
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Future Generation Computer Systems 26 (2010) 877–889

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Handling dynamics in diffusive aggregation schemes: An evaporative approach
Nicola Bicocchi ∗, Marco Mamei, Franco Zambonelli
Dipartimento di Scienze e Metodi dell’Ingegneria, Universita’ di Modena e Reggio Emilia, Italy

a r t i c l e i n f o

Article history:
Received 16 July 2009
Received in revised form
4 February 2010
Accepted 10 February 2010
Available online 17 February 2010

Keywords:
Large-size networks
Diffusive aggregation
Gossip-based communication
Sensor networks
Peer-to-peer networks

a b s t r a c t

Distributed computing in large-size dynamic networks often requires the availability at each and
every node of globally aggregated information about some overall properties of the network. In this
context, traditional broadcasting solutions become inadequate as the number of participating nodes
increases. Therefore, aggregation schemes inspired by the physical/biological phenomenon of diffusion
have been recently proposed as a simple yet effective alternative to solve the problem. However, diffusive
aggregation algorithms require solutions to cope with the dynamics of the network and/or of the values
being aggregated solutions, which are typically based on periodic restarts (epoch-based approaches). This
paper proposes an original and autonomic solution, relying on coupling diffusive aggregation schemes
with the ‘‘bio-inspired’’ mechanism of evaporation. While a gossip-based diffusive communication
scheme is used to aggregate values over a network, gradual evaporation of values can be exploited to
account for network and value dynamics without requiring periodic restarts. A comparative performance
evaluation shows that the evaporative approach is able to manage the dynamism of the values and of the
network structure in an effective way: in most situations it leads to more accurate aggregate estimations
than epoch-based techniques.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Controlling and orchestrating global distributed computations
in large-size dynamic networks, such as sensor networks [1], P2P
overlays [2–4] and grids [5], is particularly challenging. In fact, one
has to account for a large number of nodes dynamically joining and
leaving the network and changing their local states.
A recurrent distributed computing problem for these kinds

of networks is that of making available at each and every node
information about some global properties of the network itself
(e.g., the average load or the current number of nodes) or of the
environment in which the network is deployed (e.g. the average or
maximum temperature measured by a wireless sensor network).
Many techniques have been developed in the recent past to
produce such information (e.g., techniques based on flooding [6]
or on spanning trees [7]). However, these appear suitable only for
networks of limited size and dynamism. To deal with large-size
networks in dynamic scenarios, other directions have to be, and
have been, explored.
Protocols inspired by epidemic metaphors are very promising

in such a scenario (see [8] for an excellent introduction to the
area). In particular, schemes inspired by the physical/biological

∗ Corresponding author.
E-mail addresses: nicola.bicocchi@unimore.it (N. Bicocchi),

marco.mamei@unimore.it (M. Mamei), franco.zambonelli@unimore.it
(F. Zambonelli).

phenomenon of diffusion have been proposed as a simple yet ef-
fective solution to propagate local values over a large-size network
and to aggregate values over the whole network [9–11], or a por-
tion of it [12]. Several applications of diffusive-based aggregation
schemes (typically realized via gossip-based communication [9])
have been already reported in the literature [13,10,14–19].
In diffusive-based aggregation schemes, each node in a network

can locally obtain a global picture of some properties of the
network, and can exploit such knowledge to go beyond its local
viewpoint and adapt/control its activities in a more informed
way. However, in dynamic situations, the global representation
available at a node is at risk of ageing, and of no longer reflecting
the current global state of the network. Indeed, for aggregation
algorithms to be effective, they should be able tomanage situations
in which (i) the values that are being aggregated change over time
and (ii) nodes dynamically join and leave the network.
The most widely adopted technique to deal with dynamic sit-

uations is the so-called epoch-based approach, relying on periodic
restarting of the aggregation process [9]. Periodically, aggregated
values (which may no longer reflect the current situation) are in-
validated and substituted with those resulting by the execution of
a new aggregation process (i.e., of a new ‘‘epoch’’). Unfortunately,
as we will discuss in this paper, epoch-based approaches can in-
duce highly inaccurate and unreliable results in aggregation, other
than requiring a careful tuning of internal parameters.
The contribution of this paper is to propose an innovative

technique to handle dynamics in diffusive-based aggregation
protocol. The inspiration behind our idea is that of pheromone

0167-739X/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2010.02.008

Author's personal copy

878 N. Bicocchi et al. / Future Generation Computer Systems 26 (2010) 877–889

evaporation in ant foraging [20–22]. In ant foraging, the process of
collective building of food-nest pheromone trails by ant, is coupled
with a process of slowevaporation of pheromone trails. In thisway,
those trails that are no longer valid tend to disappear, while the
still valid ones are continuously re-enforced. This mechanism thus
plays a key role in making the overall ant foraging process capable
of adapting to dynamic environments. Analogously, our idea—
which totally avoids periodic restarts—is that ofmaking aggregated
values slowly evaporate. In this way, aged aggregated values that
do no longer reflect an up-to-date situation disappear, while those
that are still up-to-date will be re-enforced.
Experiments performed on a wide range of situations and sim-

ulated network scenarios, together with comparative evaluations
against two variants of the epoch-based technique, show that the
evaporative approach is able to handle the dynamism of the values
measured over the network in an effective way, and in the most of
the cases is more accurate than epoch-based techniques. In partic-
ular, the evaporative solution is to be preferred either in very large
networks or whenever periodic restarts are to be avoided.
The remainder of this paper is organized as follows. Section 2 in-

troduces diffusive aggregation protocols and the issues of handling
dynamic scenarios. Section 3 describes two variants of the epoch-
based technique based on periodic restarts, and outlines their lim-
itations. Section 4 introduces and details our original evaporative
approach. Section 5 describes the network setup used in our ex-
periments and evaluates, also in a comparative way, epoch-based
approaches and our evaporative approach. Section 6 presents re-
lated work in the area. Section 7 concludes and illustrates some
future work.

2. Diffusive aggregation

In this section, we introduce the gossip-based communication
scheme that is typically adopted in diffusive-based data aggrega-
tion, and then we discuss the typical problems arising in the pres-
ence of dynamic situations.

2.1. The basic algorithm

The three approaches we describe and compare in this paper
share the same diffusive aggregation algorithms and rely on the
same gossip-based communication (as from [9]). The protocol
abstracts from any specific network technologies and topologies
and is not affected by them.
Let us consider a generic network of n nodes in which each of

the nodes is connected with a small (�n) number of other nodes
(neighbors). The gossip-based communication protocol is based on
the ‘‘push–pull’’ scheme, as illustrated in Fig. 1. Time is considered
divided into slices of length t . Each node p executes two different
threads. At every slice, an active thread starts an information
exchange with a random subset of its neighbors q by sending them
a message containing the local state sp and waiting for a response
with the remote state sq. sp and sq are the aggregated values that
the algorithm is computing on the p and q nodes respectively. A
passive thread waits for messages sent by an initiator and replies
with the local state. The term push–pull refers to the fact that each
information exchange is performed in a symmetric manner: both
participants send and receive their states. This is a general scheme
and the local state sp could represent whatever property of the
node p or whatever value locally measured by it.
The method GETNEIGHBORS(ω) can be thought of as an

underlying service to the gossip-based protocol, which is normally
(but not necessarily) implemented by sampling a locally available
set of neighbors. We assume that GETNEIGHBORS(ω) returns a
uniform random sample over the entire set of neighbors. Moreover
the parameter ω can be used to specify how many neighbors have

