

Towards a Taxonomy of Adaptive Agent-based Collaboration Patterns for
Autonomic Service Ensembles

Giacomo Cabri
DII, University of Modena
and Reggio Emilia, Italy
giacomo.cabri@unimore.it

Mariachiara Puviani
DISMI, University of Modena

and Reggio Emilia, Italy
mariachaira.puviani@unimore.it

Franco Zambonelli
DISMI, University of Modena

 and Reggio Emilia, Italy
franco.zambonelli@unimore.it

ABSTRACT

Services are increasingly becoming the building block of
today’s distributed systems. However, to support the
development of robust complex applications made up of
ensembles of cooperating service components and to
promote autonomic features, adaptive collaboration
patterns among components have to be enforced. In this
paper, we introduce a taxonomy of adaptive agent-based
collaboration patterns, for their analysis and exploitation
in the area of autonomic service ensembles. The
preliminary proposed taxonomy has two main
advantages: (i) it enables the reuse of existing experience
from the agents’ world in the area of autonomic service
systems, and (ii) it can provide useful suggestions to
designer for the choice of the most suitable patterns.

KEYWORDS: Self-adaptation, collaboration, patterns,
agent.

1. INTRODUCTION

Designers and developers consider service components as
the building blocks that can be put together in order to
achieve the system-level objectives of distributed systems
[19]. Service components, as components in general, have
to be well-defined and to expose a clear interface, in order
to be reusable, testable and, more importantly, easily
composable into ensembles. In this context, two aspects
must be taken into consideration: (i) the characterization
of the service components themselves, in terms of internal
organization, and (ii) the characterization of their means
of composition into ensembles. To describe service
components and service components ensembles, and
beside the (not less important) adoption of formal
modeling approaches, the software engineering practice
suggests the adoption of descriptive design patterns [17].
In general terms, a design pattern is a general reusable

solution to a problem in software design. That is, a semi-
formal description or template about how to solve a
problem, which can be used in many different situations.
Patterns can be characterized in terms of simple attributes
like name, context, problem, solution, example and design
rationale [4]. But how representing the patterns is not the
key point treated here.

The key questions that motivate this paper and our current
research, in general relate to the issues of (i) effectively
enforcing autonomic features (i.e., self-management, self-
configuration, and self-optimization) in modern service
systems, which requires for the system itself to be
adaptive, and (ii) identifying suitable patterns, both at the
level of individual service components and at the level of
service components ensembles, supporting adaptability.
With regard to the first issue, it is a matter of fact that
modern software systems are in most of the cases
conceived to operated in highly-dynamic and open-ended
operational environments [32]. Indeed, the search for
novel models and tools to facilitate the design and
development of autonomic, self-adaptive, complex
software system, is the key object of the ASCENS
project 1 , in which our current research situates.
Unfortunately, the typically static and predefined
orchestration patterns of service-oriented architectures
can hardly apply, and adaptive collaboration patterns
among service component have to be exploited [26], so as
to make it possible for service ensembles to exhibit
autonomic features [22]. As a consequence, and here we
come to the second issue, novel dynamic interaction
patterns of collaboration supporting autonomic behavior
have to be promoted and supported. This also necessarily
calls for the individual components to adopt adaptive
architectural patterns so as to support such adaptive
collaboration patterns. Despite the large amount of
research performed in the area of adaptive systems and of
adaptive collaboration patterns, only a few and
incomplete tools or conceptual frameworks are available

1 Autonomic Service-Components ENSembles, http://www.ascensist.eu

to facilitate software designers in understanding how and
when to exploit specific adaptation patterns to achieve
specific goals [4, 10], and these definitely miss in
connecting with the area of agent-based computing and
multi-agent systems [20, 44], which could represent
instead a fertile source of inspiration for the engineering
of modern autonomic service systems. More in particular,
the contributions of this paper are:
• To show that the founding concepts and lessons of

agent-based computing are of primary importance
for the study of adaptive collaboration patterns in
autonomic service component ensembles.

• To sketch a (preliminary and not ultimate) taxonomy
of collaboration patterns, to be used in the context of
the design and development of autonomic service
systems. A key point for our taxonomy, missing in
related work, is relating the architectural patterns of
individual components with the adaptive
collaboration patterns that they can (or not) support.

• To present, without the ambition of being exhaustive,
some exemplary agent-based collaboration patterns,
properly framed within our taxonomy.

• To discuss the potential advantages of our taxonomy
and identify avenues for further research.

In the rest of the paper we first introduce the agent
paradigm and its relevance for modern service systems
(Section 2). Second, we present the proposed taxonomy
(Section 3) along with some examples of classified
patterns and a discussion of the potential advantages.
Then, we overview related work in the area (Section 4)
and conclude the paper (Section 5).

