifying Component Model: Challenges and Future Work 

The outlined need for an agent model able to exploit and integrate both self-adaptation and 
self-organization for ACSs is more than realistic. The identification of a definite and agreed-
upon model is still part of an active debate in the autonomic communications community. 
Therefore, we have tried so far to shed some light on this new research field, first “isolating” a 
minimum set of requirements for ACSs (Section 2) and then describing the state of the art 



 

 

(Section 3) in the area. This last section wants to be at the same time an “analysis of important 
experiences from the past” and “a dive in the future challenges of ACSs”. Our intent is to 
further support our statement in favor of an agent-based model for ACSs and provide the 
reader with new fertile ground for future agent research. More specifically, we try to 
synthesize all the above discussions and analysis by sketching the key characteristics that we 
envision for such a unifying component model: 

• Different forms of spontaneous aggregation (hereafter called self-aggregation) 
between ACSs, to enable multiple distributed agents to collectively and adaptively 
provide a distributed communication service on demand; 

• New effective ways to enforce control in the ecology of ACSs; 
• Self-similar forms of aggregation, capable of reproducing nearly identical structures 

over multiple scales, and achieving software engineering scalability; 
• Suitable models for the organization of situational information and their access by 

agents, promoting more informed adaptation choices by agents and advanced forms 
of stigmergic interactions. 

 In any case, we must point out that the following discussion is not intended to propose 
solutions, which has not available yet. Rather, by sketching features that we think should be 
exhibited by ACSs, we intend to suggest challenging research directions as far as the models, 
algorithms, and infrastructures that can support such features are concerned.  

4.1 Self-Aggregation as an Adaptation Mechanism 
In an “ecology” of adaptive ACSs, self-aggregation (or coalition formation) is a key 
mechanism to build and exploit complex distributed communication services. Self-
aggregation is clearly an autonomic adaptation process, in that it must occur on need and 
without direct human intervention: whenever some changes happen in the surrounding 
environment, an ensemble of simpler ACSs can decide to form a coalition that can better 
handle the new unforeseen situation or provide an improved service.  
 

 
Figure 4. Self-aggregation of ACSs  

 
Self-aggregation helps achieve an improved service adaptation. Whenever the execution 

of a service requires more resources or a certain QoS has to be guaranteed, one or more ACSs 
may decide to join and work in cooperation to provide such an improved service. Adaptation 
means also offering a better degree of fault-tolerance and service availability: self-aggregation 
clearly helps ACSs spontaneously reorganize themselves and, for instance, replace lost 
resources or unavailable services with other ones reachable in the surroundings. As it will be 
stressed in Subsection 4.4, this feature demands a powerful knowledge infrastructure to 



 

 

enable situation-awareness of ACSs and make them carry out informed aggregation choices, 
whenever environmental conditions change. 

Enabling self-aggregation in our agent model implies rethinking traditional integration 
architectures both from an architectural and a behavioural point of view.  

Let’s consider, first of all, the architectural viewpoint, i.e., how our ACSs should be 
designed to support aggregations formation. The flexible and non-strictly-layered service 
model we envision implies that ACSs should be allowed to participate in more than one 
aggregation, e.g., because their service can be shared among different clients. This requires 
that our ACS should be more than simply a “service provider” with a fixed published 
interface. We envision a new concept of interface that is far more flexible than classical 
software component interfaces. When a service agent participates in an aggregation, its 
interface should be updated or, better, it should expose a new interface: the “aggregate service 
interface”. Such an interface is expected to be the same in every aggregate ACS and its 
provided operations are negotiated and constructed according to the aggregation strategy and 
the requirements of the new complex service. Moreover, ACSs are very often located on 
different network nodes and the aspect of their physical distribution should be also taken into 
account. This leads as a consequence that our agent model should transparently support “at 
least” both centralised and distributed service aggregations (see Figure 4) and we said “at 
least”, because there might be intermediate or hybrid solutions between these two extremes. 
Centralized aggregations are those where a brand new “aggregate ACS” is the new 
centralized access point to the service and the service is not physically distributed.  
Distributed aggregation are those where several ACSs decide to join an aggregate service, but 
they still preserve their physical distribution in the network. In other words, they all agree on 
a common service interface, but there is not a new “aggregate ACS” exposing it; every single 
participant instead is considered “access point” to the aggregate service and is equipollent to 
all others (i.e. it exposes the same interface and compound behavior). Distributed aggregation 
is essential in our ACS model to properly leverage self-organizing emergent services, which 
are intrinsically distributed. In the latter case, this kind of aggregation has the additional 
advantage of giving a more resilient behavior to the aggregate ACS, because in a set of very 
small and equivalent ACSs there is no single point of failure (unlike the centralized 
aggregation case). Furthermore, its communication interface is replicated in several agents 
and this helps achieving improved service accessibility. 

