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Abstract  
Services for mobile and pervasive computing should extensively exploit contextual 
information both to adapt to user needs and to enable autonomic behavior. This raises the 
problem of how to represent, organize, aggregate, and make available such data to services 
so as to have it become meaningful and usable knowledge. In this paper, we identify the key 
software engineering challenges introduced by the need of accessing and exploiting huge 
amount of heterogeneous contextual information. Following, we survey the relevant 
proposals in the area of context-aware pervasive computing, data mining and granular 
computing discussing their potentials and limitations with regard to their adoption in the 
development of context-aware pervasive services. On these bases, we propose the W4 model 
for contextual data and show how it can represent a simple yet effective model to enable 
flexible general-purpose management of contextual knowledge by pervasive services. A 
summarizing discussion and the identification of current limitations and open research 
directions conclude the paper. 
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1. Introduction 
Pervasive and mobile computing scenarios consider the possibility of providing users with ubiquitous and 
on-the-move access to digital services, and of supporting users interactions with their surrounding 
environments [HenIR06, ManZ06, Cas07]. For this possibility to become practical and satisfying, 
services should be able to somehow understand situations occurring in the surrounding physical context, 
autonomously adapt their behavior to the context from which they are requested, and proceed with their 
execution in an autonomic (i.e., self-organizing, self-adapting, and self-healing) way [ManZ06]. The 
enforcement of these features necessarily requires both the technology to capture contextual data and the 
capability of services to exploit such data at the best.  

The technology to acquire contextual information is becoming increasingly available, and it will soon 
become pervasive via the increasing deployment of RFID tags [Wan06], sensor networks [ChoK03, 
Est02], localization systems [HigB01], users’ and organizations’ profiles [Phi04]. This fact, together with 
the increasing success of participatory Web 2.0 tools, will soon make available to services overwhelming 
amounts of information about facts and events occurring in the physical and social world. Accordingly, 
the real challenge for future pervasive services is the investigation of principles, algorithms, and tools, via 
which this growing amount of distributed information can be properly represented, organized, aggregated, 
and made more meaningful, so as to facilitate the successful exploitation by pervasive services [Bau06].  

Future pervasive and autonomic services must evolve from a simple model of “context-awareness”, in 
which they access isolated pieces of heterogeneous contextual data and are directly in charge of digesting 
and understanding them, towards a model of “situation-awareness”, in which services access properly 
structured and organized information reflecting comprehensive contextual knowledge related to a 



“situation” of interest and which can be exploited in a standardized fashion. The idea is to make available 
to services a simple yet expressive interface via which to access contextual knowledge, and encapsulate 
behind such interface all the algorithms and tools to engineer contextual data (i.e., to represent, organize, 
prune and aggregate it). The result is that services can reach, with reduced computational and 
communication efforts, a comprehensive understanding of “situations” around and, consequently, a 
higher-degree of adaptability and autonomicity, with the notable software engineering advantage of 
enforcing a sharp separation of concerns between context exploitation and context management.  

In the past few years, a number of different research communities, from pervasive computing, to data 
mining and granular computing, have somewhat recognized the above problems, and have proposed 
solutions aimed at engineering large amounts of contextual data and at turning them into usable 
knowledge [DeyA00, CegR06, DeGM05, Yao06a, Yao06b]. Thus, a first contribution of this paper is to 
survey such diverse proposals in different areas and critically analyse their potentials and limitations with 
respect to their exploitation as tools for engineering context information for pervasive services. The result 
of our analysis is that, despite the potentials of specific approaches for specific problems, none of them 
can qualify as a fully-fledged general-purpose solution for the challenges raised by pervasive autonomic 
services.  

Following, the second contribution of this paper is to present a novel data model to represent context 
information, and discuss its potential to act as a general-purpose model to handle several kinds of context 
information. The model, which we call “W4”, is based on the consideration that most information about 
the world (i.e., about facts occurring in the world) can be simply represented in terms of four “W”s – 
Who, What, Where, When. Despite its simplicity, such a representation enables for very expressive and 
flexible data usages. In particular, W4 data can be easily queried and accessed by services, tolerate the 
effective execution of semantic data organization and data aggregation, and can be effectively used to 
represent both primitive data and high-level knowledge related to a situation.   

The remainder of this paper is organized as follows. Section 2 sketches the general scenario we 
envision for next generation pervasive services, analyzes the issue of context-awareness, and identifies 
the key challenges for engineering services via suitable models to represent context information. Section 
3 surveys the most relevant proposals that, in different areas, are currently providing solutions for context 
representation and knowledge organization, and analyzes their potentials and limitations. Section 4 
introduces the W4 model, and discusses how it can be exploited as a general tool for pervasive services. 
Section 5 presents our current implementation experience, discusses the current limitations of the W4 
model, and outlines open research directions. Section 6 concludes.  
 
2. Engineering Contextual Knowledge: Concepts and Challenges 
Mobile and ubiquitous computing generally considers the possibility for users to access general digital 
services from everywhere and on the move. Pervasive computing additionally considers exploiting 
pervasive networks, distributed sensing and possibly actuating infrastructures for the provisioning of 
services enabling and supporting our interactions with the environment. These include a number of 
innovative users-level services for on-line monitoring of surrounding world and interacting with it (i.e., 
“browsing the world” activities [Cas07]), as well as services for enhancing our social experiences in an 
environment by enabling novel models of localized social interactions [Pen05]. Dually, it also includes 
infrastructural services embedded in the environment having the goal of making the environment itself 
capable of perceiving users’ activities within and of adapting itself to the users’ needs (i.e., ambient 
intelligence services). Whatever the case, it is clear that pervasive services have to be inherently context-
aware. In fact, collecting information about situations around and acting accordingly is the very core of 
the activities of pervasive services [ManZ06].  

The need for context-awareness also arises when one wants to enforce autonomic behavior in services, 
i.e., their capability of self-organizing their activities, self-reconfigure and self-heal on need. Given the 
intrinsic dynamics and decentralization of pervasive scenarios, where components and devices belonging 



to different stakeholders can come and go at any time and where the structure of the network is inherently 
dynamic and unreliable, autonomic behavior is necessary to ensure services’ continuity without forcing 
costly and hard to be managed human intervention. However, for such autonomic features to be enabled, 
services require the capability of understanding what’s happening around and react accordingly. 

 
2.1. From Context-aware to Situation-Aware Services 
A number of technologies exists and are getting increasingly deployed to that contribute producing large 
amounts of contextual information, there included sensor networks [Est02, ChoK03], RFID tags [Phi04, 
Wan06], localization devices [HigB01, War06], not to exclude participatory Web tools (aka Web 2.0 
technologies) and of geographic Web tools (e.g., Google Earth and alike). On these basis, one may think 
that achieving context-awareness is simply a non issue. Whatever the data source producing some raw 
item of contextual information (i.e., “data atom”), all of them contribute populating a large cloud of data 
atoms and at making it available to services (see Figure 1). A service in need of understanding what’s 
happening around can access (i.e., internalize) the needed data atoms and analyze them to understand 
what is the current situation of its context.  