2. THE AGENT PARADIGM

Software agents are autonomous entities that carry out
tasks on behalf of users. Among many definitions of
software agents, nearly all of them converge on qualifying
autonomy – i.e., the capability of acting in autonomy
rather then simply upon request – as the key peculiar
feature of the agents in comparison with other
computational entities. One of the most exploited
definitions is the one reported by M. Wooldridge in [42].
It characterizes an agent as a computational entity that is
situated in some environment, and which is capable of
autonomous actions in this environment in order to meet
its design objectives. To this end, an agent can exhibit
three well-defined features: reactivity, proactivity (strictly
related to goal-orientedness) and sociality. These three
features are detailed in the following, and are the ones we
take into consideration for our analysis of adaptive
collaboration patterns. The reactivity feature of the agents
derives from the fact that they are computational entities
not isolated but included in an environment, which they
are able to perceive. So, they can “react” to
events/changes that occur in the environment in order to

satisfy their design objectives. The reactivity feature alone
leads to rather “passive” agents, able to act only in
response to external changes. Instead, agents are more
proactive entities, since they are able to take initiatives
towards the satisfaction of specific internal design
objectives. In other words, agents have goal-oriented
behaviors, which do everything possible in order to
achieve the goal of the agents even trying different ways
(called “plans” in the agent terminology). The sociality,
feature is the capability of interacting, communicating and
coordinating among agents, i.e., in the context of a multi-
agent system or agent society [13]. As an agent is not
isolated from the environment where it lives, at the same
time it is a “social” entity that may be in need to interact
with other agents, either because this is the only way to
accomplish its goals or simply because the other agents
happen to live in the same environment. Thus, there are
different means of expressing agent sociality: by implicit
interactions of agents that insist on the same environment
(environment-mediated interactions), or by explicit
communication acts between agents. In the latter case,
interaction can take the form of cooperation or
competition. Agents can interact to collaborate if they
belong to the same user or application, otherwise they can
compete or negotiate for (limited) resources.

2.1. Connection with Autonomic Service Systems

Considering modern complex service-based systems, the
identified features of agents and MASs are fundamental to
promote autonomic behavior in services and service
ensembles, via proper adaptive collaboration patterns.
First of all, for a service component to adapt its behavior
to the dynamic and possibly unexpected changes that
occur around it, the component must be able to sens and
react to such changes, and modify its behavior (i.e., select
proper actions) accordingly. This directly connects with
the reactivity feature of agents. This is a key base feature
required by any service component to be able to exhibit at
least some minimal form of adaptability, a feature that
then somehow reflects at the level of ensembles, if all its
service components are reactive. Of course, beside basic
reactivity, which is often not enough to face complex
situations in an autonomous way, one can think at arming
service components with the agent-based feature of goal-
orientedness. Again, this can be applied both to the level
of individual service components, which have their own
goals to achieve, and to ensembles of components, where
common goals can be shared by all the components of an
ensemble. This means that the components must have a
description of the goal and the needed logic to achieve it,
which must be adaptive because of the dynamism,
unpredictability and heterogeneity of today’s complex
service systems. In any case, for a component ensemble to
be adaptive, and thus exhibit autonomic behavior, it may

not be enough to have its individual components adaptive
(whether reactive or goal-oriented). Rather, its
components must be able to interact in flexible ways with
each other, and possibly to determine at run-time the
outcome of these interactions to make sure that the global
goals are achieved independently of specific dynamic
situations. This suggests that collaboration patterns
among components must be adaptive in themselves, as it
happens in agent societies. And, as in agent societies,
sociality can assume the form of both collaboration and
competition, the latter being seen as an alternative way to
adaptively reach some common goal (e.g., dynamically
assigning resources in a cost effective way).

All the above considerations clearly suggest that
traditional Service Oriented Architectures (SOA) can
hardly act as the basis for the development of autonomic
service systems. In [9], we already proposed a detailed
comparison between the agent paradigm and SOA,
exploiting a case study in the field of territorial
emergency to point out the strengths and the weaknesses
of the two approaches. Despite the advantages of SOA in
terms of robustness, simplicity and industrial support, in
dynamic scenarios classical SOAs fall shorts in exhibiting
the necessary adaptability. Agent-based design, instead,
allows designers to deal with the complexity of the
problem domain at an abstraction level higher than the
functional problem decomposition typical of SOA. In
addition, SOA results to be too rigid and it can hardly
exhibit adaptive features, because its service components
are passive entities and their interactions is statically
defined (for instance, by the BPEL engine). Summarizing,
we state that the agents’ features are strictly connected to
the possibility, in service systems, to achieve autonomic
behavior via adaptive collaboration. Accordingly, in the
following we start from the lessons and our experience
from the agent paradigm to propose our taxonomy of
collaboration patterns for adaptive service components.