Besides architectural design choices, self-aggregation needs effective algorithms and 
tools to work in dynamic and open environments, without human intervention. From a more 
behavioural standpoint, ACSs are expected to support different aggregation techniques, which 
are an active research area of AI. Innovative algorithms will have to be explored to face the 
challenges of distribution and heterogeneity in ACSs. Examples of important contributions to 
this purpose have been proposed for task allocation problems and coalition formation 
algorithms [SheAk06, ConSOI05]. All these MAS research are more than a valuable starting 
point for the challenging task of enabling autonomic self-aggregation in our ACS model. 

4.2 Enforcing Control over Service Aggregations 
As already highlighted, one of the driving principles of the autonomic communications vision 
is that services should be self-managing. The fundamental problem when trying to enable 
self-management consists in establishing some kind of control over ACSs, in order to 
constantly guarantee an optimal overall functionality, protect against malfunctioning parts and 
so forth. As already explained in Subsection 3.1, the IBM proposal for building autonomic 
components [KepC03] is based upon the introduction of the so-called “autonomic manager”, 
which is an intelligent software entity that monitors the activity of its managed resource, and 
can take corrective actions in a sort of continuous control loop.  



 

 

 The agent model we are sketching in this paper should allow both traditional 
autonomic managers and self-organising approaches, but here we deem crucial to foster also 
an innovative vision of self-management [Zamb2006] tailored to the features of autonomic 
communications. Many communication scenarios are dramatically distributed, often without 
any clearly identifiable stakeholders. Thus, a possible solution to enforce some forms of 
control over a swarm of self-organising service components can be that of populating the 
ecosystem with additional “manager components”, capable of somehow affecting the self-
organising behaviour of the system. That is, without completely taking control over the self-
organising behaviour of the system, being able to drive it towards specific emergent structures 
of organisation. In an environment where every service, even the most basic one, is provided 
by an ACS, it is reasonable to assume that such manager components could be ACSs 
themselves, injected on demand into the system. They will have to live inside the system and 
interact with other ACSs. This brings as a consequence that the knowledge management and 
planning capability, previously placed as a possibly heavyweight burden on every component, 
is now “externalized” and made distributed across the various deployed manager agents. The 
big difference with sentinels (see Subsection 3.1) is that those managers are not only in charge 
of monitoring/supervising the system. They drive the behaviour of an ensemble of agents, 
taking functional decisions thanks to their enhanced reasoning capabilities. 

To some extent, one can affirm that the proposed means of control situates in between 
the two extremes of self-adaptation and self-organization previously discussed with reference 
to Figure 2. It must be pointed out that some of these ideas have already been experimented 
and formalized in multi-agent systems research. In a previous work, we have studied how to 
control the emergence of spatial structures in cellular agent system by injecting a few 
percentage of “manager” agents in the lattice [MamRZ05]. The ideas of Electronic 
Institutions and norm-aware agent societies have been proposed as a model to rule 
interactions among software agents using norms (e.g. obligations, permissions, etc.) 
[ValSCR07]. For instance, in [ArcosES05], norms are explicitly represented and managed by 
way of rules and a team of “administrative (institutional) agents” is deployed in the 
distributed architecture, to ensure normative positions are complied with and updated by 
individual agents.  

Clearly, experience from the above and other research in the area of self-organisation 
control [Zamb06] will be of paramount importance to formalise our “ecology-like” autonomic 
service model [QuitCZ07]. Still, as of now, the extent of control that can be exerted by 
distributed “manager components” in a self-organising system is still to be fully investigated 
and understood, as it is the identification of suitable infrastructure to support such control 
features. 

4.3 Achieving Robustness of Aggregations via Self-Similarity 
In our service agent model, applying the self-similarity principle means that “individual 
components self-organize and self-aggregate to reproduce nearly identical structures over 
multiple scales” [DilKMR02]. 

From a software engineering point of view, having the same structural and 
organizational principles in force at different scales facilitates the management of services. 
From a more architectural standpoint, self-similar structures are known to be intrinsically 
robust. Many biological systems exhibit such properties, thanks to their being organized in 
hierarchical and self-similar structures at different scales.  