Unfortunately, such description is far too simplistic and does not emphasize a number of complexities 
inherent in it. First, the process of data internalization can lead to high communication and computational 
costs for a service, in that it may require accessing large amounts of data atoms possibly distributed across 
different devices and analyze which data may serve its current purposes. Second, the process of analyzing 
retrieved contextual data atoms and turning them into useful knowledge may be non-trivial. In other 
words, getting access to context information does not automatically imply the capability of reaching 
“situation-awareness”, i.e., the capability of recognizing a situation. With reference to one of the most 
assessed definitions of context [DeyA00] “context is any information that can be used to characterize the 
situation of an entity”, our claim here is that technological advances are creating a notable gap between 
“context is any information” and “that can be used to characterize the situation of an entity”. That is, 
acquiring contextual information does not imply the capability of understanding situations, especially in 
the presence of an overwhelming amount of unrelated contextual data atoms. Such problem is even 
exacerbated by the increasing heterogeneity of devices and tools that contribute producing contextual 
information, and by the consequent need of handling heterogeneity in data representation and semantics. 

 



 
 

Figure 1: Pervasive devices and sensors make available to services a sort of “data cloud 
layer”, fed with large amounts of heterogeneous data atoms. To serve their purposes, a 
service needs to retrieve contextual information (i.e., internalize data atoms from the 
cloud), analyze it to properly understand situations, and finally exploit such knowledge 
as needed for their own goals. 
 
In our view, for autonomic pervasive services to successfully hit the street, there must be an evolution 
from a model of simple context-awareness, in which services access isolated pieces of contextual data and 
are directly in charge of digesting them, towards a model of situation-awareness, in which services access 
properly structured and organized information, reflecting comprehensive knowledge that is related to a 
“situation” of interest and which can be exploited in a standardized fashion [Bau06]. With reference to 
Figure 2, we envision that the access by services to contextual information does no longer occur directly, 
but rather via a “knowledge network” layer. Such layer should encapsulate mechanisms and tools to 
analyze and (self-)organize contextual information into sorts of structured collections of related data 
items, i.e. knowledge networks. Such knowledge networks, by pre-digesting contextual information and 
by providing compact and expressive information to services, may support them in reaching, with reduced 
efforts, a comprehensive understanding of “situations” around and, consequently, a higher-degree of 
adaptability and autonomicity.  



 
 

Figure 2: By exploiting a knowledge network layer, services are no longer forced to 
access the raw data cloud layer. Knowledge organization and analysis is externalized in 
the middleware, and services are given access to pre-digested information, with a 
notable complexity reduction.  
 
To make some examples, our idea of knowledge networks includes, among the others, the following 
possibilities: (i) aggregating data atoms to produce compact and possibly multi-level representation of a 
phenomenon (e.g., averaging the temperature values of a set of sensors in a building and make available 
compact information about temperatures in single rooms, wings, or in the building as a whole); (ii) 
pruning redundant and/or inconsistent data atoms (e.g., in the presence of a multitude of diverse 
localization information, from GPS to WiFi based ones, make available to services only the most reliable 
and accurate ones); (iii) relate individual data atoms with each other to increase their informative value 
(e.g., merging the data read from an RFID-tagged object with those available on some database and with 
localization information, to produce an accurate description of an object and of its positioning); (iv) relate 
individual data atoms to produce more expressive information (e.g., relating GPS location with data 
available from the Web to extract information about what the actual activity of a user, such as “Gabriella 
is at the yearly food exhibition in Modena); (v) more in general, perform various kinds of ontology-based 
context-reasoning activities to extract new knowledge from available data atoms.   

From the software engineering viewpoint, an approach based on knowledge networks has the 
advantage of providing a clear separation of concerns between data analysis and data exploitation. While 
data analysis and organization is delegated to the knowledge network layer, services are left with the only 



duty of exploiting such data to reach specific functionalities. As always in software engineering, this 
separation of concerns can notably reduce the complexity of developing and maintaining services. A 
possible criticism of the approach is that it does not eradicate the problem of analyzing large amounts of 
information, but simply passes it to a different component that either exists at the application or at the 
knowledge network level. Although this may be true to some extent, one should consider that, in a 
distributed setting, knowledge networks can take care of knowledge management duties that would have 
been otherwise replicated inside each service, with an overall saving in computation and communication 
efforts.    
 
2.2. Challenges 
For services to effectively achieve situation-awareness, and for our general idea of knowledge networks 
to become a practical tool, several engineering challenges have to be faced.  

Data Model. Our idea of knowledge networks requires the identification of a simple, general-purpose, 
and uniform model to represent contextual information, i.e., individual data atoms as well as their 
aggregates. The model should enable representing very diverse facts about the context, typically 
generated by a variety of heterogeneous sources and at different levels of granularity, in a uniform way. 
Also, the model should enable ease of manipulation of the data atoms, both by the algorithms that will be 
embedded in knowledge networks and by services. Furthermore, the model should enable to deal with 
incomplete information and information of limited accuracy, since one cannot always assume that all the 
information within a data atom will be complete and reliable. 

Access to Data. The very goal of knowledge networks is to provide knowledge to services and to 
digest data from any possible contextual data source. First, it is necessary to identify suitable methods 
(i.e., APIs) by which services can be given access to the knowledge network layer and the information 
within. Such methods should enable flexible querying of the knowledge network layer, yet should limit 
the amount of information required by services to fruitfully access it (i.e., services should not rely on a 
priori information about what data is in the knowledge network layer). Also, given the intrinsically 
distributed and decentralized nature of contextual information, access to knowledge networks by services 
should abstract from the actual distribution and allocation of data and knowledge. Second, a similar 
general API should be provided for enabling data sources (which may include services themselves) to 
inject new data for feeding the knowledge network layer. 

General Approaches for Data Aggregation and Networking. Our idea of knowledge networks is to 
have it as a “live” layer, which is in charge of continuously and autonomously analyzing information to 
aggregate data atoms, relate existing knowledge atoms with each other, and extract meaningful 
knowledge from the available data (i.e., to turn raw “data atoms” into expressive “knowledge atoms” 
representing a situation from a high level perspective). Thus, it will be necessary to identify algorithmic 
approaches for performing such analysis without explicit human intervention, i.e., in a self-organizing and 
self-configuring way. Also, it is necessary for such algorithmic approaches to be as general as possible, so 
as to be flexibly adaptable to a variety of application needs without having to re-think from scratch the 
knowledge network architecture for any new application needs. 

