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ABSTRACT 
 
Services are increasingly becoming the building block of 
today’s distributed systems. However, to support the 
development of robust complex applications made up of 
ensembles of cooperating service components and to 
promote autonomic features, adaptive collaboration 
patterns among components have to be enforced. In this 
paper, we introduce a taxonomy of adaptive agent-based 
collaboration patterns, for their analysis and exploitation 
in the area of autonomic service ensembles. The 
preliminary proposed taxonomy has two main 
advantages: (i) it enables the reuse of existing experience 
from the agents’ world in the area of autonomic service 
systems, and (ii) it can provide useful suggestions to 
designer for the choice of the most suitable patterns. 
 
 
KEYWORDS: Self-adaptation, collaboration, patterns, 
agent. 
 
 
1. INTRODUCTION 
 
Designers and developers consider service components as 
the building blocks that can be put together in order to 
achieve the system-level objectives of distributed systems 
[19]. Service components, as components in general, have 
to be well-defined and to expose a clear interface, in order 
to be reusable, testable and, more importantly, easily 
composable into ensembles. In this context, two aspects 
must be taken into consideration: (i) the characterization 
of the service components themselves, in terms of internal 
organization, and (ii) the characterization of their means 
of composition into ensembles. To describe service 
components and service components ensembles, and 
beside the (not less important) adoption of formal 
modeling approaches, the software engineering practice 
suggests the adoption of descriptive design patterns [17]. 
In general terms, a design pattern is a general reusable 

solution to a problem in software design. That is, a semi-
formal description or template about how to solve a 
problem, which can be used in many different situations. 
Patterns can be characterized in terms of simple attributes 
like name, context, problem, solution, example and design 
rationale [4]. But how representing the patterns is not the 
key point treated here. 
 
The key questions that motivate this paper and our current 
research, in general relate to the issues of (i) effectively 
enforcing autonomic features (i.e., self-management, self-
configuration, and self-optimization) in modern service 
systems, which requires for the system itself to be 
adaptive, and (ii) identifying suitable patterns, both at the 
level of individual service components and at the level of 
service components ensembles, supporting adaptability. 
With regard to the first issue, it is a matter of fact that 
modern software systems are in most of the cases 
conceived to operated in highly-dynamic and open-ended 
operational environments [32]. Indeed, the search for 
novel models and tools to facilitate the design and 
development of autonomic, self-adaptive, complex 
software system, is the key object of the ASCENS 
project 1 , in which our current research situates. 
Unfortunately, the typically static and predefined 
orchestration patterns of service-oriented architectures 
can hardly apply, and adaptive collaboration patterns 
among service component have to be exploited [26], so as 
to make it possible for service ensembles to exhibit 
autonomic features [22]. As a consequence, and here we 
come to the second issue, novel dynamic interaction 
patterns of collaboration supporting autonomic behavior 
have to be promoted and supported. This also necessarily 
calls for the individual components to adopt adaptive 
architectural patterns so as to support such adaptive 
collaboration patterns. Despite the large amount of 
research performed in the area of adaptive systems and of 
adaptive collaboration patterns, only a few and 
incomplete tools or conceptual frameworks are available 
                                                
1 Autonomic Service-Components ENSembles, http://www.ascensist.eu 



to facilitate software designers in understanding how and 
when to exploit specific adaptation patterns to achieve 
specific goals [4, 10], and these definitely miss in 
connecting with the area of agent-based computing and 
multi-agent systems [20, 44], which could represent 
instead a fertile source of inspiration for the engineering 
of modern autonomic service systems. More in particular, 
the contributions of this paper are: 
• To show that the founding concepts and lessons of 

agent-based computing are of primary importance 
for the study of adaptive collaboration patterns in 
autonomic service component ensembles. 

• To sketch a (preliminary and not ultimate) taxonomy 
of collaboration patterns, to be used in the context of 
the design and development of autonomic service 
systems. A key point for our taxonomy, missing in 
related work, is relating the architectural patterns of 
individual components with the adaptive 
collaboration patterns that they can (or not) support. 

• To present, without the ambition of being exhaustive, 
some exemplary agent-based collaboration patterns, 
properly framed within our taxonomy. 

• To discuss the potential advantages of our taxonomy 
and identify avenues for further research. 