Fig. 1. The basic gossip-based protocol for diffusive aggregation rely on a
‘‘push–pull’’ scheme. Time is considered divided into slices of length t . Each
node p executes two different threads. At every slice, the active thread starts an
information exchange with a random subset of its neighbors q by sending them a
message containing the local state sp and waiting for a response with the remote
state sq (such a state representing the value being aggregated). The passive thread
waits for messages sent by an initiator and replies with the local state.

to be returned. In particular, with ω = 1 it will return all the
available neighboring nodes, while with ω = 1/neighbors only
oneneighborwill be returned (as in [9]). It is convenient to describe
the GETNEIGHBORS(ω) method as a separate service in order to
hide the physical differences between networks. For example, over
an IP network, neighbors are those nodes connected to the same
collision domain. In awireless sensor network, neighbors are those
nodes with a relative physical distance lower than their wireless
radio range. In P2P networks, neighbors are those nodes connected
in the overlay network.
The method UPDATE computes a new local state based on

the current local state and on the remote state received during
the information exchange. It is within the UPDATE method, in
particular, that the diffusive aggregation process takes place. The
output of UPDATE and the semantics of the node state depend
on the specific aggregation function being implemented by the
protocol. Fig. 2 reports three exemplary instances of the UPDATE
method for the minimum, maximum, and average aggregation
functions.
This gossip-based communication scheme on which diffusive

aggregation relies acts as a sort of continuous background activity.
It tends to impose a predefined, tunable, and uniform load, to
the system. Each node executes the same amount of operations.
Shorter t or higher ω speed up the convergence of the algorithm
and increase the number of exchanged messages. Therefore, every
user can select the most suitable trade off between accuracy
and communication costs over time. Incidentally, on energy
constrained networks like sensor networks, communication costs
are highly relevant because they negatively affect the lifespan of
the system. Thus, tuning the communication costs is useful inmany
practical settings.

2.2. Handling dynamics

The generic protocol described so far is not adaptive: aggrega-
tion takes into account neither the dynamism of the network nor

Author's personal copy

N. Bicocchi et al. / Future Generation Computer Systems 26 (2010) 877–889 879

Fig. 2. The UPDATE method for three different aggregation functions (i.e. mini-
mum, maximum and average).

Fig. 3. The average error rate of a diffusive aggregation scheme without any
mechanism to handle environment dynamics.

the dynamic changes in the values being aggregated that can take
place while the aggregation process is ongoing.
To clarify, let us assume that each node in a network holds a

numeric value, which can characterize some aspects of the node
or its environment (for example, the load at the node, its storage
space, or the atmospheric pressure sensed by it). The goal of a
diffusive aggregation is to continuously provide the nodes with an
up-to-date estimate of an aggregate function, computed over the
values held by the set of network nodes. However, in a realistic
scenario, values measured by the nodes may change over time.
Moreover, nodes continuously join and leave the network. From
this point of view, changes of the values held by the nodes or
changes of the network itself (e.g. nodes leaving and joining)
could be considered the same. For example a node that suddenly
starts measuring a null value can be considered as a node that left
the network (this consideration is substantiated in the evaluation
section). Thus, let us sketch how such forms of dynamism can
affect the accuracy of the aggregation process in the absence of any
mechanisms to handle it.
In particular, let us qualitatively show what can be the typical

situation occurring during the execution of a diffusive aggregation
scheme devoted to aggregate the global average of a scalar value
sensed/measured at each node of the network. Let avgtp be the
average computed by node p at time t using the mechanisms
illustrated in Fig. 2, and let ravgt be the ground-truth average
value. We can define the average error of the aggregation as

Et = 1
n

∑n
p=0

max(avgtp)−ravg
t

ravgt , where n is the number of nodes in the
network.
Fig. 3 plots the typical behavior of such error over time, in the

presence of dynamism of the value being averaged.
Starting from an initial state in which the nodes do not yet

have any accurate estimation of the global value, the error quickly

decreases as the algorithm converges and the nodes acquire a
correct local estimation of the aggregated value. Nevertheless, after
some iterations and while the local situation at nodes changes
because of some dynamic phenomenon (e.g., the values at some
nodes diminish), the average error starts to increase. That is, the
aggregated value locally estimated by nodes does no longer reflect
reality and the error goes out of any control. This happens because
there is no mechanism to keep aggregated data updated.
It can be shown (and it is quite intuitive indeed, due to the

cumulative nature of aggregation) that aggregation algorithms
do not experience problems if executed on a fixed or growing
number of nodes measuring steady phenomena. Instead, both the
cases in which the network shrinks and in which the values to be
aggregated change are more complex to be managed. In fact, in
both these situations, the aggregated valuesmay no longer be valid
and the cumulative nature of aggregation does not enable them
to be properly updated. For example if a node holding a very high
value leaves the network, the aggregated values (e.g. maximum or
average) propagated to every nodewill continue accounting for the
existence of such a high value.
Considering that all natural and social processes involve

changes, and that most modern networks are of an inherent
dynamic nature, techniques are required to manage this recurrent
situation.

3. Epoch-based approach

To solve the problem and make aggregation schemes able to
handle dynamics, the simplest solution is to implement periodic
restarts of the scheme [9], i.e., to realize a so-called epoch-based
aggregation.

3.1. Basic algorithm

Starting from the algorithm proposed in Fig. 1, we present here
the simplest possible form of epoch-based diffusive aggregation, to
which we refer as GEA (Gossip-based Epoch Aggregator).
GEA is realized via a very simple mechanism: each node

executes the protocol for a predefined number of cycles, denoted
as γ , depending on the required accuracy of the output and on
the convergence time of the aggregation process. On this base, we
divide the protocol execution into consecutive epochs of length
δ = γ t (where t is the cycle length), and start a new instance
of the protocol at each epoch. That is, at the start of a new epoch,
aggregated values are reset to the local value of the node and start
being re-aggregated again.
The protocol requires messages to be tagged with an epoch

identifier to ensure synchronization. When a node receives
message with a new epoch identifier, it understands that a new
epoch has been initiated by other nodes in the network and
immediately joins the new epoch in its turn.
Fig. 5 shows the basic gossip-based communication scheme

presented in the previous section, yet modified with the introduc-
tion of the epochTime variable to divide the execution into different
time slices.
Fig. 4 (to be compared against 3 and referring to similar condi-

tions) shows the trend of the average error during the execution
of an epoch-based aggregation scheme. The picture compares also
GEA with other two algorithms (i.e., EVP and GEAopt) described
below. This highlights an important drawback of GEA, indepen-
dently of the chosen epochTime. Every time an epoch ends and a
new epoch starts, locally aggregated values are reset to the node’s
local value. As a consequence, the average error suddenly increases
up, and a portion of the next epoch is needed tomake the algorithm
converge again. It is clear that the low stability of the error rate is
not a desirable property and, under several circumstances, could
be unacceptable.

Author's personal copy

880 N. Bicocchi et al. / Future Generation Computer Systems 26 (2010) 877–889

Fig. 4. The average error rate of a diffusive aggregation scheme produced by our
original evaporation-based approach (EVP) and two epoch-based approaches (GEA,
GEAopt).

Fig. 5. The GEA algorithm main body.