Application-specific Views. Strictly related to the above, we have clear in mind that the idea of a single 
knowledge networks capable, with a limited set of data analysis and aggregation algorithms, of capturing 
of the possible needs of all possible pervasive services, is illusionary. In a given pervasive environment, a 
variety of services by different stakeholders may exist and new ones can be deployed at any moment, 
each with its own goals. Such services may, of course, have very diverse needs for what relate to 
accessing contextual knowledge, and may require organization/aggregation along different dimensions 
and based on different algorithms. For instance, some services may be more interested in 
organizing/analyzing knowledge along the spatial dimension (e.g., for detecting spatial patterns of 
activities in an environment), some along the temporal dimension (e.g., for detecting temporal patterns of 
activities by users), some along some mixed spatio-temporal dimension or along any other application-



specific dimension. Thus, and even if a general algorithmic approach has been identified and if some 
general-purpose algorithmic activity could be identified that is useful for all applications, specific services 
may require the dynamic instantiation within the knowledge networks of application-specific algorithms 
for knowledge analysis. Then, a general approach to knowledge networks should account for this 
possibility and enable the dynamic instantiation of any new knowledge analysis algorithm.    
 
3. Critical Survey of Relevant Related Works 
 
In this section, we survey and analyze several approaches that, in different areas, are somewhat 
contributing pieces towards the realization of our knowledge network vision. Yet, none of the approaches 
we have analyzed properly addresses all the identified challenges. 
  
3.1. Context-awareness 
Context is a very fluid notion, and several researchers claim that it is very hard to formally define context 
and to abstract it in terms of variables and data models [Gre01, Dou04]. The key arguments is that 
context, by definition, should account for subjective factors such as previous experiences, current 
activities, and dynamic relations of the subject with the other subjects in the context. Although one can 
agree – in principle – with these considerations, it is also a widespread opinion that a more pragmatic 
perspective should be adopted to identify suitable engineered context representations, and make these 
usable by (and useful for) services. 

Early work in this area, as from Schmidt et al. [Sch99] and Dey et al. [DeyAS01], concentrates on the 
issue of acquiring context data from sensors and of the processing such data to make it available to 
processes/services in the form of abstract components. Such approaches thus partially address the data 
model challenge, in that they recognize the need for a data model able to abstract raw contextual data at 
higher level. However, they generally miss in identifying a uniform model and a common semantics to 
describe the data. This forces developers to build new query languages and new components in 
dependence of the kind of information at hand. In other words, such models do not provide a common 
semantic to deal with multiple context information in a coherent way, resulting in a complex data model 
and requiring a great effort to services that has to deal with diverse context representation depending on 
the supported context sources. The lack of common and general data model consequently implies the lack 
of a common general-purpose API to access and query data, as well as the lack of any support for data 
manipulation and organization in multi-level and/or application-specific views. 

A different thread of researchers focuses more on the issue of providing rich data models for 
contextual information and of facilitating querying by services. Schilist et al. [SchAW94] propose a 
context model in which each contextual data atom is represented by a set of environments variables – 
each one dealing with a different aspect of the context – that can be accessed in a flexible way. Similarly, 
Henricksen et al. [HenIR06] model contextual data by making possible to enrich it with several meta-
information such as temporal aspects, information imperfection, etc. Such approaches well address the 
data model challenge, in that they aim at developing a general and flexible data model. However, working 
with data atoms made up of a long list of elements/variables does not go toward simplicity and generality, 
which we instead feel should both be goals. Nevertheless, these proposals tend to identify flexible and 
simple APIs for accessing and querying data, which is fundamental for services to interact with any 
knowledge/data layer. The issue of relating contextual data atoms with each other and of providing 
different views to different applications is not generally addressed. More recently, other proposals have 
adopted a similar endeavor but have considered the issue of adopting specific ontologies to model 
context-information and enable – other than efficient querying – also efficient context-reasoning [Chen04, 
GuPZ05], possibly also based upon information, such as location, of specific interest to pervasive 
computing [Rou06, LeeM07]. Although such approaches tend to be too application-specific, they attribute 
the importance of linking independent atoms of contextual information (with ontological relations) and of 



reasoning not only on individual data items but also on their relations, an idea which is fully shared by 
our knowledge network vision. 

An increasing number of research works get inspiration from tuple space data models [AhuCG86] and 
propose representing contextual information in the form of tuples, storing them across a set of distributed 
tuple spaces holding local contextual information, and accessing them via associative (i.e., pattern-
matching based) query operations on tuple spaces. Egospaces [JulR06] adopts this perspective, without 
committing to a specific pre-defined structure for context tuple, which can make it difficult for services to 
uniformly deal with tuples representing different aspects of the context represented in different formats. 
However, Egospaces proposes a so called “egocentric” notion of context, in which different services can 
perceive a different context-dependent representation of the contextual information, depending on their 
current location. We consider such a feature very important in that it allows tailoring information to 
specific users’ needs and viewpoints. The Context Fabric model [Hon02] does better than Egospaces as 
far as tuple structuring is concerned, in that it relies on well-structured context tuples each describing a 
single piece of context data in terms of entities (people, place, thing), attributes (e.g., the name). 
Moreover, even if it does not propose solutions for enforcing application-specific views, it considers the 
possibility of identifying relationships between context tuples. Recent proposals focusing on sensor 
networks, suggest exploiting a tuple-based approach to flexibly access sensorial information [NewW04, 
MotP06]. Although not focusing on specific tuple structures, such proposals are of interest in that they 
consider the possibility of providing application-specific views on sensorial data. The idea is to have 
services dynamically inject code into the sensors for aggregating/elaborating data within the sensor 
network, and eventually enabling services to directly access aggregated data according to their own 
specific needs. In general we consider tuple-based approaches very suitable for organizing and accessing 
contextual information, but we also think that there is need of more structuring and flexibility than those 
exhibited by the existing approaches.  

Some recent proposals focuses on providing models for contextual data that adopt a uniform well-
defined structure, capturing those specific aspects which are of interest by pervasive services, a 
characteristic which we consider very promising. The approach proposed in the Nexus platform [Leh04] 
proposes representing different contextual data uniformly accounting for fields such as spatial references 
and temporal references, for enabling general spatial and temporal queries over a context database. The 
proposal described in [XuC05] suggests adopting a seven-field data structure to describe the context. The 
suggested fields include subject, predicate, object, time, area, certainty, freshness, which overall provide 
quite a complete characterization of contextual information. The system described in [Bra06] proposes 
describing contextual information contained in RFID tags and read by services in terms of identity, 
purpose of tag, location of tag, time of information production. Although the system is a special-purpose 
one, having been applied to RFID tags only, we consider it interesting in that is consider a simple enough 
yet quite informative structured data model, able to represent in a uniform way different data coming 
from different sources. Indeed, our W4 proposal accounts for a very similar structuring for contextual 
information, and enriches it further with a well defined API, and with the possibility of linking data atoms 
and of providing application-specific views to services.  
 