3. PATTERNS TAXONOMY

A service component, as such, has some intrinsic features.
It is recommended that a component, like an agent, is
autonomous and can react to environmental changes; that
is in some way social; and that has some goals that guide
its acting (is goal-oriented). Then, to make a service
component collaborate, it can be useful to classify what
we call adaptive collaboration patterns that help
components to interact one to each other, and at the same
time to be adaptive in the collaboration. It is important to
recall that a pattern can be defined as adaptive, when its
decisions and the interactions outcome, are defined at run
time, on the base of the current status of the entire system
(environment, resources, interactions with other
components, etc). In classifying collaboration patterns, it

is not possible to forget the internal architecture of the
single component. So, it is not possible to classify
collaboration patterns alone, but we need to take into
account the patterns that make a single component
adaptive. Therefore, in the proposed taxonomy, we have
to integrate also a classification of adaptive patterns that
work on the single component and that describe its
internal behavior. Adaptation is possible with the explicit
or implicit presence of a feedback loop, which can be
internal or external to the components itself. It can be
defined as the part of the system that allows for feedback
and self-correction and that adjusts its behavior according
to the changes in the systems. So feedback loop are
considered essential for understanding not only the
pattern of adaptation and collaboration, but also the types
of adaptive system. The different presented patterns differ
depending on the kind of loop they adopt to make the
achievement of the (component or ensemble) goals
adaptive. In the next subsections we first describe a
classification of adaptive patterns to describe each single
service component (Subsection 3.1, and then we try to
find out some macro areas of adaptive collaboration
patters (Subsection 3.2). Both these classifications will
help in building an integrated taxonomy of adaptive
collaboration patters.

3.1. Adaptive Patterns for Service Components

An example of adaptive pattern is the one that describes a
“reactive” component. This component is capable to
modify its behavior in reaction to an external event.
Components that adopt this pattern are sensitive to events
that happen in its environment, on the base of such events,
adapt their behavior and are able to interact with the
environment itself. In this pattern, any general feedback
loop is not present, so here adaptability can emerge only
from the interactions with the environment, as we can see
in Figure 1. An example of component that use this
pattern is the one described one based in the Shaw’s
control architecture [27] that react to the environment
changes making its sensors sense both the executing
system and its operating environment, and then
converting observations into modeled value. Another
adaptive pattern to describe the single component presents
“internal feedback loops”, like patterns to describe goal-
oriented agents. The component is not limited to react to
external events, but it actively tries to adapt its behavior,
even without waiting for external stimuli. So adaptation
and awareness are more explicit inside the component
(see Figure 2). This kind of adaptive pattern, when we
consider the single component, but at the component
ensemble, has to be executed inside collaboration
schemes (e.g. patterns) that support argumentation and
negotiation, because it will be necessary to integrate the
internal goals of the component, with the ensemble goals.

Figure 1: Diagram of a Reactive Pattern

goal-oriented agents. The component is not limited to react
to external events, but it actively tries to adapt its behav-
ior, even without waiting for external stimuli. So adaptation
and awareness are more explicit inside the component (see
Figure 2). This kind of adaptive pattern, when we consider
the single component, but at the component ensemble, has
to be executed inside collaboration schemes (e.g. patterns)
that support argumentation and negotiation, because it will
be necessary to integrate the internal goals of the compo-
nent, with the ensemble goals.

Figure 2: Diagram of Pattern Based on “Internal Feedback
Loop”

Here an example of component that uses this pattern in
Jadex [7], that supports cognitive agents by exploiting the
BDI model. Then other examples are the goal-oriented sys-
tems, like robots [24]. Another example of architecture that
describe the component using this kind of patter can be the
Rainbow architecture [11]. Rainbow monitors the run-time
properties of the component in the system-layer through an
abstract model maintained by the model manager in its ar-
chitecture layer (internal loop).
Finally, we have to consider adaptive patters with “external
feedback loop”, that has an external control system at the
end of the loop itself (Figure 3). It can be considered the
most dynamic adaptive pattern, that seems to be the merge
of the previous two: the single service component has not
internal feedback loop (like the latter pattern we described),
but then it has an explicit control from outside (environment
or other components), that close the component feedback
loop. This kind of adaptive pattern, at the collaboration pat-
terns level, has to take into account not only the collabo-
ration between components, but we find out that there is

a new meta-level of collaboration between external control
entities that end each component’s feedback loop.