3.2. Optimized algorithm

We have outlined the biggest drawback of GEA: every time an
epoch ends, locally aggregated values are reset to the nodes’ local
values, causing spikes in the estimated values that, of course, are
better to be avoided. For this reason, a modified (optimized) ver-
sion of GEA is usually adopted, we hereby refer to this as GEAopt.
In GEAopt, nodes participate to two epochs simultaneously,

and: (i) nodes consider as currently valid aggregated values those
related to an epoch that is assumed to already have properly con-
verged; (ii) at the same time, nodes start concurrently computing
new aggregated data over a new concurrently executing epoch.
Once the new epoch of aggregation is assumed to have in its turn
produced properly aggregated updated values, the data of the older
aggregation epoch can be dismissed, nodes can start answering
queries with the newly computed aggregated data. A further con-
current epoch can be launched to start computing the next-new
aggregated values, and so on. It isworth emphasizing that the com-
munication costs in GEAopt are not higher than in the basic GEA
approach, because different epochs are computed in parallel using
the same data exchanged in GEA.
This mechanism enforced in GEAopt can greatly reduce error

spikes and thus produces better performances than GEA. However,
as it can be seen from Fig. 4, the issue of having a great variability
in the average errors produced still exists. In fact, while the new
epoch is being aggregating new data, the old epoch reports on
aggregated data which, in the presence of dynamics, tends to be
increasingly inaccurate. Also, the GEAopt approach introduces the

issue of properly evaluating the time inwhich the old epoch should
be dismissed and the new one should step up. In our experiment,
we choose a static policy in which GEAopt replies with values
aggregated over the new epoch when it has accomplished more
than half of its length.

4. The evaporative approach

The two above proposed aggregation schemes share the need
of periodic restarts. This keeps them fairly simple and efficient.
However, in several circumstances, a continuous approach never
requiring to be restarted can be useful. For example, over very large
networks where the convergence time could be high, an approach
able to avoid periodic restarts and, thus, error spikes, could be
preferred.
Froma conceptual viewpoint,we can think at further improving

GEAopt with the existence of multiple concurrent epochs instead
of only two ones. In this way, at any given time, one can be sure
that an epoch exists whose values are close to convergence. Yet,
this leaves open the issue of deciding which—among the many
concurrent epochs—is the best one. We overcome this limitation
by proposing a bio-inspired mechanism able to mimic the results
that would be achievable with a very high, almost infinite, number
of parallel epochs, yet avoiding the need of selecting the best one
and, in the end, avoiding periodic restarts at all.
The basic principle behind our idea gets its inspiration from

one specific mechanism exploited in the phenomenon of ants’
foraging [20,22,23,21]. Ants are able to collectively find paths
to food by having ‘‘happy’’ ants that have found food spread
pheromone trails that lead to the food source. Until such paths are
valid (i.e., until they effectively lead to a non-empty food source),
paths are implicitly re-enforced by additional ‘‘happy’’ ants that
continue walking on it by spreading additional pheromones.
However, such a process would not be adaptive if pheromone
trails would endlessly cumulate: in the case the food finishes (or
in the case an obstacle makes the paths uneasy) the cumulated
pheromones on the trail would continue leading ants to no
longer useful places. To most extents, this is also what happens
in diffusive aggregation: values cumulated in the aggregation
continue affecting the aggregation results even when no longer
reflecting the actual values of nodes.
The mechanism that makes ant foraging adaptive is that of

pheromone evaporation: pheromones’ trails, unless properly re-
enforced, tend to slowly yet continuously evaporate, such that
bad trails eventually disappear. Accordingly, it is possible to think
at exploiting evaporation in diffusive aggregation by making the
values being aggregated ‘‘evaporate’’, thus letting the obsolete ones
disappear while continuing reinforcing the up-to-date ones.
In practice, in our approach, the aggregated values at a node

are slowly (compared to the convergence time of the aggregation
algorithms) moved towards the local values of the node. In this
way, the weight of those data cumulated by the aggregation
algorithm will gradually diminish, unless properly re-enforced.
The result (as fromFig. 4) is that the estimate error of an aggregated
value is much less variable, slightly oscillating around a small
error value, yet never exhibiting the spikes typical of epoch-based
approaches.
As an example, consider the case of a network aggregating

the maximum of a local property (illustrated in Fig. 6). Assume
that each node has already locally available its own maximum
estimator. Now, have each node slightly ‘‘evaporates’’ such a value
by making it diminish to approach the local value. If the node
holding the actual maximum does not change, a node will receive
again themaximumvalue undoing the evaporation effects. Instead,
if the valuemeasured by the nodeholding themaximumdecreases,
evaporation will stabilize the new maximum at each node, after

Author's personal copy

N. Bicocchi et al. / Future Generation Computer Systems 26 (2010) 877–889 881

MAX ESTIMATE = 100

MAX ESTIMATE = 99

MAX ESTIMATE = 98

MAX ESTIMATE = 97
MAX ESTIMATE = 95

MAX = 100 MAX = 100 MAX = 100

NEW MAX = 95

......

......

......

Fig. 6. The evaporative approach at work. (left) Diffusive aggregation has properly converged, and nodes correctly estimate that the global maximum is 100. (center) The
node containing the maximum is disconnected from the network. The estimated maximum at the other nodes slowly evaporates, thus reducing the estimate. (right) The
diffusive process eventually makes nodes acquire a correct estimate of the new maximum.

Fig. 7. The UPDATE* functions of the evaporative approach, as used to compute the
aggregated values ofminimum,maximum and average.

Fig. 8. The effects of the evaporative rate (∆) over the EVP approach. For each
possible value of t we run several simulations using different values of ∆ (n =
1000, ω = 1). It is clear from the graph that for every t exists an optimum value
of∆which produces the lowest error. Moreover, it is clear that to compensate low
sampling frequencies higher values of∆ are required.

proper evaporation. Similar considerations can be applied tomany
other aggregation functions (i.e., to the whole class of order and
duplicate insensitive aggregation functions [6]).
Another very relevant aggregation function, worth exempli-

fying, is the average. The algorithm we propose for calculating
the average in a fully decentralized way apparently only slightly

differs from that discussed in [9]. However, it has the advantage
of making it possible to tolerate the evaporative approach. The al-
gorithm works as follows: let p and q be two neighbor sensors
and sp(t) and sq(t) be the values sensed by them, respectively at
time t . Then define the average estimator avg as:

avgp = sp(t)+ wp(t); wp(0) = 0
avgq = sq(t)+ wq(t); wp(0) = 0.

In other words, the average estimator is the sum of the local
value measured by the node and a second value w which repre-
sents the difference between the local value and the estimated av-
erage. w is the term subject to evaporation. Decoupling w from s
allows the evaporation process: positive values of w has to be di-
minished, negative increased. At every iteration we aim to update
the value of w to let each node converge to the right value of avg .
In particular:

wp(t)+ wq(t) = wp(t + 1)+ wq(t + 1)
sp(t)+ wp(t + 1) = sq(t)+ wq(t + 1).

Resolving inwp(t + 1) andwq(t + 1) it leads to:

wp(t + 1) = (wp(t)+ wq(t)+ sq(t)− sp(t))/2
wq(t + 1) = (wp(t)+ wq(t)+ sp(t)− sq(t))/2.