3.2. Data Mining and Pattern Discovery 
As stated in Subsection 2.1, the potentially overwhelming amount of data that can be generated by 
pervasive sensing infrastructures does not constitute knowledge per se, in that services may have to face 
complex analysis tasks to get a meaning out of it. Such analysis task, which we think should be delegated 
to a knowledge network layer, is in the end a sort of data mining process [GalS06].  

Data mining concerns analyzing large amounts of typically unrelated data to infer hidden linkages, 
correlations, rules, constraints, (i.e., broadly speaking, patterns) in such data [Fay96, Bar03]. The goal is 
to present such inferences to user for subsequent interpretation, i.e., to have the user give a meaning to 
data by analyzing the identified patterns. In general, all the mechanisms proposed in this field can be 



naturally employed within the knowledge network layer to extract knowledge from raw data collected by 
sensing devices.   

In the wide data mining research area, a variety of algorithms and approaches have been proposed, 
most of which rely on a general two-process: identifying relevant sets of related data item within the 
global dataset and, following, inferring patterns from this sets. This two-steps process can be of 
inspiration for knowledge networks, and in particular with regard to the need of identifying flexible and 
general algorithmic approaches for continuously and autonomously aggregating and analyzing data 
atoms. In fact, it may lead to a modular algorithmic approach, in which the two issues of relating data 
atoms and of extracting higher-level knowledge form such relations can be clearly separated.  

Data mining activities may, in general, identify thousands of patterns from data sets, all of them of 
general interest. With this regard, several researches involve the specialization of association mining 
fundamentals to address the problems of specific application domains, e.g. spatial or temporal association 
rules, to limit the number of mined association to the most relevant ones [AlCG07, VerC06]. Of course, 
for applying the lessons of data mining to pervasive services and knowledge networks, a similar 
application-specific approach must be taken.   

Recently many researchers applied data mining techniques to wireless sensor networks. Sensor 
networks offer new challenges to classical data mining: the large amount of sensed data has to be 
modeled as a stream; there may be a large number of nodes in the network, calling for decentralized 
approaches that should also account for data losses; finally, power consumption issue must be considered. 
Some approaches [BonB05, McS05] focuses on mining sensed data for prediction purpose. In [BonB05], 
a framework for data mining upon sensor network is proposed with the goal of enforcing supervised 
learning (prediction, classification, etc.) of data patterns according to a specified level of precision and 
quality. The framework is based on a two step process: the first step performs aggregation of sensors in 
clusters, in the second one, each cluster sends the aggregate to a data mining server that performs the 
analysis. Similarly, [McS05] proposes a framework for prediction based on the flow of local predictors 
through the network. At the root, predictors are combined via a voting mechanism. Other approaches 
[GanEH04, KulD05] focus on the general problem of identifying patterns by using neural networks 
algorithm in a distributed setting. In particular, these approaches: (i) uphold the need for data mining for 
analyzing the vast amount of data in pervasive computing application, (ii) show that decentralized 
approaches are effective and operable in distributed network with several nodes.  

Another trend of research in applying data mining to pervasive computing scenarios consists in 
analyzing data coming from wearable sensors to infer and predict user’s behavior and social interactions. 
The work presented in [GiP06] applies data mining techniques to automatically identify social structures 
among a group of people. In this work, each user is provided with an IR badge continuously transmitting 
the user ID to other badges nearby. All ID exchanges are recorded, and a data mining algorithm selects 
those people that tends to stay together over multiple encounters. Such persons are marked as friends or 
colleagues and thus an inherent social bond between them is automatically detected. Similar works adopt 
the same principles exploiting different kind of sensors. For example, [Pen05] proposes the use of 
microphones and IR badges to measure who is talking with whom, and derive social networks and other 
context information by mining such information. On similar lines, the work on “familiar strangers” 
[PauG04] records and mine Bluetooth-encounters to identify those people and places that are familiar to 
us, although we do not know or remember them (e.g., people who usually take the bus with us – lots of 
Bluetooth encounters, or places in which a lot of people we encounter frequently are located). The work 
presented in [Pat04] uses data mining techniques (i.e., Bayesian networks) to learn and infer 
transportation routines of a user provided with a GPS enriched PDA. A data mining engine running on a 
server, is constantly fed with the users’ GPS traces. The server can then infer where the user is probably 
heading, which bus he has to ride and where he has to get off. The results are sent back to the PDA that 
can alert the user on missing stops, unusual deviation from the usual track, etc. The systems presented in 
[Pat05] uses data mining to infer user activities on the basis of the objects the user touches (as revealed by 



the sensing of RFID tags stick to the objects). Specifically, the system correlates objects such as “tea-
pot”, “cup” and “tea-bags”, to high-level activities like “preparing tea”. Although these approaches are 
very special-purpose, they again confirm that data mining can be applied to pervasive computing. 

As an additional note, typical data mining approaches are human-centered and query-based, i.e., 
assuming humans are both the drivers and the end users of data mining activities. In pervasive computing, 
instead, we require automatic methodologies for discovering relations between contextual data and for 
making these available to computational services. Moreover, conventional data mining assumes the 
independence between the attributes and the independence between the values of these attributes, but in 
context-awareness diverse attributes and their corresponding values are often related. Some researches 
has been done in areas where correlation between attributes exist [GalS06], however they result in 
human-centered and visual data mining methodologies that are not suitable for pervasive services.   
 
3.3. Data Aggregation Granular Computing 
Granular computing is an emerging inter-disciplinary research area that considers the general issue of 
processing “information granules”, i.e., collections of data atoms, and extract knowledge from them. The 
idea is to organize information granules together based on their similarity, functional properties, 
spatial/temporal adjacency, or identified regularities in data [Ped01], and eventually provide higher 
knowledge-level views, at different scales, of the phenomena underlying information granules. Although 
the strict relations between data mining and granular computing are evident, the latter adopts a more 
theoretical and inter-disciplinary viewpoint, and specifically focuses on the idea that, at different level of 
observation and analysis, the same data can provide different knowledge [Yao06a, Yao06b]. 