Figure 3: Diagram of Pattern Based on “External Feedback
Loop”

Here an example of component that uses this pattern is the
one based on the Autonomic Computing paradigm, called
MAPE-K [22]. It is a specification of a generic “auto-
nomic feedback loop”: the feedback loop is realized using
an external autonomic manager. Another example of the
use of this patter are FORMS (FOrmal Reference Model
for Self.Adaptation), which can be viewed as an extension
of the MAPE-K model because the basic component of
FORMS can be easily mapped on the one of the autonomic
computing model [42].

3.2. Collaboration Pattern

Here we analyze the collaboration patterns, which are the
more connected with the sociality feature of agents. It can
be useful to classify these patterns with the aid of some
features, like how much the pattern’s goals are implicit or
explicit; or how much the feedback (or control) loops that
manage adaptation are implicit or explicit.
For example, considering patterns based on “swarm intel-
ligence connected with the environment” [6], here an ex-
plicit representation of the system goals is not possible: the
collaborative and adaptive behavior is emerging at runtime.
The internal goal of each single component (e.g. swarm,
ant) is explicit, but it is not explicit in term of collaboration
with components. The same happens for feedback loops, in
fact they are implicit inside the sense-react-act cycle of each
component - considered as a reactive component - which
acts inside the environment.
An example of the use of this pattern is Swarm Bot [36],
a system composed of a swarm of s-bots capable to self-
assemble and self-organize to adapt to its environment. The
s-bots have connectors around their body and can connect
to other s-bots to create physical structures. The system as
a whole can dynamically self-assemble into different struc-
tures to perform certain tasks, and then split into s-bots to
perform other tasks.
Then we have to consider collaboration pattern based on
“negotiation” [16], like contract net [38] or argumenta-
tion [32]. Here the ensemble goals are well defined and

Figure 1. Diagram of a Reactive Pattern

Figure 1: Diagram of a Reactive Pattern

goal-oriented agents. The component is not limited to react
to external events, but it actively tries to adapt its behav-
ior, even without waiting for external stimuli. So adaptation
and awareness are more explicit inside the component (see
Figure 2). This kind of adaptive pattern, when we consider
the single component, but at the component ensemble, has
to be executed inside collaboration schemes (e.g. patterns)
that support argumentation and negotiation, because it will
be necessary to integrate the internal goals of the compo-
nent, with the ensemble goals.

Figure 2: Diagram of Pattern Based on “Internal Feedback
Loop”

Here an example of component that uses this pattern in
Jadex [7], that supports cognitive agents by exploiting the
BDI model. Then other examples are the goal-oriented sys-
tems, like robots [24]. Another example of architecture that
describe the component using this kind of patter can be the
Rainbow architecture [11]. Rainbow monitors the run-time
properties of the component in the system-layer through an
abstract model maintained by the model manager in its ar-
chitecture layer (internal loop).
Finally, we have to consider adaptive patters with “external
feedback loop”, that has an external control system at the
end of the loop itself (Figure 3). It can be considered the
most dynamic adaptive pattern, that seems to be the merge
of the previous two: the single service component has not
internal feedback loop (like the latter pattern we described),
but then it has an explicit control from outside (environment
or other components), that close the component feedback
loop. This kind of adaptive pattern, at the collaboration pat-
terns level, has to take into account not only the collabo-
ration between components, but we find out that there is

a new meta-level of collaboration between external control
entities that end each component’s feedback loop.

Figure 3: Diagram of Pattern Based on “External Feedback
Loop”

Here an example of component that uses this pattern is the
one based on the Autonomic Computing paradigm, called
MAPE-K [22]. It is a specification of a generic “auto-
nomic feedback loop”: the feedback loop is realized using
an external autonomic manager. Another example of the
use of this patter are FORMS (FOrmal Reference Model
for Self.Adaptation), which can be viewed as an extension
of the MAPE-K model because the basic component of
FORMS can be easily mapped on the one of the autonomic
computing model [42].