It can be shown that by asynchronously applying the above cal-
culation for subsequent couples of nodes in the system, whatever
the order is, makes the average estimator avg at each node con-
verge toward the global average of the value s in the region. And
that the convergence is not undermined by dynamic changes in
the values s of the nodes of the network. Most importantly, this
new approach maintains the general diffusion scheme presented
in Fig. 1 but exploits a particular logic into the function UPDATE.
In Fig. 7, we reported three different UPDATE functions to

manage minimum, maximum and average estimation using our
evaporative technique (EVP, for short).
Clearly EVP performances are also influenced by the evapora-

tive rate ∆ (the only parameter of this approach). For each possi-
ble value of t we run several simulation using different values of
∆ to assess the effect of this parameter. Fig. 8 shows the relation
between the average error rate and∆.
The graph shows different curves for different sampling

frequencies. Given a phenomenon which would be properly mon-
itored with a known sampling period T , we conducted experi-
ments using: t = T/3 (fast sampling), t = T (medium sampling),
t = 2T (medium–slow sampling), t = 3T (slow sampling). From
the algorithm viewpoint, fast sampling implies the perception of a
slow phenomenon (intuitively because the algorithm is faster than

Author's personal copy

882 N. Bicocchi et al. / Future Generation Computer Systems 26 (2010) 877–889

the phenomenon being observed), slow sampling implies the per-
ception of a fast one (intuitively because the algorithm is slower
than the phenomenon being observed).
It is clear from the graph that, for every t , an optimum

value of ∆ which produces the lowest error exists. Moreover
it is clear that, to compensate low sampling frequencies higher
values of ∆ are required. This happens because a bigger time slot
between two consecutive samplings allows bigger changes into
the environment. The more the values’ fluctuations increase, the
more ∆ should be high to follow them. In particular this property
could be the starting point to apply the evaporative mechanism
to systems which have to deliver an autonomic behavior by
self-adapting ∆. However, it is also interesting to note that the
performances of EVP are not that greatly dependent over the value
of∆ chosen. In fact, even if EVP is not able to self-adapt the values
of∆, changes in its value do not produce much greater errors than
the optimal value.

5. Performance evaluation

5.1. Network and experiments setup

Diffusive aggregation mechanisms can be used in several dif-
ferent network scenarios, ranging from wireless sensor networks
to large-scale peer-to-peer systems. To analyze the behavior of the
proposed mechanism under different conditions, we modelled 2
exemplary network setups: (i) one in which nodes can be con-
nected only if they are in physical proximity (this resembles wire-
less sensor network scenarios), (ii) one in which long-range links
exist between nodes (resembling P2P networks).
To test the behavior of the system, in the context of large-

scale sensor network, we simulated amorphous spatial network
topologies in which nodes are connected on average with k
neighbor nodes. Nodes have been positioned in a given area and
connected to their k + N(0, σ 2) closest neighbors. N(0, σ 2) is a
0-mean Gaussian distribution with variance σ 2 = k. This kind of
network is a goodmatch for large-scale sensor network topologies
where links can be established only between neighbor nodes (see
Fig. 9-left).
In addition, we analyzed network changes departing from

amorphous topologies and introducing long-distance links in the
network. Once these links are introduced, the network model
deviates from prototypical wireless sensor networks. The obtained
networks are examples of the Watts–Strogatz model [24] and can
model (in a simplistic way) peer-to-peer systems, in which small-
world phenomena arise. More in detail, the Watts–Strogatz model
prescribes that each link of the network is randomly rewired with
probability α. Rewiring an edge at node p means removing that
edge and adding a new edge connecting p to another node picked
at random. When α = 0, the network remains unchanged, while
when α = 1, all edges are rewired, generating a random graph
(see Fig. 9-right). For intermediate values of α, the structure of
the graph lies between these two extreme cases: complete order
and complete disorder. Considering that with α > 0.04 the
network fundamental properties do not change significantly
(already exhibiting random network properties), we reported only
the results obtained with α < 0.04.
As already discussed in [9], the resulting topology can

effectivelymodel the properties of structured peer-to-peer overlay
networks (e.g., Chord [25]), and of unstructured peer-to-peer
networks (e.g., Gnutella [26]) with the limitation of presenting
small-world, but not scale-free properties [27].
More in detail, to measure the performances of the studied

approaches under different conditions, we performed several
experiments varying 5 main parameters: 3 related to the network
and 2 related to the algorithms itself. In particular we evaluated:

Fig. 9. Network models. (left) Spatial amorphous network modelling a sensor
network. (right) Amorphous network with long-range links modelling P2P
networks.

• Network-related parameters:
1. The average number of neighbors (k) of the network’s nodes.
We investigated networks with an average k between 2
and 16. This network parameter is also useful to analyze
the algorithm’s parameter (ω). ω represents the fraction of
the k-neighbors that is actually considered when gossiping
data (see GETNEIGHBORS function in Section 2.1). So,
ω = 1.0 means that each node exchanges data with all of
its k-neighbors. ω = 0.2 means that each node interacts
with only the 20% of its k-neighbors. It is clear that the effects
of changing ω can be analyzed and understood by changing
k. For example, the same overall results can be obtained by
setting ω = 1 and k = 4 or ω = 0.5 and k = 8.

2. The rewiring percent (α) measuring the presence of long-
range links and the emergence of randomnetwork’s features.
We investigated values between 0 and 0.04, to evaluate how
the behavior of the algorithm changes while moving from
spatial networks to P2P networks.

3. The number of nodes (n), ranging from10 up to 10000 nodes
to evaluate the scalability.

• Algorithm-related parameters:
1. The algorithm’s sampling period (t). We were interested
in the effects of the speed of the observed phenomenon
over the aggregation performances. In particular, given a
phenomenon which needs a known sampling period T to
be properly monitored, we conducted experiments using:
t = T/3 (fast sampling), t = T (medium sampling), t = 2T
(medium–slow sampling), t = 3T (slow sampling). From the
algorithm viewpoint, fast sampling implies the perception of
a slowphenomenon, slow sampling implies the perception of
a fast one and so on.

2. The algorithm’s neighborhood density (ω) ranging between
0.2 and 1.0. Given our experiments’ setup, this range is
enough to understand the general effects of this parameter.
As discussed above, we do not show any explicit graph about
this parameter because of the effects of changing ω can be
analyzed and understood by changing k.

For the sake of clarity, in all the experiments with epoch-based
approaches we used γ = 50, which is a proper value for the pro-
posed experiments.
While our experiments mostly deal with dynamism at the

level of the values being aggregated, in this paper, we mainly
focus on static network topologies (neighbors do not change over
time). However, as already anticipated in Section 2.2, the effects
of network dynamics on the described algorithms can be easily
simulated. In the context of this work, changes of the values
held by the nodes or changes of the network itself (e.g., nodes
leaving and joining) could be assimilated: a node that suddenly
starts measuring a null value and that no longer participate in the
gossip scheme can be considered as a node that left the network.
Accordingly, we developed some experiments in which nodes

Author's personal copy

N. Bicocchi et al. / Future Generation Computer Systems 26 (2010) 877–889 883

a b

c

Fig. 10. GEA performances varying network (a) k degree, (b) rewiring factor and (c) size.