The ideas and principles of granular computing have been investigated in many research fields from 
computer science to psychology: computational intelligence, artificial intelligence, the theory of 
hierarchy, divide and conqueror, the theory of small groups, etc. Such a wide range of researches 
demonstrates the potentials of the granular computing approach. Indeed, the underlying assumption of 
granular computing is that the basic principles and methodologies are independent from specific problem 
domains. Three main perspectives motivates the holistic view of granular computing [Yao06a]:  (i) a 
philosophical perspective: granular computing as a way of structured thinking models the reality in a 
multi-level fashion that reflects the granularity structure of the physical world; (ii) a practical perspective: 
granular computing as a method of structured problem solving promotes general and reusable approaches 
and methodologies in the process of problem solving; (iii) a computational perspective: granular 
computing as a paradigm of  information processing leads to more effective computational models.  

As theoretical as it can be, granular computing naturally fits our perspective on context-awareness and 
situation-awareness, and specifically our idea of knowledge networks. First, the goal of extracting 
knowledge from information granules directly maps into the idea of introducing a layer above the cloud 
of contextual data to access higher-level information. Second, the idea of relating information granules 
based on different characteristics and rules directly maps into our idea of knowledge networks. Finally, 
the idea of granular computing of providing multi-level views for serving different purposes directly 
maps into our goal of providing application-specific views of knowledge networks.  

To the best of our knowledge, there are no studies directly related to applying granular computing 
ideas to support context-awareness by pervasive services. Nevertheless, there are studies related to 
applying granular computing techniques to model spatial and temporal data at different levels of 
granularity, an issue which is of specific relevance to pervasive services (which are inherently situated in 
space and time). Camossi et. al. [Cam03] proposes a spatiotemporal data model relying on an extended 
ODMG model, which provides a uniform management of both moving entities and temporal maps. The 
model allows for the multi-level management of such data, and also deals with temporal indeterminacy 
and spatial inaccuracy. Granular GeoGraph [DeGM05] provides a conceptual spatial data model with two 
granularity dimensions: a purely spatial one and a semantic one. Spatial granularity refers the possible 
variations of the geometry of an object with respect to different scales, semantic granularities refers to the 



possible variations of set of domain objects with respect to the levels of detail requested by different 
users/applications. It is important to notice that refinements in semantic granularity are not necessarily 
paired with refinements in spatial resolution.  

Although the above researches help us providing some inspiration with spatial and temporal data, 
context-awareness and situation-awareness especially, involves more contextual factors and more rich set 
of relations, something which we indeed try to account in our proposal.  
 
4. The W4 Approach 
The result of the previous survey is that, despite diverse approaches address specific engineering 
challenges, none of them propose fully-fledged solutions for the need of modern autonomic pervasive 
services.  

Our proposal for a novel, simple yet effective, data model for expressing contextual knowledge about 
the world starts from the consideration that any elementary data atoms as well as any higher-level piece of 
contextual knowledge, in the end, represents a “fact” which has occurred. Accordingly, our proposal 
simply account that any of such facts – and therefore any data/knowledge atom – can be expressed by 
means of a simple yet expressive 4-fields tuples (Who, What, Where, When): “someone or something 
(Who) does/did some activity (What) in a certain place (Where) at a specific time (When)”.  

W4 knowledge atoms may be created by proper software agents associated to data sources or sensor. 
Their four-fields structure is flexible and general enough to uniformly deal with information coming from 
sources as diverse as embedded devices, cameras, users, or Web 2.0 sites, and can account for adaptation 
to context and incomplete information (i.e., some of the four fields being unspecified). W4 knowledge 
atoms, as tuples in tuple spaces, can be stored in suitable shared data spaces, whatever distributed and 
implemented. Users and services, from everywhere, can retrieve knowledge atoms via a simple API, 
based on “à la Linda” [AhuCG86] pattern-matching query mechanisms. Such API supports context-aware 
queries and incomplete information, to enable services to interact with the world and to enforce 
autonomic and context-aware functionalities. In addition, the simple W4 structure support general 
distributed algorithms for data aggregation and manipulation, and facilitates the building of semantic 
knowledge networks and of multiple, application-specific views. 

 
4.1. Data Representation 
The four-fields (Who, What, Where, When) of the W4 data model each describes a different aspect of a 
contextual fact. 

The Who field associates a subject to a fact, and may represent a human person (e.g., a username) or 
an unanimated part of the context acting as a data source (e.g., the ID of an RFID tag). The Who field is 
represented by a type-value pair, in the form of a string, with an associated namespace that defines the 
“type” of the entity that is represented. For example, valid entries for this field are: “person:Gabriella”, 
“tag:tag#567”.  

The What field describes the activity performed by the subject. This information can either come 
directly from the data source (e.g., a sensor is reading a temperature value), or be inferred from other 
context parameters (e.g., an accelerometer on a PDA can reveal that the user is running), or it can be 
explicitly supplied by the user. This field is represented as a string containing a predicate:complement 
statement. For example, valid entries for the What field are: “read:book”, “work:pervasive computing 
group”, “read:temperature=23”. 

The Where field associates a location to the fact. In our model the location may be a physical point 
represented by its coordinates (longitude, latitude), a geographic region (we currently adopt the PostGIS 
language to describe such regions), or it can also be a logical place. In addition, context-dependent spatial 
expressions like “here” or “within:300m” can be used for context-aware querying, as described in the 
following of this section. 



The When field associates a time or a time range to a fact. This may be an exact time/time range (e.g., 
“2006/07/19:09.00am - 2006/07/19:10.00am”), or a concise description (e.g., 9:28am). For example 
9:28am = 2006/07/19:9:28am ± 5min. Also in this case, context-dependent expressions can be defined 
(e.g., “now”, “today”, “yesterday”, “before”) and can be used for context-dependent querying. It is also 
worth outlining that the “When” field is of primary importance for distinguish between fresh contextual 
information and historical one.  

The way it structures and organizes information makes the W4 data model general enough to represent 
data coming from very heterogeneous sources and simple enough to promote ease of management and 
processing (although we are perfectly aware that it cannot capture each and every aspect of context, as 
form the discussion at the beginning of Subsection 3.1).  
 
4.2. Data Access and Service Engineering 
As already stated, it is fundamental to define a simple API for services to access to contextual knowledge 
and enabling data sources and services to inject new data in the knowledge network layer. 

Since knowledge atoms are stored in the form of W4 tuples in a shared data space (or in multiple data 
spaces), we took inspiration from tuple-space approaches [1] to define the following API: 
 

void inject(KnowledgeAtom a);  
KnowledgeAtom[] read(KnowledgeAtom a);  

 
The inject operation is equivalent to a tuple space “out” operation: an agent accesses the shared data space 
to store a W4 tuple there.  