In the rest of the paper we first introduce the agent 
paradigm and its relevance for modern service systems 
(Section 2). Second, we present the proposed taxonomy 
(Section 3) along with some examples of classified 
patterns and a discussion of the potential advantages. 
Then, we overview related work in the area (Section 4) 
and conclude the paper (Section 5). 
 
2. THE AGENT PARADIGM 
 
Software agents are autonomous entities that carry out 
tasks on behalf of users. Among many definitions of 
software agents, nearly all of them converge on qualifying 
autonomy – i.e., the capability of acting in autonomy 
rather then simply upon request – as the key peculiar 
feature of the agents in comparison with other 
computational entities. One of the most exploited 
definitions is the one reported by M. Wooldridge in [42]. 
It characterizes an agent as a computational entity that is 
situated in some environment, and which is capable of 
autonomous actions in this environment in order to meet 
its design objectives. To this end, an agent can exhibit 
three well-defined features: reactivity, proactivity (strictly 
related to goal-orientedness) and sociality. These three 
features are detailed in the following, and are the ones we 
take into consideration for our analysis of adaptive 
collaboration patterns. The reactivity feature of the agents 
derives from the fact that they are computational entities 
not isolated but included in an environment, which they 
are able to perceive. So, they can “react” to 
events/changes that occur in the environment in order to 

satisfy their design objectives. The reactivity feature alone 
leads to rather “passive” agents, able to act only in 
response to external changes. Instead, agents are more 
proactive entities, since they are able to take initiatives 
towards the satisfaction of specific internal design 
objectives. In other words, agents have goal-oriented 
behaviors, which do everything possible in order to 
achieve the goal of the agents even trying different ways 
(called “plans” in the agent terminology). The sociality, 
feature is the capability of interacting, communicating and 
coordinating among agents, i.e., in the context of a multi-
agent system or agent society [13]. As an agent is not 
isolated from the environment where it lives, at the same 
time it is a “social” entity that may be in need to interact 
with other agents, either because this is the only way to 
accomplish its goals or simply because the other agents 
happen to live in the same environment. Thus, there are 
different means of expressing agent sociality: by implicit 
interactions of agents that insist on the same environment 
(environment-mediated interactions), or by explicit 
communication acts between agents. In the latter case, 
interaction can take the form of cooperation or 
competition. Agents can interact to collaborate if they 
belong to the same user or application, otherwise they can 
compete or negotiate for (limited) resources. 
 
2.1. Connection with Autonomic Service Systems 
 
Considering modern complex service-based systems, the 
identified features of agents and MASs are fundamental to 
promote autonomic behavior in services and service 
ensembles, via proper adaptive collaboration patterns. 
First of all, for a service component to adapt its behavior 
to the dynamic and possibly unexpected changes that 
occur around it, the component must be able to sens and 
react to such changes, and modify its behavior (i.e., select 
proper actions) accordingly. This directly connects with 
the reactivity feature of agents. This is a key base feature 
required by any service component to be able to exhibit at 
least some minimal form of adaptability, a feature that 
then somehow reflects at the level of ensembles, if all its 
service components are reactive. Of course, beside basic 
reactivity, which is often not enough to face complex 
situations in an autonomous way, one can think at arming 
service components with the agent-based feature of goal-
orientedness. Again, this can be applied both to the level 
of individual service components, which have their own 
goals to achieve, and to ensembles of components, where 
common goals can be shared by all the components of an 
ensemble. This means that the components must have a 
description of the goal and the needed logic to achieve it, 
which must be adaptive because of the dynamism, 
unpredictability and heterogeneity of today’s complex 
service systems. In any case, for a component ensemble to 
be adaptive, and thus exhibit autonomic behavior, it may 



not be enough to have its individual components adaptive 
(whether reactive or goal-oriented). Rather, its 
components must be able to interact in flexible ways with 
each other, and possibly to determine at run-time the 
outcome of these interactions to make sure that the global 
goals are achieved independently of specific dynamic 
situations. This suggests that collaboration patterns 
among components must be adaptive in themselves, as it 
happens in agent societies. And, as in agent societies, 
sociality can assume the form of both collaboration and 
competition, the latter being seen as an alternative way to 
adaptively reach some common goal (e.g., dynamically 
assigning resources in a cost effective way). 
 