provide null values with a certain periodicity so as to test the
behavior of our algorithms in the presence of network churn (see
Fig. 14).
In all the experiments being performed, the local property

observed at every node changes over time following a periodic
pattern: that is, the behavior of the algorithm in computing global
aggregate properties has been evaluated while the values were
dynamically changing.
More in detail, we divided the nodes in the network in two

groups. Nodes in the first group sense a local property ranging from
a value of 0 to 255. Each node starts from a random value in the
interval. The value increases by 1 every T simulation cycles until
reaching 255. Then it decreases by 1 until reaching 0, and so on.
Accordingly nodes sense an oscillating local property. Nodes in the
second group senses a similar oscillating property ranging from
−255 to 0.
Every experiment has been conducted over a simulation of 250

iterations. Every point in Figs. 10–12 represents results averaged
over 25 simulation runs. In all the experiments we fixed all the
parameters except the one under investigation.
To measure the effectiveness of the approaches, we decided to

use the already introduced average estimator. Since the goal of
aggregation is to compute at each node an accurate estimate of
a global property, for each experiment, we averaged over all the
iterations the distance between the highest estimated average by
all the nodes and the actual average (i.e. the worst case). Defined
the average estimated by the node p at the iteration i as avgip, and

the actual average as ravgi, we compute the error as:

E =
1
I

I∑
i=0

max(avgi)− ravgi

ravgi

where I is the total number of iterations.
We emphasize that we also evaluated the effects of choosing a

different error estimator (i.e. the average case). Experimental data
suggested that the qualitative trends do not change. Because of
this, all the results presented in the following have been obtained
using only E.

5.2. Experimental results

Figs. 10–12 summarize GEA, GEAopt and EVP performances
respectively. The left vertical axis represents the average error,
while the right vertical axis represents the number of messages
being exchanged.
The three (a) graphs (n = 1000, α = 0, C = 0) show that,

for all the three approaches and regardless t , the average error
tends to decrease increasing k because of the number of diffusion
interactions increases aswell. More interactions produce an higher
convergence speed. Obviously, also the number of messages being
exchanged, and than the communication costs, increases with k.
It is againworth emphasizing that this graph can be interpreted

as a graph measuring the effect of the algorithmic parameter ω.
The same overall results can be obtained by setting ω = 1 and
k = 4 or ω = 0.5 and k = 8. That is, the effect of doubling

Author's personal copy

884 N. Bicocchi et al. / Future Generation Computer Systems 26 (2010) 877–889

a b

c

Fig. 11. GEAopt performances varying network (a) k degree, (b) rewiring factor and (c) size.

the network density is the same of doubling ω (fraction of nodes
actually involved in the gossiping).
The three (b) graphs (k = 4, n = 1000, C = 0) show that—for

all the three approaches—the average error decreases quickly by
increasing the percent of random links. This outlines the relevance
of the network topology in this kind of diffusion schemes. Themore
the network is random, the more the network diameter decreases,
the lower the average errors. That is, although the 3 approaches
work both for wireless sensor network and for P2P networks, they
are more effective in networks with a low diameter.
The three (c) graphs (k = 4, α = 0, C = 0) show the scal-

ability of the algorithms varying the network size from 10 to
10000nodes. As expected, for all the three approaches, the average
error increases with the number of participating nodes. This
happens because the number of iterations needed by the schemes
to converge increases with the number of nodes. However, a
sublinear trend guarantees good scalability.
Overall, these graphs show that the three approaches exhibit

very similar behavior while changing their common operational
parameters, when executing on different network structures, and
under different dynamics. The analysis becomes interesting when
comparing the relative performances of the three approaches.
To compare the data reported in the previous graphs, in Fig. 13

we reported them in a different view. In particular we reported the
average error rate of each of the three approaches (GEA, GEAopt,
EVP) varying the k, the number of nodes (n), the rewiring percent
(α) and the clustering factor (C). For the sake of clarity we decided
to report only the data referring to t = T (medium). Also in this
graph, the left vertical axis represents the average error, while

the right vertical axis represents the number of messages being
exchanged.
It is clear from the graphs that GEA is the worst out of the

three. Using the same number ofmessages it produces and average
error consistently higher than the other two. EVP is also slightly
better that GEAopt. In fact, it produces on average an error 5%
lower than GEAopt at no additional communication costs. It is also
worth mentioning the effect of the size of the network. With small
networks, which have low convergence time, GEAopt outperforms
EVP. By increasing the size the network the result changes, and EVP
is able to achieve an error consistently lower. In other words, it
appears that EVP is more scalable the GEA and GEAopt.
To further test the behavior of the system and to verify that the

algorithms exhibited the same overall behavior in the presence of
network dynamics, we conducted some experiments comparing
the behavior of the 3 approaches upon dynamic changes in the
network topology.
Wedeveloped experiments inwhich nodes connect and discon-

nect from the network (i.e., read null and do no longer participate
in the gossip when detaching from the network, and gossip again
when reconnecting). We simulated that in every experiment—250
iterations long—the 25% of the nodes are churning every epoch. In
particular, for every iteration, we randomly connect or disconnect
some nodes until the desired percentage has been reached. In or-
der to simulate a realistic network fault, disconnected nodes stop
sensing the environment and updating their aggregated estimates
until they are connected to the network again.
Fig. 14 illustrates the behavior of the different algorithms un-

der these assumptions. It is possible to see that the impact of the

Author's personal copy

N. Bicocchi et al. / Future Generation Computer Systems 26 (2010) 877–889 885

a b

c

Fig. 12. EVP performances varying network (a) k degree, (b) rewiring factor and (c) size.

examined network and algorithmic parameters remain the same
even in presence of network dynamism. Moreover, we experi-
mentally verified that two different forms of dynamisms (i.e., net-
work’s and environment’s dynamism) have similar impacts on the
system.
Our proposal is able to manage the dynamism of the values

measured over the network and, in the most of the cases, is
more accurate that the other two. In our opinion, it has three key
advantages: (i) it has no need of periodic restarts and could be
taken into account whenever very large networks are involved;
(ii) it can produce average errors slightly lower that epoch-based
solutions which are, moreover, less predictable and inevitably
characterized by periodic error spikes as shown in Fig. 4; (iii) it has
interesting autonomic properties, since it does not require a fine-
tuning of its parameters, as depicted in Fig. 8.

6. Related work

Given the size and the dynamism of modern distributed and
pervasive computing scenarios (like P2P and wireless sensor
networks), several innovative approaches to collect properties
about the global state of such systems have been proposed
by the research community. In this section, we first overview
mechanisms and algorithms to collect data from a distributed
system, and emphasize how these approaches deal with the
dynamism of the environment and of the underlying network.
Then, we discuss more specifically those approaches applying the
bio-inspired approach of ‘‘evaporation’’ to distributed systems.