The read operation is used to retrieve tuples from the data space via querying. A query is represented 
in its turn as a W4 tuple with some unspecified or only partly specified values (i.e., a template tuple). 
Upon invocation, the read operation triggers a pattern matching procedure between the template and the 
W4 tuples that already populate the data space. A vector of all matching tuples – i.e., those for which all 
the defined fields match those provided in the template – is returned as the result of the query. In any 
case, pattern matching operations work rather differently from the traditional tuple space model. In fact, 
our proposal can rely on the W4 structure to enforce expressive context-aware pattern matching 
operations, which may exploit differentiated mechanisms for the various W4 fields. Current mechanisms 
work as follows: 

- Who and What. Pattern-matching operations in these fields are based on string-based regular 
expressions. For example, “user:*” will match any user. 

- Where. Pattern matching in this field involves spatial operations inspired by PostGIS operations. 
Basically, the template defines a bounding box (e.g., “circle, center(lonY,latX), radius:500m”) 
and everything within the bounding box matches the template. All tuples with a Where field 
within the circle will match this field of the template. Contextual places such as “within:300m” 
can be specified in the template and are translated into actual spatial regions – based on the 
current location from where the query is performed – before going through the pattern matching.    

- When. In this case, the template defines a time interval. Everything that happened within that 
interval matches the template. Concise time descriptions as well as contextual ones (e.g., “now” 
or “before”) are converted into actual time intervals before pattern matching.  

Two simple examples follow to illustrate the querying process.  
Let us assume Gabriella is walking in the campus and wants to know if some colleagues are near. She 

will ask (via a read operation): 
 



Who: user:* 
What: works:pervasive computing group 
Where: circle,center(lonY,latX),radius:500m 
When: now 

 
Then, she will get in return the tuples representing all the colleagues of her group currently around (at 
least, of all those colleagues having decided to expose themselves via a W4 tuple). 

Similarly, Gabriella can ask if some of her colleagues have gone to work in the morning: 
 

Who: user:* 
What: works:pervasive computing group 
Where: office 
When: 2006/07/19:09am- 2006/07/19:10am 

 
We emphasize that the returned answers have not to be “complete” W4 tuples. The pattern matching 
mechanism also allows for matches between incomplete information. Thus, unlike in traditional tuple 
space approaches, applications are based on components entering complete and incomplete context 
information and getting in response refined (but possibly still incomplete) information. 
 
4.3. Data Generation 
In the W4 model, we rely on the reasonable assumption that software drivers (or, more in general, 
software agents) are associated with data sources and are in charge of creating W4 tuples and inserting 
them in some sorts of shared data spaces. In the end, any data source must be somehow associated with 
some software agent/driver to gather and store data items, W4 agents have the additional goal of 
collecting all the necessary information to produce a W4 tuple which is as accurate and complete as 
possible. This occurs by sensing and inferring information from all the devices and sources available 
(e.g., RFID tags, GPS devices, Web services), and by combining them in a W4 tuple. Three simple 
examples may clarify this concept.  

Let us assume Gabriella is walking in the campus park. Agents running on her GPS-equipped 
PDA, can periodically create the following tuple: 
 

Who: user:Gabriella  
What: walk:4km/h 
Where: lonY, latX 
When: 2006/10/17:10.59am 

 
Where the Who is entered implicitly by the user at the login, What and Where can be derived by the GPS 
(e.g., the speed of Gabriella as measured by the GPS can be used to deduce that she is walking), When 
can be provided both by the PDA or by the GPS. Viewing this from a different, more fine-grained 
perspective, we can imagine that one agent controlling the user profile can create a raw W4 tuple in which 
only the who and where are specified; another agent controlling the GPS agent create a tuple in which 
only where and what (i.e., the speed) are specified. Accordingly, the merging of these two raw W4 atoms 
into the complete one represented below can be considered as an action of “knowledge networking” that 
produces a more complete and expressive information.  

Now, let us assume that Gabriella’s PDA is connected with a RFID tag reader. A specific RFID agent 
controls the reader and handles the event of “tag recognition” whenever a tag enters in the reading range. 
In this case, either the tag contains its own Who and What description in its limited memory, or the tag ID 
can be resolved in a database (mapping tag IDs into the associated Who-What descriptions) that the agent 
may access to fill in the W4 fields. Otherwise, the Who reduces to the tag ID (which enables to access to 



the database later) and the What is left empty. As in the previous example, the Where and When can be 
read from the GPS of the user. The resulting tuple is as follows: 
 

Who: tag:#456 
What: - 
Where: lonY, latX 
When:  2006/10/17:10.59am 

 
The agent running in the knowledge network can use both the data coming from the GPS and the tag 

to provide a better localization of Gabriella. For example a good policy is that the RFID based location 
may be more accurate than the GPS one. So the resulting tuple describing Gabriella is the result of the 
merging between the previous ones: 
 

Who: user:Gabriella  
What: walk:4km/h 
Where: tag#456 
When: 2006/10/17:10.59am 

 
This last example shows again a simple task of knowledge networking, in that it includes and action for 
relating individual atoms to increase their informative values.  
 
4.4. W4 Knowledge Networks 
Although pattern-matching techniques proved rather flexible to retrieve context information, our idea is to 
exploit the W4 structure to access the context repository in a semantically enriched fashion. More 
specifically, we are currently working towards integrating in our proposal general-purpose mechanisms 
and policies to link together knowledge atoms, and thus forms W4 knowledge networks in which it will 
be possible to navigate from a W4 tuple to the others. Our idea is that, by querying such a knowledge 
network instead of a flat W4 tuple space, one can obtain much higher knowledge, as resulting from the 
analysis, manipulation and inference upon the link structure of the knowledge network. In particular, new 
information could be produced by navigating the knowledge network and combining and aggregating 
existing information into new knowledge atoms (i.e., producing new W4 atoms in more elaborated 
fashion that the one exemplified in Subsection 4.3). Such new knowledge could also arise from the 
analysis of the historical context (e.g., the location where a person spends 8 hours every day could be his 
workplace) or from a wide analysis over the whole W4 repository (e.g., If nobody go to work on 
2007/12/25, it could be an holiday).  

The implementation of the general knowledge network concepts as described above is not complete so 
far, and in this section we will present our preliminary works on identifying and enforcing specific classes 
of relations. We will expose some exemplary ways to identify both strong and weak correlation between 
knowledge networks, and a simple yet effective process to create new W4 atoms on the basis of the 
established network. Later in Section 5 we point out the limitations of the presented approaches and the 
research directions that will lead to a complete and efficient realization of W4 knowledge networks.  

A relationship between knowledge atoms is caused by a relationship between the information 
contained in the atoms’ fields. As stated in Subsection 4.2 we use pattern-matching as the basis for the 
query engine. In particular, for the W4 model, we can identify two types of pattern-matching correlations 
between knowledge atoms: 
• Same value - same field. We can link all atoms belonging to the same user, about the same place, 

activity or time. Matching two or more “same value – same field” relationships, we can render 
complex concepts, e.g. “Everyone (every users) which is working (same activity) at the same lab 
(same location)”. 