All the above considerations clearly suggest that 
traditional Service Oriented Architectures (SOA) can 
hardly act as the basis for the development of autonomic 
service systems. In [9], we already proposed a detailed 
comparison between the agent paradigm and SOA, 
exploiting a case study in the field of territorial 
emergency to point out the strengths and the weaknesses 
of the two approaches. Despite the advantages of SOA in 
terms of robustness, simplicity and industrial support, in 
dynamic scenarios classical SOAs fall shorts in exhibiting 
the necessary adaptability. Agent-based design, instead, 
allows designers to deal with the complexity of the 
problem domain at an abstraction level higher than the 
functional problem decomposition typical of SOA. In 
addition, SOA results to be too rigid and it can hardly 
exhibit adaptive features, because its service components 
are passive entities and their interactions is statically 
defined (for instance, by the BPEL engine). Summarizing, 
we state that the agents’ features are strictly connected to 
the possibility, in service systems, to achieve autonomic 
behavior via adaptive collaboration. Accordingly, in the 
following we start from the lessons and our experience 
from the agent paradigm to propose our taxonomy of 
collaboration patterns for adaptive service components. 
 
3. PATTERNS TAXONOMY 
 
A service component, as such, has some intrinsic features. 
It is recommended that a component, like an agent, is 
autonomous and can react to environmental changes; that 
is in some way social; and that has some goals that guide 
its acting (is goal-oriented). Then, to make a service 
component collaborate, it can be useful to classify what 
we call adaptive collaboration patterns that help 
components to interact one to each other, and at the same 
time to be adaptive in the collaboration. It is important to 
recall that a pattern can be defined as adaptive, when its 
decisions and the interactions outcome, are defined at run 
time, on the base of the current status of the entire system 
(environment, resources, interactions with other 
components, etc).  In classifying collaboration patterns, it 

is not possible to forget the internal architecture of the 
single component. So, it is not possible to classify 
collaboration patterns alone, but we need to take into 
account the patterns that make a single component 
adaptive. Therefore, in the proposed taxonomy, we have 
to integrate also a classification of adaptive patterns that 
work on the single component and that describe its 
internal behavior. Adaptation is possible with the explicit 
or implicit presence of a feedback loop, which can be 
internal or external to the components itself. It can be 
defined as the part of the system that allows for feedback 
and self-correction and that adjusts its behavior according 
to the changes in the systems. So feedback loop are 
considered essential for understanding not only the 
pattern of adaptation and collaboration, but also the types 
of adaptive system. The different presented patterns differ 
depending on the kind of loop they adopt to make the 
achievement of the (component or ensemble) goals 
adaptive. In the next subsections we first describe a 
classification of adaptive patterns to describe each single 
service component (Subsection 3.1, and then we try to 
find out some macro areas of adaptive collaboration 
patters (Subsection 3.2). Both these classifications will 
help in building an integrated taxonomy of adaptive 
collaboration patters. 
 
3.1. Adaptive Patterns for Service Components 
 
An example of adaptive pattern is the one that describes a 
“reactive” component. This component is capable to 
modify its behavior in reaction to an external event. 
Components that adopt this pattern are sensitive to events 
that happen in its environment, on the base of such events, 
adapt their behavior and are able to interact with the 
environment itself. In this pattern, any general feedback 
loop is not present, so here adaptability can emerge only 
from the interactions with the environment, as we can see 
in Figure 1. An example of component that use this 
pattern is the one described one based in the Shaw’s 
control architecture [27] that react to the environment 
changes making its sensors sense both the executing 
system and its operating environment, and then 
converting observations into modeled value. Another 
adaptive pattern to describe the single component presents 
“internal feedback loops”, like patterns to describe goal-
oriented agents. The component is not limited to react to 
external events, but it actively tries to adapt its behavior, 
even without waiting for external stimuli. So adaptation 
and awareness are more explicit inside the component 
(see Figure 2). This kind of adaptive pattern, when we 
consider the single component, but at the component 
ensemble, has to be executed inside collaboration 
schemes (e.g. patterns) that support argumentation and 
negotiation, because it will be necessary to integrate the 
internal goals of the component, with the ensemble goals. 
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Here an example of component that uses this pattern in
Jadex [7], that supports cognitive agents by exploiting the
BDI model. Then other examples are the goal-oriented sys-
tems, like robots [24]. Another example of architecture that
describe the component using this kind of patter can be the
Rainbow architecture [11]. Rainbow monitors the run-time
properties of the component in the system-layer through an
abstract model maintained by the model manager in its ar-
chitecture layer (internal loop).
Finally, we have to consider adaptive patters with “external
feedback loop”, that has an external control system at the
end of the loop itself (Figure 3). It can be considered the
most dynamic adaptive pattern, that seems to be the merge
of the previous two: the single service component has not
internal feedback loop (like the latter pattern we described),
but then it has an explicit control from outside (environment
or other components), that close the component feedback
loop. This kind of adaptive pattern, at the collaboration pat-
terns level, has to take into account not only the collabo-
ration between components, but we find out that there is

a new meta-level of collaboration between external control
entities that end each component’s feedback loop.