6.1. Data gathering in distributed systems

Most of the works on data gathering and aggregation in
distributed systems assume the presence of a fixed number of
sinks (i.e., base stations or data centers) to which gathered data
should flow. In wireless sensor networks, this typically consists
in collecting all the sensed data into a base station for further
analysis. In large-scale distributed computing, this translates in
the need to collect logs and data reports into a limited set of
control centers. This is the case, for example, of network intrusion
detection systems (NIDSs) and of those services monitoring the
performance of the network. In such situations, the most general
and basic approach is that of having the nodes of the network build
a spanning-tree rooted at the sink and supporting the routing of
data towards it [28]. To deal with the transfer of possibly large
amounts of data, several forms of in-network data aggregation
(e.g., averaging or max/min determination) can be performed as
data climb the tree, with the goal of reducing communications
between nodes [29–31].
In some recent scenarios [32,33], wireless sensor networks

have moved from being closed special-purpose systems devoted
to monitor specific phenomena [33–35] to act as the basis of
a truly pervasive and dense shared infrastructure, available for
general-purpose usage by a variety of users. Just to make some
examples: cars in a city can access sensors around to obtain on-the-
fly updated traffic information; tourists can exploit sensors around
to discover urban information and activities; software services can
exploit the information obtained by local nodes to contextualize

Author's personal copy

886 N. Bicocchi et al. / Future Generation Computer Systems 26 (2010) 877–889

a b

c

Fig. 13. The average error rate of the three approaches (GEA, GEAopt, EVP) in presence of environmental dynamism. For the sake of uniformitywith the previous experiments
we investigated: (a) the k-degree (n = 1000, α = 0, C = 0), (b) the rewiring percent of the network α (k = 4, n = 1000, C = 0), (c) the number of nodes of the network n
(k = 4, α = 0, C = 0). In these experiments we used a sampling period t = medium.

their behavior and improve users’ satisfaction. Similarly, in the
area of advanced distributed computing and networking, [36], an
increasing number of problems requires distributed components
(other than centralized services) to have access to data from
multiple nodes in order to tune and self-configure themselves.
Clearly, in all the above scenarios, it becomes fundamental

to have global information about the status of the network be
distributed and made available at the level of individual nodes.
However, tree-based approaches can hardly apply as a general
solution. In fact, the costs of building a tree on demand for many
possible users and components at different and varying locations
would be unbearable, both in terms of resource consumption
and response times. Some algorithmic optimizations for tree-
based approaches specifically conceived for access by mobile
users and distributed sinks have been proposed [37,7,38,39]. For
instance, [39] proposes exploiting swarm intelligence techniques
to dynamically adapt routing trees based on current availability of
resources of nodes, thus making it possible to exploit at the best
and in a more balanced way the load on the nodes. In any case,
neither this one nor other proposed optimizations fully eradicate—
but only smooth—the identified flaws of tree-based approaches.
A totally different approach that has been recently proposed,

and that shares the key objective of our proposal, relies on pre-
aggregating data in the network from within the various nodes
of the network itself. Thus, queries by multiple users and services
can be answered immediately without the additional burden re-

lated to the on-demand building of routing trees. In [40], a cluster-
based data collection scheme is proposed in which the network
partitions into a set of clusters where all the nodes are at a 1-hop
distance from a dynamically elected cluster head. Then, each clus-
ter head can easily pre-acquire a global view of the sensorial sit-
uations in its cluster and, if queried, it can provide with a quick
aggregated sketch of the situation around it. In [41], a more elab-
orated approach is proposed in which each node in the network
can compute, at predefined communication/resource consumption
costs, aggregated information about information in its neighbor-
hood, alsomaking it possible to concurrently compute aggregation
functions for neighborhoods of different (exponentially enlarging
in terms of network hops) sizes. However, this proposals are con-
ceived for very specific scenarios, while our proposal aims at being
a general-purpose on.
As a final note, several research works in the area of middle-

ware and programming languages for distributed systems start
recognizing the need to support direct access to sensor data by
multiple users and services. These works mostly focus on defin-
ing suitable general-purpose primitives and language constructs
(together with the supporting middleware infrastructures) to
enable users and services to flexibly query the network and
obtain information about individual data and aggregated data
related to specific network sub-graphs. Examples of these ap-
proaches include Region Streams [42], Logical Neighborhood [43],
or TeenyLIME [44]. These kinds of research are somewhat comple-
mentary to our proposal. The algorithm we propose could in fact

Author's personal copy

N. Bicocchi et al. / Future Generation Computer Systems 26 (2010) 877–889 887

a b

c

Fig. 14. The average error rate of the three approaches (GEA, GEAopt, EVP) in presence of network churn. For the sake of uniformity with the previous experiments we
investigated: (a) the k-degree (n = 1000, α = 0, C = 0), (b) the rewiring percent of the network α (k = 4, n = 1000, C = 0), (c) the number of nodes of the network n
(k = 4, α = 0, C = 0). In these experiments we used a sampling period t = medium.

serve as the basis for further enriching the expressiveness and the
power of such approaches.

6.2. Evaporation-based approaches

Inspired by early seminal works on ant-based routing [23],
having shown that evaporation of pheromone trails (i.e., of routing
paths) is an essential ingredient to keep pheromone-based routing
tables updated despite network dynamism and traffic conditions,
other works have adopted the idea of evaporation in distributed
systems.
Some recent works exploit the bio-inspired idea of evaporation

to effectively deal with the problems of network and information
dynamism. Swarm Linda [45] is one of the first examples of
middleware adopting this concept. Swarm Linda consists of a
distributed tuple space adopting bio-inspired mechanisms to deal
with system-level issues. In particular, one thorny problemof tuple
spaces regards garbage-collecting tuples once they are not useful
any more. Swarm Linda deals with this problem with the idea of
tuple fading (i.e., evaporation). Tuples contain a numeric value that
is slowly reduced by the system, and it is restored to its original
value once the tuple is accessed. Once the value reaches zero (since
the tuple has not been accessed for long time), the tuple is deleted
from the system.
In [46], evaporation is used to deal with information ageing in

knowledge networks (i.e., distributed information system). This

work presents a framework to organize and structure context
information to be used in pervasive computing scenarios. Different
pieces of information (called knowledge atoms) are combined
together to infer novel data that is reified by means of novel
(dynamically generated) atoms. The number of new information
that can be derived from an existing knowledge base is huge and
requires some mechanisms to be contained. A sort of evaporation-
based mechanisms has been enforced to contain the proliferation
of information. Information are aged and then deleted by gradually
decreasing a counter value indicating when it was last accessed.
Chemical TuCSoN [47] is a middleware supporting the develop-

ing of self-organizing applications. The middleware is built around
the idea of tuple spaces that are programmable in that they allow to
install rules automatically triggered by the insertions and removals
of tuples. The idea of chemical TuCSoN is to have chemical laws en-
coded by means of the tuple space’s rules and use the tuples like
chemical elements. This kind ofmiddleware support different kind
of self-organization patterns useful for many applications. In par-
ticular the Decay primitive used in this system realizes the evapo-
ration of tuples from the space.
Similarly, TOTA [48] is amiddleware supporting self-organizing

applications by means of field-based data structures (i.e., gradi-
ents) spread across the network. TOTA supports different kind
of such field-based data structures and in particular it supports
time-dependent data structures that change their value over time.
In many applications these time-dependent structures enforce an

Author's personal copy

888 N. Bicocchi et al. / Future Generation Computer Systems 26 (2010) 877–889

evaporation kind of mechanisms to slowly delete the data if not
constantly reinforced.
Despite the existence of the above possible exploitation of

evaporation, our specific proposal for applying evaporation in
diffusive aggregation is, to the best of our knowledge, new.