A successful agent model for ACSs should therefore support self-similar aggregation 
and multi-agent systems research has already explored some important applications in this 
direction, introducing the idea of holonic agents [Fisher99, GirBot04], so far mainly applied 
to manufacturing scenarios. The term holon was originally introduced by the philosopher 



 

 

Arthur Koestler [Koe67] to name recursive and self-similar structures in biological and 
sociological entities. Building holonic service compositions enables the construction of very 
complex systems that are efficient in the use of resources, highly resilient to disturbance (both 
internal and external) and adaptable to changes in their surrounding environment. Holarchies 
(i.e., service aggregations) are recursive in the sense that a holon (i.e., an agent component of 
such aggregation) may itself be an entire holarchy that acts as an autonomous and cooperative 
unit in the first holarchy. The stability of holonic service aggregations stems from holons 
being independent units, which handle circumstances and problems on their particular level of 
existence (i.e., the local execution environment of the aggregator agent), without asking 
higher level holons for assistance.  

Learning from such experiences with holons and self-similarity, self-similar aggregate 
ACS will be able to participate in further aggregations/holarchies or simply exist as new 
available services, but always as independent units: hiding their internal complexity under a 
self-similar interface, they can react to changes in the environment and adapt to different 
situations, transparently re-organising their internal structure.   

4.4 Organizing Situational Data into Knowledge Networks 
 Another essential requirement for ACSs is their capability to perceive their 
surrounding context and consequently adapt and improve their behavior. As already stressed, 
information about the context are expected to be increasingly important to enable situation-
awareness in next generation communication services.  

Nowadays, several mechanisms exist to produce situational data from the environment 
(e.g., intelligent sensors or monitoring mechanisms) and such data is expected to increase to 
dramatic amounts soon. In our vision, such huge amount of information cannot be fully 
managed or internalized by every ACS, because it would require a significant knowledge 
management capability that we consider an avoidable burden in our agent model. Our basic 
idea is that situational data should be scattered part in the environment (e.g., in a shared tuple 
space [OmiZ99]) and part across the different ACSs. In further details, we envision that when 
ACSs decide to form aggregations, they share their pieces of contextual knowledge with the 
other participants, forming a sort of “aggregated situational knowledge”. The global 
knowledge is dynamically built by the various ACSs that join and leave the system during the 
execution. 

The final conceptual outcome of the above knowledge organisation and analysis phases 
is the formation of so-called knowledge networks [Bau06], in which all information about 
individual contexts are properly represented, organized and correlated. Distributing such 
knowledge in the environment, ACSs can self-organize their activities using “cognitive 
stigmergy” approaches [TumCRVO05]. As already anticipated earlier, the distributed 
knowledge network is expected to play the part of a high-level intelligent and dynamic 
environment, useful in particular for those self-organizing services that use the environment 
as a mediator for their local stigmergic interactions [WeyOO07]. Self-adaptation and self-
organization would thus be driven by more sophisticated application-level knowledge data, 
other than simple pheromones value to react, and this will enable more robust and adaptive 
configuration patterns (e.g., the knowledge network can be used to enforce a more intelligent 
control over a set of swarm agents, as envisioned in Subsection 4.2). Actual benefits and 
challenges from knowledge networks will come to the surface as our experience with them 
advances. 



 

 

5 Conclusions 

 The continuous growth in ubiquitous and mobile network connectivity, together with 
the increasing number of networked computational devices populating our everyday 
environments, call for a deep rethinking of traditional communication and service 
architectures. In this paper, we have focused on communication services, and have analyzed 
the key characteristics and features that a proper innovative component model for the 
effective development and deployment of autonomic (i.e., self-organizing, self-adaptive, self-
healing) communication services will likely have to exhibit. 

The results of our analysis can be simply summarized as follows: 
· Such new component model – and the associated supporting infrastructures and tools 

– should be general-purpose, able to enforce autonomic behavior in both the forms of 
self-adaptation and self-organization, able to handle “situatedness” in complex 
knowledge environments, and should tolerate scalable forms of dynamic self-
aggregation. 

· To realize this ambitious vision, we claim that autonomic communications will have 
to go further with respect to a mere service-oriented architecture for network services. 
The very nature of ACSs strongly suggests that they will likely inherit many of the 
features that contributed to the popularity of software agents. From sociality to 
reactivity, from cooperation based on semantic agent languages to coalition formation 
algorithms, from knowledge-based reasoning to goal-based planning, future networks 
of ACSs will likely be a new important branch of multi-agent systems in 
telecommunications. 

It is furthermore our hope that the discussion and analysis in this paper can be of some 
inspiration to find in the fascinating scenarios of autonomic communication and autonomic 
communication services new impetus for future software agent research. 
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