Figure 3: Diagram of Pattern Based on “External Feedback
Loop”

Here an example of component that uses this pattern is the
one based on the Autonomic Computing paradigm, called
MAPE-K [22]. It is a specification of a generic “auto-
nomic feedback loop”: the feedback loop is realized using
an external autonomic manager. Another example of the
use of this patter are FORMS (FOrmal Reference Model
for Self.Adaptation), which can be viewed as an extension
of the MAPE-K model because the basic component of
FORMS can be easily mapped on the one of the autonomic
computing model [42].

3.2. Collaboration Pattern

Here we analyze the collaboration patterns, which are the
more connected with the sociality feature of agents. It can
be useful to classify these patterns with the aid of some
features, like how much the pattern’s goals are implicit or
explicit; or how much the feedback (or control) loops that
manage adaptation are implicit or explicit.
For example, considering patterns based on “swarm intel-
ligence connected with the environment” [6], here an ex-
plicit representation of the system goals is not possible: the
collaborative and adaptive behavior is emerging at runtime.
The internal goal of each single component (e.g. swarm,
ant) is explicit, but it is not explicit in term of collaboration
with components. The same happens for feedback loops, in
fact they are implicit inside the sense-react-act cycle of each
component - considered as a reactive component - which
acts inside the environment.
An example of the use of this pattern is Swarm Bot [36],
a system composed of a swarm of s-bots capable to self-
assemble and self-organize to adapt to its environment. The
s-bots have connectors around their body and can connect
to other s-bots to create physical structures. The system as
a whole can dynamically self-assemble into different struc-
tures to perform certain tasks, and then split into s-bots to
perform other tasks.
Then we have to consider collaboration pattern based on
“negotiation” [16], like contract net [38] or argumenta-
tion [32]. Here the ensemble goals are well defined and
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3.2. Collaboration Patterns  
 
Here we analyze the collaboration patterns, which are the 
more connected with the sociality feature of agents. It can 
be useful to classify these patterns with the aid of some 
features, like how much the pattern’s goals are implicit or 
explicit; or how much the feedback (or control) loops that 
manage adaptation are implicit or explicit. For example, 
considering patterns based on “swarm intelligence 
connected with the environment” [6], here an explicit 
representation of the system goals is not possible: the 
collaborative and adaptive behavior is emerging at 
runtime. The internal goal of each single component (e.g. 
swarm, ant) is explicit, but it is not explicit in term of 
collaboration with components. The same happens for 
feedback loops; in fact they are implicit inside the sense-
react-act cycle of each component – considered as a 
reactive component – which acts inside the environment. 
An example of the use of this pattern is Swarm Bot [35], a 
system composed of a swarm of s-bots capable to self-
assemble and self-organize to adapt to its environment. 
The s-bots have connectors around their body and can 
connect to other s-bots to create physical structures. The 
system as a whole can dynamically self-assemble into 
different structures to perform certain tasks, and then split 
into s-bots to perform other tasks. Then we have to 
consider collaboration pattern based on “negotiation” [16], 
like contract net [37] or argumentation [31]. Here the 
ensemble goals are well defined and are explicitly 
represented inside components’ interactions, and the 
representation of goals is also internal of the single 
component itself. However the feedback loop is implicit 
inside the messages sent between components. This kind 
of collaboration pattern can be applied with components 
that have a pattern of internal feedback loop, but also with 
components that have a pattern of external feedback loop, 
in the latter case collaboration (or better negotiation) 
oriented to adaptability can be viewed at controller level. 
A system that uses this collaboration pattern is Hermes 
[21] that augments the classical decision making 
approaches by supporting argumentative discourse among 
decision makers. The system can be used for distributed, 