3.2. Collaboration Pattern

Here we analyze the collaboration patterns, which are the
more connected with the sociality feature of agents. It can
be useful to classify these patterns with the aid of some
features, like how much the pattern’s goals are implicit or
explicit; or how much the feedback (or control) loops that
manage adaptation are implicit or explicit.
For example, considering patterns based on “swarm intel-
ligence connected with the environment” [6], here an ex-
plicit representation of the system goals is not possible: the
collaborative and adaptive behavior is emerging at runtime.
The internal goal of each single component (e.g. swarm,
ant) is explicit, but it is not explicit in term of collaboration
with components. The same happens for feedback loops, in
fact they are implicit inside the sense-react-act cycle of each
component - considered as a reactive component - which
acts inside the environment.
An example of the use of this pattern is Swarm Bot [36],
a system composed of a swarm of s-bots capable to self-
assemble and self-organize to adapt to its environment. The
s-bots have connectors around their body and can connect
to other s-bots to create physical structures. The system as
a whole can dynamically self-assemble into different struc-
tures to perform certain tasks, and then split into s-bots to
perform other tasks.
Then we have to consider collaboration pattern based on
“negotiation” [16], like contract net [38] or argumenta-
tion [32]. Here the ensemble goals are well defined and

Figure 2. Diagram of Pattern Based on “Internal
Feedback Loop”

Here an example of component that uses this pattern in
Jadex [7] that supports cognitive agents by exploiting the
BDI model. Then other examples are the goal-oriented
systems, like robots [23]. Another example of architecture
that describes the component using this kind of patter can
be the Rainbow architecture [11]. Rainbow monitors the
run-time properties of the component in the system-layer
through an abstract model maintained by the model
manager in its architecture layer (internal loop). Finally,
we have to consider adaptive patters with “external
feedback loop”, that has an external control system at the
end of the loop itself (Figure 3). It can be considered the
most dynamic adaptive pattern, that seems to be the
merge of the previous two: the single service component
has not internal feedback loop (like the latter pattern we
described), but then it has an explicit control from outside
(environment or other components), that close the
component feedback loop. This kind of adaptive pattern,
at the collaboration patterns level, has to take into account
not only the collaboration between components, but we
find out that there is a new meta-level of collaboration
between external control entities that end each
component’s feedback loop. Here an example of
component that uses this pattern is the one based on the
Autonomic Computing paradigm, called MAPE-K [22]. It
is a specification of a generic “autonomic feedback loop”:
the feedback loop is realized using an external autonomic
manager. Another example of the use of this patter are
FORMS (FOrmal Reference Model for Self.Adaptation),
which can be viewed as an extension of the MAPE-K
model because the basic component of FORMS can be
easily mapped on the one of the autonomic computing
model [41].

Figure 1: Diagram of a Reactive Pattern

goal-oriented agents. The component is not limited to react
to external events, but it actively tries to adapt its behav-
ior, even without waiting for external stimuli. So adaptation
and awareness are more explicit inside the component (see
Figure 2). This kind of adaptive pattern, when we consider
the single component, but at the component ensemble, has
to be executed inside collaboration schemes (e.g. patterns)
that support argumentation and negotiation, because it will
be necessary to integrate the internal goals of the compo-
nent, with the ensemble goals.

Figure 2: Diagram of Pattern Based on “Internal Feedback
Loop”

Here an example of component that uses this pattern in
Jadex [7], that supports cognitive agents by exploiting the
BDI model. Then other examples are the goal-oriented sys-
tems, like robots [24]. Another example of architecture that
describe the component using this kind of patter can be the
Rainbow architecture [11]. Rainbow monitors the run-time
properties of the component in the system-layer through an
abstract model maintained by the model manager in its ar-
chitecture layer (internal loop).
Finally, we have to consider adaptive patters with “external
feedback loop”, that has an external control system at the
end of the loop itself (Figure 3). It can be considered the
most dynamic adaptive pattern, that seems to be the merge
of the previous two: the single service component has not
internal feedback loop (like the latter pattern we described),
but then it has an explicit control from outside (environment
or other components), that close the component feedback
loop. This kind of adaptive pattern, at the collaboration pat-
terns level, has to take into account not only the collabo-
ration between components, but we find out that there is

a new meta-level of collaboration between external control
entities that end each component’s feedback loop.

Figure 3: Diagram of Pattern Based on “External Feedback
Loop”

Here an example of component that uses this pattern is the
one based on the Autonomic Computing paradigm, called
MAPE-K [22]. It is a specification of a generic “auto-
nomic feedback loop”: the feedback loop is realized using
an external autonomic manager. Another example of the
use of this patter are FORMS (FOrmal Reference Model
for Self.Adaptation), which can be viewed as an extension
of the MAPE-K model because the basic component of
FORMS can be easily mapped on the one of the autonomic
computing model [42].