• Same value – different fields. We can link atoms in which the same information compares in 
different fields. This kind of pattern matching can be used for augmenting the expressive level of the 
information contained in the W4 atoms. For example, a knowledge atom having “When: 25/12/2006” 
can be linked with another atom like “Who: Christmas Day, When: 25/12/*” to add semantic 
information to that date. 

 
Table 1 summarizes all possible relationships between knowledge atoms. On the principal diagonal, it is 
represented the “same value – same field” pattern matching. By reading the table by columns, it is 
possible to find all relationships between one particular atom with all other atoms in a knowledge 
network. For example, looking at the first column on the left, we are comparing all atoms with the same 
subject. The first cell is on the diagonal, so it is a “same value – same field” pattern matching. The 2nd 
row, 1st column cell identifies all atoms containing the different activities performed by the same subject. 
Then we have all atoms containing the different locations where the same subject has been, the last cell is 
a particular case: all atoms generated for the same user.  
 

 Who 
(subject) 

What 
(activity) 

Where 
(location) 

When 
(time) 

Who 
(subject) Same subject 

All subjects who 
performed a 

particular activity 

atom describing 
an indoor location 

(e.g. “mother’s 
house”) 

atom describing 
a logical time (e.g. 

“xmas day”) 

What 
(activity) 

Different activity 
performed by the 

same subject 
Same activity 

All activities 
performed in the 

same location 

All activities 
performed at the 

same time 

Where 
(location) 

All locations in 
which a subject has 

been 

All location in 
which an activity 

has been 
performed 

Same location 
All locations 

occupied at the 
same time 

When 
(time) 

Same subject- 
different times: a 

living diary  

All times in which 
an activity has 

been performed 
 
 

All times in which 
a location is 

occupied  
Same time 

Table 1. Relations between the fields of W4 knowledge atoms. 
 
This network of correlation between atoms may be used as the basis for more elaborated inference and 
reasoning upon knowledge network, i.e., for identifying and creating links between W4 atoms and for 
eventually creating new W4 knowledge atoms. To this end, we adopt an algorithmic approach which 
relies on a two-phase process. The first step is the identification of all possible correlations between 
knowledge atoms (according to Table 1), and the creation of link between W4 atoms. The second step is 
the generation of new knowledge atom, by analyzing which of the identified link can lead to a new W4 
atom as a process of merging related atoms. Since a lot of new knowledge should be produced, and not all 
of the concepts should be useful, this second step should be influenced by the actual services that are 
accessing the knowledge network. This approach is similar to the classical data mining process, in which 
in a first step is devoted to identify all data sets, and then patterns and rules are inferred from sets. The 
underlying idea is that when analyzing vast amount of data, really a lot of relations and patterns may be 
discovered, but only a few of them make sense. A two step approach is general enough to let the 
knowledge network perform first a preliminary organization and correlation of atoms useful for all 
possible services that could access it, and then carry out only the new knowledge that will be reasonably 
used by actual services. 



The following example illustrates the example of discovering new knowledge Fig. 3]. Let assume that 
Gabriella’s PDA, at a certain time, creates the following tuple: 

 
Who: user:Gabriella  
What: - 
Where: lonY, latX 
When: 2006/12/25:12:00am 

 
Algorithms in the knowledge network continuously analyses the network and find a lot of correlations, 
e.g. they find a correlation with an atom describing date */12/25, and an atom describing the spatial 
region in which (lonY, latX) is comprised. A new atom carrying higher-level logical information may be 
created, such atoms states that Gabriella was in her mother’s house at Christmas day.  

As another example (fully elaborated in [BicMZ07]) the sensors in an environment (as represented by 
proper W4 atoms) can be grouped together based on the patterns of sensing (which corresponds to 
relating W4 atoms together based on similarities of the What field). The assumption is that sensors that 
sense similar data will very likely belong to the same region of the environment (e.g., sensors in the same 
room of a building will sense similar light patterns over time). The creation of such links among W4 
sensor atoms represents the first step of the analysis process, and can abstract form any application need. 
Once such regions of W4 atoms are identified, new W4 data atoms can be produced representing 
aggregated data about each region, i.e., a single W4 tuple can be created for each region representing, in a 
compact way, aggregated sensorial data for that region. 

 
Figure 3: Creation of new atoms. 

 
5. Discussion and Future Work 
In this section, after having shortly presented the testbed prototype we have developed for putting the W4 
ideas at work, we summarizes what we consider the key advantages of the W4 approach, discuss its 
current limitations and problems, and consequently identify areas for future research. 
 
5.1. The W4 Testbed Prototype 
We have already implemented a preliminary testbed prototype of a pervasive computing system for 
putting the W4 idea at work, and have developed some simple autonomic pervasive services within 
[Cas07]. 



The testbed prototype we have implemented is structured as follows. Users are equipped with a 
portable computing device (i.e., a PDAs), a localization device (i.e., a GPS), and with devices attached to 
the PDA to acquire contextual information from the physical world (i.e., an RFID reader and a sensor 
network gateway). Of course, they are also given the possibility of connecting to the Internet via WiFi. 
Contextual information about the world, as gathered from RFID and sensors around, integrated with 
information coming from the GPS and possibly from the Web, is represented via of W4 tuples and stored 
by a local W4 tuple space hosted on the users’ PDA. An additional remote global W4 tuple space is 
assumed to exist, and locally stored W4 tuples are also sent for storing in such global W4 tuples space. In 
the prototype, services are realized by means of application agents (i.e., autonomous software 
components) running locally on the user PDA and accessing, via the W4 API, both the local and Web-
accessible tuple space, to retrieve the available contextual information [Fig. 4]. From the user interface 
viewpoint, services can interface with a local GUI client to turn W4 data into a user-centric perspective. 
The whole system has been realized using the Java language. The RFID reader and the sensors are 
accessed via JNI and sockets respectively. The Web accessible tuple space has been implemented through 
a Postgres database with spatial extensions, while the local tuple space is implemented by a Java Vector. 
User interface is provided by Google Earth for laptops and by Google Maps for PDAs. 

The applications we have developed above the prototype include a sort of living diary and an 
interactive people map [Fig. 5]. The living diary has the goal of providing users’ with real-time and 
historical information about their activities by (i) keeping track – via generation of proper W4 tuples – of 
all user movements and all the RFID tags and sensors it encountered around; (ii) enabling users to 
interactively query the local W4 space for historical information, and have the result visualized in the 
form of a tagged itinerary over GoogleMaps.  The people map application considers that users in a group 
can decide to share their location and activity with each other. This can occur via periodically generating 
W4 tuples including user information, and uploading them to the global W4 tuple space. Following, it is 
possible for users to query the global W4 space to obtain and visualize (i.e., in GoogleMaps) real-time 
information about other users, and possibly additional relevant information about other activities/events 
around (as they can be made available via proper W4 tuples). As simple as they can be, experience with 
these two applications has proved us that the W4 model can make the development of pervasive services 
very simple.  