asynchronous collaboration, allowing users to surpass the 
requirements of being in the same place and working at 
the same time. Then, a collaboration pattern can be the 
one based on “competition” [2]. It can be strange to think 
at competition in term of collaboration, but this kind of 
pattern is based on auctions, which can be used also in 
collaboration systems, not only in competitive ones. 
Auctions are based on economic theories that start form 
negotiation mechanism to reach the global equilibrium in 
an adaptive way. Here it is interesting to note that the 
feedback loop is implicit, as the global goal. Each 
component has a specific goal, and in the collaboration 
pattern, the global goal has to emerge as the global 
equilibrium into an economic system. There are a lot of 
algorithms that describe competitions in auctions, like the 
ones described in [2] and [29]. Anther example of systems 
implementing one of these algorithms is the Michigan 
Internet AuctionBot [43], that is an auction server that 
supports both software and human agents. The server 
manages many simultaneous auctions by separating the 
interface from the core auction procedures. The last 
classified collaboration pattern is the one based on 
“interaction in electronic institutions” [15]. What makes 
possible distinguish electronic institutions from other 
systems is that the explicit presence of norms (i.e. they are 
also called norm-based systems) can be considered the 
representation of an explicit control loop: control rules at 
a global level also act as a feedback on single components. 
An example of the development of this collaboration 
pattern is the Harmonia framework [39], which unifies 
notions of norm, rule, procedure and policy. All these 
classified collaborations patterns, represent only the 
macro areas of the taxonomy, that is now only a 
preliminary work, that will be better refined in the future. 
 
3.3. Taxonomy  
 
Starting from the previous analysis of adaptive and 
collaboration patterns, in this subsection we propose a 
preliminary taxonomy. Figure 4 reports the possible 
connections between each component pattern and the 
collaboration patterns. We point out that only some 
specific adaptive patterns for single components can be 
associated to collaboration patterns, and viceversa. For 
instance, the reactive adaptive pattern matches the 
environment mediated swarm collaboration pattern, but 

not the negotiation and competition one. This is one of the 
reasons of the importance to study adaptive patterns for 
single components in connection with collaboration 
patterns, not only to suggest developers which kinds of 
patterns they can find, but also to guide designers that aim 
at proposing new adaptive collaboration patterns. 
 

 
 

Figure 4. Patterns Summary 
 
Considering together the features of adaptability and 
collaboration, our taxonomy can have the shape reported 
in Table 1. In the table, the collaboration classes of 
patterns are in the columns, while adaptive classes of 
patterns are in the rows. 
 
3.4. Potential Advantages 
 
Even if the work is at an early stage, we can identify two 
potential advantages in applaying the proposed taxonomy: 
the reuse of existing experience and the support in 
choosing patterns. 
 
The fact that our classification is based on a settled set of 
agents’ features can enable the reuse of the experience 
made so far. This means that the most studies performed 
on agents based on our three-feature definition can be 
applied to the classified patterns. In particular, the reuse 
concerns: 
• models, which can applied to patterns with light 

adaptations; 
• methodologies, or fragments of them, which guide 

developers during the development; 

Table 1. Input Data 
 

Classes of patterns Swarm intelligence Negotiation Competition Electronic institutions 
Reactive Reactive swarm 

intelligence 
  Reactive norm-based 

Internal feedback 
loop 

 Goal-oriented 
negotiation 

Goal-oriented 
competition 

 

External feedback  l.  Controlled negotiation Controlled competition  
 



• supporting tools, which can be exploited during the 
de-velopment phases; 

• code libraries, which are off-the-shelf implemented 
parts of software components that can be reused. 

For instance, a well-known and exploited model is the 
BDI (Belief-Desire-Intention) one [33]. This model is 
based on information an agent has (beliefs), its goal 
(desire) and the actions to be performed to achieve the 
goal (intentions). Since this model is mainly related to the 
proactivity feature of agents, it can be useful in dealing 
with patterns classified as proactive, as well as in defining 
new proactive patterns. Another field that has been widely 
explored is the one related to agent auctions [36], a 
negotiation mechanism that well suits collaboration and 
competition among agents and that could be adopted in 
sets of general autonomous entities.  
 
The second advantage is that our classification can help 
developers in choosing the most appropriate pattern on 
the base of scenario requirements. In fact, the class of a 
pattern potentially strongly characterizes its application to 
service components. A reactive pattern can be more 
suitable for components that provide functionality that is 
weakly dependent on the environment, and do not need to 
change their behavior frequently. In most cases, this 
simple kind of pattern is likely to be enough. A proactive 
pattern can instead be intended for situations where 
components are interested in adapting their behavior as 
much as possible, and they make everything they can to 
achieve this goal. Finally, a social pattern better can fit a 
set of coupled components that must collaborate. 
 