3.2. Collaboration Pattern

Here we analyze the collaboration patterns, which are the
more connected with the sociality feature of agents. It can
be useful to classify these patterns with the aid of some
features, like how much the pattern’s goals are implicit or
explicit; or how much the feedback (or control) loops that
manage adaptation are implicit or explicit.
For example, considering patterns based on “swarm intel-
ligence connected with the environment” [6], here an ex-
plicit representation of the system goals is not possible: the
collaborative and adaptive behavior is emerging at runtime.
The internal goal of each single component (e.g. swarm,
ant) is explicit, but it is not explicit in term of collaboration
with components. The same happens for feedback loops, in
fact they are implicit inside the sense-react-act cycle of each
component - considered as a reactive component - which
acts inside the environment.
An example of the use of this pattern is Swarm Bot [36],
a system composed of a swarm of s-bots capable to self-
assemble and self-organize to adapt to its environment. The
s-bots have connectors around their body and can connect
to other s-bots to create physical structures. The system as
a whole can dynamically self-assemble into different struc-
tures to perform certain tasks, and then split into s-bots to
perform other tasks.
Then we have to consider collaboration pattern based on
“negotiation” [16], like contract net [38] or argumenta-
tion [32]. Here the ensemble goals are well defined and

Figure 3. Diagram of Pattern Based on “External
Feedback Loop”

3.2. Collaboration Patterns

Here we analyze the collaboration patterns, which are the
more connected with the sociality feature of agents. It can
be useful to classify these patterns with the aid of some
features, like how much the pattern’s goals are implicit or
explicit; or how much the feedback (or control) loops that
manage adaptation are implicit or explicit. For example,
considering patterns based on “swarm intelligence
connected with the environment” [6], here an explicit
representation of the system goals is not possible: the
collaborative and adaptive behavior is emerging at
runtime. The internal goal of each single component (e.g.
swarm, ant) is explicit, but it is not explicit in term of
collaboration with components. The same happens for
feedback loops; in fact they are implicit inside the sense-
react-act cycle of each component – considered as a
reactive component – which acts inside the environment.
An example of the use of this pattern is Swarm Bot [35], a
system composed of a swarm of s-bots capable to self-
assemble and self-organize to adapt to its environment.
The s-bots have connectors around their body and can
connect to other s-bots to create physical structures. The
system as a whole can dynamically self-assemble into
different structures to perform certain tasks, and then split
into s-bots to perform other tasks. Then we have to
consider collaboration pattern based on “negotiation” [16],
like contract net [37] or argumentation [31]. Here the
ensemble goals are well defined and are explicitly
represented inside components’ interactions, and the
representation of goals is also internal of the single
component itself. However the feedback loop is implicit
inside the messages sent between components. This kind
of collaboration pattern can be applied with components
that have a pattern of internal feedback loop, but also with
components that have a pattern of external feedback loop,
in the latter case collaboration (or better negotiation)
oriented to adaptability can be viewed at controller level.
A system that uses this collaboration pattern is Hermes
[21] that augments the classical decision making
approaches by supporting argumentative discourse among
decision makers. The system can be used for distributed,

asynchronous collaboration, allowing users to surpass the
requirements of being in the same place and working at
the same time. Then, a collaboration pattern can be the
one based on “competition” [2]. It can be strange to think
at competition in term of collaboration, but this kind of
pattern is based on auctions, which can be used also in
collaboration systems, not only in competitive ones.
Auctions are based on economic theories that start form
negotiation mechanism to reach the global equilibrium in
an adaptive way. Here it is interesting to note that the
feedback loop is implicit, as the global goal. Each
component has a specific goal, and in the collaboration
pattern, the global goal has to emerge as the global
equilibrium into an economic system. There are a lot of
algorithms that describe competitions in auctions, like the
ones described in [2] and [29]. Anther example of systems
implementing one of these algorithms is the Michigan
Internet AuctionBot [43], that is an auction server that
supports both software and human agents. The server
manages many simultaneous auctions by separating the
interface from the core auction procedures. The last
classified collaboration pattern is the one based on
“interaction in electronic institutions” [15]. What makes
possible distinguish electronic institutions from other
systems is that the explicit presence of norms (i.e. they are
also called norm-based systems) can be considered the
representation of an explicit control loop: control rules at
a global level also act as a feedback on single components.
An example of the development of this collaboration
pattern is the Harmonia framework [39], which unifies
notions of norm, rule, procedure and policy. All these
classified collaborations patterns, represent only the
macro areas of the taxonomy, that is now only a
preliminary work, that will be better refined in the future.

3.3. Taxonomy

Starting from the previous analysis of adaptive and
collaboration patterns, in this subsection we propose a
preliminary taxonomy. Figure 4 reports the possible
connections between each component pattern and the
collaboration patterns. We point out that only some
specific adaptive patterns for single components can be
associated to collaboration patterns, and viceversa. For
instance, the reactive adaptive pattern matches the
environment mediated swarm collaboration pattern, but

not the negotiation and competition one. This is one of the
reasons of the importance to study adaptive patterns for
single components in connection with collaboration
patterns, not only to suggest developers which kinds of
patterns they can find, but also to guide designers that aim
at proposing new adaptive collaboration patterns.