7. Conclusions and future works

In this paper, we have presented an innovative bio-inspired
approach to handle dynamics in diffusive aggregation schemes,
relying on the evaporation of aggregated values, and have
compared it with more traditional epoch-based approaches based
on periodic restarts. Our proposal is able to effectively manage
dynamics of the values measured over the network, can apply
to both wireless sensor networks and P2P networks and, in the
most of the cases, is more accurate that epoch-based approaches.
In particular, experimental results show that the proposed
evaporative solution is to be preferred in very large networks,
in networks with high sampling rates, and in those particular
setups where periodic restarts should be avoided. Yet, for small-
size networks, epoch-based solutions work pretty well too.
There are a number of open issues and future research that

could further improve our work:

• It would be interesting to realize mechanisms to automatically
tune the evaporation rate to the specific environmental condi-
tions. This process requires sensors tomonitor the environment
dynamics and to set the evaporation rate autonomously in order
to optimize the graph in Fig. 8. This could lead different evapo-
ration rates being set in different parts of the network.
• It would be also necessary to investigate how the evaporation
mechanism can behave in the presence of different network
topologies and larger networks than we have tested so far.
Accordingly, we will try to develop larger-scale and more
realistic simulations of the distributed systems setting.
• It would also be interesting to evaluate if it could be valuable
to combine different mechanisms together (e.g., epoch-based
approaches together with evaporation) and being able to
autonomously switch between them to globally optimize the
behavior of the system.
• Also with regard to the gossiping itself, it would be interesting
to create a system combining gossiping and routing trees and
to switch between them dynamically on the basis of the current
network conditions.

In conclusion, and despite the good results achieved so far,
several open research directions can be taken to further improve
and assess it.

References

[1] D. Estrin, D. Culler, K. Pister, G. Sukjatme, Connecting the physical world with
pervasive networks, IEEE Pervasive Computing 1 (1) (2002) 59–69.

[2] J. Crowcroft, Toward a network architecture that does everything, Communi-
cation of the ACM 51 (1) (2008) 74–77.

[3] B. Hayes, Cloud computing, Communication of the ACM 51 (7) (2008) 9–11.
[4] S. Androutsellis-Theotokis, D. Spinellis, A survey of peer-to-peer content
distribution technologies, ACM Computing Surveys 36 (4) (2004) 335–371.

[5] I. Rodero, F. Guim, J. Corbalan, L. Fong, M. Sadjadi, Grid broker selection strate-
gies using aggregated resource information, Future Generation Computer Sys-
tems 26 (1) (2010) 72–86.

[6] S. Nath, P. Gibbons, Synopsis diffusion for robust aggregation in sensor
networks. Technical report, Intel Research, 2003.

[7] T. Schoellhammer, B. Greenstein, D. Estrin, Hyper: A routing protocol to
support mobile users of sensor networks. Technical report, Center for
Embedded Network Sensing, 2006.

[8] P. Eugster, R. Guerraoui, A.M. Kermarrec, L. Massoulieacute, Epidemic
information dissemination in distributed systems, Computer 37 (5) (2004)
60–67.

[9] M. Jelasity, A. Montresor, O. Babaoglu, Gossip-based aggregation in large
dynamic networks, ACM Transactions on Computer Systems 23 (3) (2005)
219–252.

[10] O. Babaoglu, G. Canright, A. Deutsch, G.D. Caro, F. Ducatelle, L. Gambardella,
N. Ganguly,M. Jelasity, R.Montemanni, A.Montresor, T. Urnes, Design patterns
from biology for distributed computing, ACM Transactions on Autonomous
and Adaptive Systems 1 (1) (2006) 26–66.

[11] M. Jelasity, A.M. Kermarrec, Ordered slicing of very large-scale overlay
networks, in: IEEE International Conference on Peer-to-Peer Computing,
Cambridge, UK, 2006, pp. 117–124.

[12] N. Bicocchi, M. Mamei, F. Zambonelli, Self-organizing spatial regions for
sensor network infrastructures, in: IEEE International Conference onAdvanced
Information Networking and Applications, vol. 2, IEEE Computer Society, Los
Alamitos, CA, USA, 2007, pp. 66–71.

[13] A. Corradi, L. Leonardi, F. Zambonelli, On the effectiveness of different diffusive
load balancing policies in dynamic applications, in: International Conference
and Exhibition, HPCN Europe, Amsterdam, NL, 1998, pp. 274–283.

[14] M. Brunato, R. Battiti, A. Montresor, Gosh! gossiping optimization search
heuristics, in: International Conference on Learning and Intelligent Optimiza-
tion, 2007.

[15] A. Dimakis, A. Sarwate, M. Wainwright, Geographic gossip: Efficient aggrega-
tion for sensor networks, in: International Conference on Information Process-
ing in Sensor Networks, Nashville, TN, USA, 2006.

[16] S. Voulgaris, M. van Steen, K. Iwanicki, Proactive gossip-based management
of semantic overlay networks, Concurrency and Computation: Practice and
Experience 19 (17) (2007) 2299–2311.

[17] P. Costa, V. Gramoli, M. Jelasity, G.P. Jesi, E.L. Merrer, A. Montresor,
L. Querzoni, Exploring the interdisciplinary connections of gossip-based
systems, Operating Systems Review—Special Topic: Gossip-Based Networking
41 (4) (2007) 51–60.

[18] A. Montresor, Intelligent gossip, in: International Symposium on Intelligent
Distributed Computing, Catania, IT, Invited paper, 2008.

[19] P. Skraba, Q. Fang, A.T. Nguyen, L.J. Guibas, Sweeps over wireless sensor
networks, in: International Conference on Information Processing in Sensor
Networks, Nashville, TN, USA, 2006, pp. 143–151.

[20] A. Forestiero, C.Mastroianni, G. Spezzano, Reorganization anddiscovery of grid
information with epidemic tuning, Future Generation Computer Systems 24
(8) (2008) 788–797.

[21] M. Mamei, R. Menezes, R. Tolksdorf, F. Zambonelli, Case studies for self-
organization in computer science, Journal of Systems Architecture 52 (8–9)
(2006) 443–460.

[22] J. Hong, S. Lu, D. Chen, J. Cao, Towards Bio-Inspired Self-Organization in
Sensor Networks: Applying the Ant Colony Algorithm, IEEE Computer Society,
Washington, DC, USA, 2008, pp. 1054–1061.

[23] E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence. From Natural to
Artificial Systems, Oxford University Press, Oxford, UK, 1999.

[24] D.Watts, S. Strogatz, Collective dynamics of small-world networks, Nature 393
(1998) 440–442.

[25] I. Stoica, R. Morris, D. Karger, M. Kaashoek, H. Balakrishnan, Chord: A
scalable peer-to-peer lookup service for internet applications, in: SIGCOMM
Conference, ACM Press, San Deigo, CA, USA, 2001.

[26] M. Ripeani, A. Iamnitchi, I. Foster, Mapping the gnutella network, IEEE Internet
Computing 6 (1) (2002) 50–57.

[27] A. Barabasi, E. Bonabeau, Scale-free networks, Scientific American 288 (2003)
60–69.

[28] J. Polastre, R. Szewcyk, A. Mainwaring, D. Culler, J. Anderson, Analysis of
wireless sensor networks for habitat monitoring, Wireless Sensor Networks
(2004) 399–423.

[29] S. Madden, J. Hellerstein, Distributing queries over low-power wireless sensor
networks, in: ACM International Conference onManagement ofData,Madison,
WI, USA, 2002.

[30] J. Gehrke, S. Madden, Query processing in sensor networks, IEEE Pervasive
Computing 3 (1) (2004) 46–65.

[31] A. Boulis, S. Ganerival, M. Srivastava, Aggregation in sensor network: An
energy-accuracy trade-off, in: InternationalWorkshop on Sensor and Actuator
Network Protocols and Applications, Anchorage, AK, USA, 2003.