 
Figure 4: User equipped with a PDA and pervasive devices can acquire contextual 
information from the physical world. Sensed data are integrated in W4 atoms with 
information coming from the Web, and stored both in local and global W4 tuple spaces.  



 

 
Figure 5: Map showing users real time location, and the query interface. 

 
5.2. Advantages of the W4 Approach 
The W4 approach suggests representing individual contextual data items in a four-field structure (i.e., a 
W4 knowledge atom) and consider the possibility of relating knowledge atoms with each other in sorts of 
“knowledge networks” called W4 knowledge atoms, for navigating such relations and generate new 
higher-level knowledge atoms.  

The proposed approach tackles all the challenges pinpointed in Subsection 2.2. The W4 data model is 
general enough to represent diverse facts about the world. Its simple four-fielded structure can uniformly 
represents data coming from diverse sources, and it can represent simple data atoms as well as aggregated 
atoms. The examples in Section 4 show the expressiveness of the data model in diverse situations. The 
developed API to access the knowledge network layer and to inject new data is simple yet flexible in that 
it is based upon the classical tuple spaces mechanism, the query interface is based on expressive pattern 
matching upon the four fields.  

Compared to earlier work in the field of Context-awareness such as [Sch99] and [DeyAS01], the W4 
Model can uniformly deal with multiple context information in a coherent way, without leading to a long 
list of all the characteristics of the context as [SchAW94] and [HenIR06]. Differently from the tuple 
based approaches [JulR06, Hon02], the W4 representation strongly structures the context representation, 
so that the context representation can be easily browsed. The W4 Model represents the context similarly 
to [Leh04], [XuC05] and [Bra06], but our approach is general purpose and able to represent a large 
number of context information. Without forgetting the lessons of past research work in the area of context 
modeling, the W4 approach also borrows idea from data mining (i.e., the possibility of mining contextual 
data item to identify relations and patterns) and form granular computing (i.e., the possibility of 
considering knowledgde atoms as information granules that can be combined to produce multi-level 
views of the context), to leverage a shift from “context-aware” services to “situation-aware” services, as it 
is needed in modern pervasive computing scenarios. 
 
5.3. Limitations of the W4 Approach and Future Work  
Despite the promising results achieved so far in the study of the W4 model and in its implementation, 
several research issues – which are to most extents general issues in context-aware and pervasive 
computing – still have to be faced to fully unfold its potentials and its applicability. 

We are aware that there are aspects that are not properly captured by the W4 model and that are 
instead, very important in general and in pervasive computing. For services (or for algorithms within the 
knowledge networks) to properly exploit contextual information, they may need to evaluate meta-
information such as the accuracy and the freshness of such information, as well as their reliability. This 
issue, which is recognized as generally relevant to pervasive computing [RouSP07] and which we plan to 
deeply investigate in the near future, may require integrating factual data atoms (i.e., in our case, as 



represented in the four “W”s) with additional meta-data and make available proper algorithms and tools to 
manage such meta-data.    

The issue of self-organized knowledge networking is still to be fully unfolded, from both the 
algorithmic and implementation viewpoints. From the algorithmic viewpoint (as outlined in Subsection 
4.4), we already have some feelings of what activities should reside in knowledge networks to enable 
autonomous aggregation and organization of data [BicMZ07]. However, we still have to identify a truly 
general-purpose algorithmic approach, suitable for a wide variety of application needs, an ambitious goal 
which also somewhat characterize the area of granular computing [Yao06].  

From the implementation viewpoint, the issue of how to deal with decentralized and distributed data 
and, in particular, with enforcing distributed data analysis and networking as well as transparent data 
access by service, is still to be faced. In particular, it will be very important to evaluate the approach in 
terms of performances. Indeed, in the presence of a highly distributed environment and a huge amount of 
W4 knowledge atoms, we will have to carefully whether it will be what will be the overhead of W4 
knowledge atom analysis and networking, and what will be the delay that services will consequently 
experience in accessing the knowledge network level. A strictly connected issue is that related to the 
collection and deletion of historical information (i.e., of old and unused knowledge atoms). The more 
knowledge atoms are stored, the more will be the overhead on the knowledge network level and the 
consequent delay experience by services. Still, we have no suitable “garbage collection” solutions to 
propose so far. 

Again related to implementation, we have to explore proper solutions for enabling services to 
dynamically inject new behaviors/algorithms within the knowledge networks. This requires identifying 
solutions for enabling services to specify new behavioral/algorithmic needs, and for dynamically 
modifying the activities inside a knowledge network without disturbing existing activities and without 
affecting other services. To some extents, this can be considered a specific instance of the more general 
issue of exploiting a shared pervasive infrastructure for serving a variety of different purposes, an issue 
which is assuming increasing importance in the pervasive computing and sensor networks research areas 
[Bau06, Ram06]. 

Finally, we are perfectly aware that, whenever contextual data is involved, peculiar security and 
privacy issues arise. On the one hand, for services to effectively perform their context-aware activities it 
is necessary that the contextual data they rely upon can be trusted, and that improper modifications of 
such data or of the algorithms that manage it within the knowledge networks should be avoided. On the 
other hand, it is necessary to properly control access to data to ensure that sensible and private data (e.g., 
user information and user activities) in the knowledge networks can be accessed and exploited only by 
authorized service. Although we do not have solutions at hand so far, we are confident that the large 
amount of research activity in security and privacy for pervasive computing [Dav03] will soon produce 
suitable solutions for integration in our W4 model.  

 
6. Conclusions 
The issue of proper organizing contextual data for their effective and meaningful exploitation by 
autonomic pervasive services is, and will increasingly become, a challenging one. As the technology for 
producing contextual information is becoming widespread, and as a variety of diverse pervasive services 
are continuously being proposed, there is need of proper solutions to represent data, pruning and 
organizing it into sorts of knowledge networks, making it easily available to services, possibly providing 
application-specific views on contextual knowledge. 

In this paper, after having deeply discussed the above issues, we have shown how researchers in 
various areas such as context-aware computing, data mining, and granular computing, are contributing 
interesting solutions that can be potentially useful to tackle them. The W4 model that we have developed, 
as presented in this paper and despite some current limitations, proposes itself as an effective synthesis of 



all such work, specifically conceived for the need of future autonomic pervasive services, and paving the 
way for a sound and practically usable implementation of the knowledge networks concept. 
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