Figure 4. Patterns Summary

Considering together the features of adaptability and
collaboration, our taxonomy can have the shape reported
in Table 1. In the table, the collaboration classes of
patterns are in the columns, while adaptive classes of
patterns are in the rows.

3.4. Potential Advantages

Even if the work is at an early stage, we can identify two
potential advantages in applaying the proposed taxonomy:
the reuse of existing experience and the support in
choosing patterns.

The fact that our classification is based on a settled set of
agents’ features can enable the reuse of the experience
made so far. This means that the most studies performed
on agents based on our three-feature definition can be
applied to the classified patterns. In particular, the reuse
concerns:
• models, which can applied to patterns with light

adaptations;
• methodologies, or fragments of them, which guide

developers during the development;

Table 1. Input Data

Classes of patterns Swarm intelligence Negotiation Competition Electronic institutions
Reactive Reactive swarm

intelligence
 Reactive norm-based

Internal feedback
loop

 Goal-oriented
negotiation

Goal-oriented
competition

External feedback l. Controlled negotiation Controlled competition

• supporting tools, which can be exploited during the
de-velopment phases;

• code libraries, which are off-the-shelf implemented
parts of software components that can be reused.

For instance, a well-known and exploited model is the
BDI (Belief-Desire-Intention) one [33]. This model is
based on information an agent has (beliefs), its goal
(desire) and the actions to be performed to achieve the
goal (intentions). Since this model is mainly related to the
proactivity feature of agents, it can be useful in dealing
with patterns classified as proactive, as well as in defining
new proactive patterns. Another field that has been widely
explored is the one related to agent auctions [36], a
negotiation mechanism that well suits collaboration and
competition among agents and that could be adopted in
sets of general autonomous entities.

The second advantage is that our classification can help
developers in choosing the most appropriate pattern on
the base of scenario requirements. In fact, the class of a
pattern potentially strongly characterizes its application to
service components. A reactive pattern can be more
suitable for components that provide functionality that is
weakly dependent on the environment, and do not need to
change their behavior frequently. In most cases, this
simple kind of pattern is likely to be enough. A proactive
pattern can instead be intended for situations where
components are interested in adapting their behavior as
much as possible, and they make everything they can to
achieve this goal. Finally, a social pattern better can fit a
set of coupled components that must collaborate.

4. RELATED WORK

Individual adaptation of components has been a very
important thread of research since the early years of
intelligent agents [20] and of reflective computing [40],
and several architectures and mechanisms to enable self-
adaptation has been proposed so far, typically based on
goal-oriented agents and internal feedback loops (whether
implicitly or explicitly architected within the component).
For instance, the ACE component model defined in the
context of the CASCADAS project2 defines a very clean
architecture enabling service components to dynamically
adapt their behavior based on their context and on
internally engineered feedback loops [5, 25]. The already
mentioned autonomic computing approach of the BM has
inspired several works related to enforcing adaptability
via external feedback loops [22]. This approach is to most
extent also shared by many works in the area autonomic
communications [14, 32]. As another example, in the
SELFMAN project [34], the idea is to enforce adaptation
in components via an explicit phase of engineering

2 http://acetoolkit.sourceforge.net/cascadas/

external (possibly multi-fold) feedback loops.
Complementary to individual adaptation researches is
research related to adaptation of ensembles of software
components, in order to meet new or unexpected
requirements or contingencies. Such research thread, even
if not new [1], still presents a relevant number of open
issues [10], beside the ones that we have analyzed in this
paper (and accounted for in our taxonomy). For instance,
a key under-investigated issue relates to determining how
it it possible to enable dynamic structural adaptations, i.e.,
dynamically changing the collaboration pattern in an
ensemble of components, in order to preserving the
required behaviors despite dramatic changes that could
not be sustained by the originally chosen collaboration
pattern. The possibility of dynamically self-selecting the
most suitable adaptation pattern by an ensemble of
component, which we called “dynamic self-expression”,
is one of the key methodological and technological
innovations that will be pursed in the context of the
ASCENS project. With this regard, an important lesson
could come again from the area of multi-agent systems,
and specifically of multi-agent systems, where the proper
adaptation of a complex system made up of autonomous
components may require the existence of “norms” that
collectively regulate the activities of the components [12,
18, 38], possibly enacted via specific components of the
set [28, 44]. In the area of biologically-inspired
distributed computing, a large number of proposal for
algorithms that can achieve adaptation in a distributed
systems via decentralized self-organization have been
proposed in the recent. These include a variety of nature-
inspired algorithms and mechanisms [3, 8, 30] (see [24]
for an in-depth survey), which, however, apply to specific
problem instances and can hardly be translated to general-
purpose schemes. What is still missing in general, despite
some recent efforts in this direction [4], is a systematic
classification of adaptive collaboration patterns – both at
the level of individuals and ensembles, accompanied by
methodological guidelines to choose among them.