[32] T. Abdelzaher, Y. Anokwa, P. Boda, J. Burke, D. Estrin, L. Guibas, A. Kansal,
S. Madden, J. Reich, Mobiscopes for human spaces, IEEE Pervasive Computing
6 (2) (2007) 20–29.

[33] O. Riva, C. Borcea, The urbanet revolution: Sensor power to the people!, IEEE
Pervasive Computing 6 (2) (2007) 41–49.

[34] N. Ramanathan, L. Balzano, D. Estrin, M. Hansen, T. Harmon, J. Jay, W. Kaiser,
G. Sukhatme, Designing wireless sensor networks as a shared resource for
sustainable development, in: International Conference on Information and
Communication Technologies and Development, Berkeley, CA, USA, 2006.

[35] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, R. Nagpal, Firefly-inspired sen-
sor network synchronicity with realistic radio effects, in: ACM International
Conference on Embedded Networked Sensor Systems, San Diego, CA, USA,
2005.

[36] S. Dobson, S. Denazis, A. Fernández, D. Gaiti, E. Gelenbe, F. Massacci, P. Nixon,
F. Saffre, N. Schmidt, F. Zambonelli, A survey of autonomic communications,
ACM Transactions on Autonomous and Adaptive Systems 1 (2) (2006)
223–259.

[37] G. Cormode, M. Garofalakis, S. Muthukrishnan, R. Rastogi, Holistic aggregates
in a networked world: Distributed tracking of approximate quantiles, in: ACM
International Conference on Management of Data, Baltimore, MD, USA, 2005.

[38] S. Kabaday, C. Julien, Scenes: Abstracting interaction in immersive sensor
networks, Journal on Pervasive and Mobile Computing 3 (6) (2007) 635–658.

[39] H. Yang, F. Ye, B. Sikdar, A swarm intelligence based protocol for data
acquisition in networks with mobile sinks, IEEE Transactions on Mobile
Computing 7 (8) (2008) 931–945.

Author's personal copy

N. Bicocchi et al. / Future Generation Computer Systems 26 (2010) 877–889 889

[40] M. Lotfinezhad, B. Liang, E. Sousa, Adaptive cluster-based data collection
in sensor networks with direct sink access, IEEE Transactions on Mobile
Computing 7 (7) (2008) 884–897.

[41] R. Sakar, X. Zhu, J. Gao, Hierarchical spatial gossip for multi-resolution rep-
resentations in sensor networks, in: International Conference on Information
Processing in Sensor Networks, Cambridge, MA, USA, 2007.

[42] R. Newton, M. Welsh, Region streams: Functional macroprogramming for
sensor networks, in: International Workshop on Data Management for Sensor
Networks, Toronto, Canada, 2004.

[43] G. Mottola, G.P. Picco, Logical neighborhoods: A programming abstraction for
wireless sensor networks, in: IEEE International Conference on Distributed
Computing in Sensor Systems, San Francisco, CA, USA, 2006.

[44] P. Costa, L. Mottola, A. Murphy, P. Picco, Programming wireless sensor
networks with the teenylime middleware, in: ACM Middleware Conference,
Newport Beach, CA, USA, 2007.

[45] R. Tolksdorf, R. Menezes, Using swarm intelligence in linda systems,
in: Engineering Societies in the Agents World, Springer Verlag, 2004.

[46] M. Casadei, S. Montagna, M. Viroli, F. Zambonelli, A biochemical metaphor
for developing eternally adaptive service ecosystems, in: ACM Symposium on
Applied Computing, Hawaii, HI, USA, 2009.

[47] M. Viroli, M. Casadei, Biochemical tuple spaces for self-organising coordina-
tion, in: COORDINATION’09: Proceedings of the 11th International Conference
on Coordination Models and Languages, Springer-Verlag, Berlin, Heidelberg,
2009, pp. 143–162.

[48] M. Mamei, F. Zambonelli, Programming pervasive and mobile computing
applications: The total approach, ACM Transaction on Software Engineering
and Methodology 19 (4) (2009).

Nicola Bicocchi is a postdoctoral fellow in Computer Sci-
ence at the University of Modena and Reggio Emilia. He
received the Laurea degree in Computer Engineering from
the University of Modena and Reggio Emilia in 2004, dis-
cussing a thesis on ‘‘Techniques for Content-based video
adaptation’’. He received the Ph.D. in Computer Science
from the same University in 2009, with a thesis on ‘‘Self-
Organizing Data Ecologies for Pervasive Computing Sce-
narios’’. He has been visiting researcher at University of
Ulster and University of New Brunswick (Canada).
His current research interests include pervasive com-

puting, affective computing, data mining and analysis for behavioural prediction
and network security. In these areas, he has published about 20 papers in interna-
tional journals and conferences. He participated, during his Ph.D. in the European
Integrated Project ‘‘CASCADAS’’ and, during his year in Canada, in a project founded
by Defense Canada.

Marco Mamei is assistant professor in Computer Science
at the University of Modena and Reggio Emilia, since
September 2004. He received the Laurea degree in
Computer Engineering from the University of Modena and
Reggio Emilia, in February 2001, discussing a thesis on
‘‘Web Technologies for Mobile Computing’’ developed at
Telecom Italia Labs. He received the Ph.D. in Computer
Science from the same University in April 2004, with a
thesis on ‘‘Field-based Coordination in Dynamic Pervasive
Networks’’. He has been visiting researcher at Telecom
Italia Lab (IT), Nokia Research Center (USA), Harvard

University (USA), Cycorp Europe (SLO) and Yahoo! Research (SP). His current
research interests include: applications and infrastructures for pervasive and
mobile computing, data mining for location-aware computing. In these areas,
he has published over 70 papers in international fora and 1 book (monograph),
received several awards, and has been invited speaker and tutorialist in some
international conferences and workshops. He participated in some European and
Italian project. In particular, the European Integrated Project ‘‘CASCADAS’’, and
the project ‘‘Infrastructures for Mobile Ad-Hoc Networks’’ funded by the Italian
Research Ministry. He is member of the program committee and co-organizer of
several major conferences and workshops.

Franco Zambonelli is professor in Computer Science
at the University of Modena and Reggio Emilia since
2001. He obtained the Laurea degree in Electronic
Engineering in 1992, and the Ph.D. in Computer Science
in 1997, both from the University of Bologna. His current
research interests include: distributed and pervasive
computing, autonomic computing and communication,
software engineering for large-scale agent systems. In
these areas, he has published 1 monograph, over 40
papers in international peer-reviewed journals, co-edited
7 books, and received several best paper awards. He has

been invited speaker and tutorialist in several international conferences and
workshops. He is in the Editorial Board several major journals, there included the
Elsevier Journal of Pervasive and Mobile Computing and of the ACM Transactions
on Autonomous and Adaptive Systems. He is member of the program committee
of several major conferences and workshops in the areas of distributed, pervasive,
and autonomic computing systems. He has been member of the management
committee of the European Network of Excellence� Agentlink II� (2000–2003)
and, within the same network, coordinator of the Special Interest group on
�Methodologies and Software Engineering for Agent Systems�. He has been
Scientific Manager for the European Integrated Project ‘‘CASCADAS’’, local unit
coordinator for the project ‘‘Infrastructures for Mobile Ad-Hoc Networks’’ funded
by the Italian Research Ministry, and for the project ‘‘Ambient Intelligence for a
Friendly City’’ funded by Regione Emilia Romagna.