4. RELATED WORK 
 
Individual adaptation of components has been a very 
important thread of research since the early years of 
intelligent agents [20] and of reflective computing [40], 
and several architectures and mechanisms to enable self-
adaptation has been proposed so far, typically based on 
goal-oriented agents and internal feedback loops (whether 
implicitly or explicitly architected within the component). 
For instance, the ACE component model defined in the 
context of the CASCADAS project2 defines a very clean 
architecture enabling service components to dynamically 
adapt their behavior based on their context and on 
internally engineered feedback loops [5, 25]. The already 
mentioned autonomic computing approach of the BM has 
inspired several works related to enforcing adaptability 
via external feedback loops [22]. This approach is to most 
extent also shared by many works in the area autonomic 
communications [14, 32]. As another example, in the 
SELFMAN project [34], the idea is to enforce adaptation 
in components via an explicit phase of engineering 

                                                
2 http://acetoolkit.sourceforge.net/cascadas/ 

external (possibly multi-fold) feedback loops. 
Complementary to individual adaptation researches is 
research related to adaptation of ensembles of software 
components, in order to meet new or unexpected 
requirements or contingencies. Such research thread, even 
if not new [1], still presents a relevant number of open 
issues [10], beside the ones that we have analyzed in this 
paper (and accounted for in our taxonomy). For instance, 
a key under-investigated issue relates to determining how 
it it possible to enable dynamic structural adaptations, i.e., 
dynamically changing the collaboration pattern in an 
ensemble of components, in order to preserving the 
required behaviors despite dramatic changes that could 
not be sustained by the originally chosen collaboration 
pattern. The possibility of dynamically self-selecting the 
most suitable adaptation pattern by an ensemble of 
component, which we called “dynamic self-expression”, 
is one of the key methodological and technological 
innovations that will be pursed in the context of the 
ASCENS project. With this regard, an important lesson 
could come again from the area of multi-agent systems, 
and specifically of multi-agent systems, where the proper 
adaptation of a complex system made up of autonomous 
components may require the existence of “norms” that 
collectively regulate the activities of the components [12, 
18, 38], possibly enacted via specific components of the 
set [28, 44]. In the area of biologically-inspired 
distributed computing, a large number of proposal for 
algorithms that can achieve adaptation in a distributed 
systems via decentralized self-organization have been 
proposed in the recent. These include a variety of nature-
inspired algorithms and mechanisms [3, 8, 30] (see [24] 
for an in-depth survey), which, however, apply to specific 
problem instances and can hardly be translated to general-
purpose schemes. What is still missing in general, despite 
some recent efforts in this direction [4], is a systematic 
classification of adaptive collaboration patterns – both at 
the level of individuals and ensembles, accompanied by 
methodological guidelines to choose among them. 
 
5. CONCLUSIONS 
 
In this paper, we have argued that agent-based computing 
can play a key role in supporting the design and 
development of future autonomic service systems, and 
have proposed a preliminary taxonomy of adaptive 
collaboration patterns, properly accounting for both the 
architecture of individual components and for the 
interaction patterns among ensembles of components. The 
benefit that our work would like to give, as preliminary as 
it can be, is twofold. Firstly, we think that a wide range of 
experiences in the area of agents and multi-agent systems 
can be reused to support adaptive collaboration patterns 
for service ensembles in complex applications scenarios, 
and our effort can represent a first useful step in this 
direction. Secondly, the taxonomy in itself can be useful 



for the development of autonomic service components 
and ensembles, since it can suggest criteria according to 
which adaptive ensembles of components should be built. 
 
Our future work will aim at studying and framing within 
the taxonomy as many patterns as possible, so to propose 
an almost complete classification of existing patterns. In 
particular, we will explore the existence of social patterns, 
or, better, to which extent existing negotiation and 
interaction protocols can be considered as social 
collaboration patterns. Of course, this will most likely 
require refining and extending the preliminary taxonomy 
here presented. Along with that, and possibly more 
interesting, we will aim at defining some more accurate 
guidelines for system developers, in order to help them in 
their work, and at promoting dynamic self-expression of 
collaboration patterns to enable service ensembles to 
dynamically chose the most suitable collaboration pattern. 
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