5. CONCLUSIONS

In this paper, we have argued that agent-based computing
can play a key role in supporting the design and
development of future autonomic service systems, and
have proposed a preliminary taxonomy of adaptive
collaboration patterns, properly accounting for both the
architecture of individual components and for the
interaction patterns among ensembles of components. The
benefit that our work would like to give, as preliminary as
it can be, is twofold. Firstly, we think that a wide range of
experiences in the area of agents and multi-agent systems
can be reused to support adaptive collaboration patterns
for service ensembles in complex applications scenarios,
and our effort can represent a first useful step in this
direction. Secondly, the taxonomy in itself can be useful

for the development of autonomic service components
and ensembles, since it can suggest criteria according to
which adaptive ensembles of components should be built.

Our future work will aim at studying and framing within
the taxonomy as many patterns as possible, so to propose
an almost complete classification of existing patterns. In
particular, we will explore the existence of social patterns,
or, better, to which extent existing negotiation and
interaction protocols can be considered as social
collaboration patterns. Of course, this will most likely
require refining and extending the preliminary taxonomy
here presented. Along with that, and possibly more
interesting, we will aim at defining some more accurate
guidelines for system developers, in order to help them in
their work, and at promoting dynamic self-expression of
collaboration patterns to enable service ensembles to
dynamically chose the most suitable collaboration pattern.

ACKNOWLEDGEMENTS

Work supported by the ASCENS project (EU FP7-FET,
Contract No. 257414).

REFERENCES

[1] J. Andersson, R. de Lemos, S. Malek, and D. Weyns,
“Reflecting on self-adaptive software systems”, Software
Engineering for Adaptive and Self-Managing Systems,
International Workshop on, Vol. 0, pages 38–47, 2009.

[2] P.Anthony, W.Hall, V.Dang, and N.Jennings,
“Autonomous agents for participating in multiple online
auctions”, IJCAI Workshop on EBusiness and the
Intelligent Web, Seattle WA – USA, pages 54-64, 2001.

[3] Ö. Babaoglu, T. Binci, M. Jelasity, and A. Montresor,
“Firefly-inspired heartbeat synchronization in overlay
networks”, 1st International Conference on Self-adaptive
and Self-organizing Systems, Cambridge (MA) – USA,
pages 77–86, 2007.

[4] Ö. Babaoglu, G. Canright, A. Deutsch, G. D. Caro, F.
Ducatelle, L. M. Gambardella, N. Ganguly, M. Jelasity, R.
Montemanni, A. Montresor, and T. Urnes, “Design
patterns from biology for distributed computing”, TAAS,
Vol.1, No. 1, pages. 26–66, 2006.

[5] L. Baresi, A. Di Ferdinando, A. Manzalini, and F.
Zambonelli, “The cascadas framework for autonomic
communications”, Autonomic Communications, Vol 2,
pages 147-168, 2009.

[6] E. Bonabeau, M. Dorigo, and G. Theraulaz, SWARM
INTELLIGENCE: FROM NTURAL TO ARTIFICIAL
SYSTEMS, Oxford University Press, USA, 1999.

[7] L.Braubach, A.Pokahr, and W.Lamersdorf, “Jadex: a
BDI-agent system combining middleware and reasoning”,
Software Agent-based Applications, Platforms and

Development kits, pages 143–168, 2005.

[8] Y. Brun and D. Reishus, “Path finding in the tile assembly
model”, Theor. Comput. Sci., Vol. 410, No. 15, pages
1461–1472, 2009.

[9] G. Cabri, F. D. Mola, and R. Quitadamo, “Supporting a
territorial emergency scenario with Services and Agents: a
case study comparison”, The IEEE 15th International
Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE), Manchester - UK,
pages 35-40, June 2006.

[10] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J.
Magee, J. Andersson, B. Becker, N. Bencomo, Y. Brun, B.
Cukic, G. D. M. Serugendo, S. Dustdar, A. Finkelstein, C.
Gacek, K. Geihs, V. Grassi, G. Karsai, H. M. Kienle, J.
Kramer, M. Litoiu, S. Malek, R. Mirandola, H. A. Müller,
S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns, and J.
Whittle, “Software engineering for self-adaptive systems:
A research roadmap”, Software engineering for Self-
Adaptive Systems, Vol. 5525, pages 1-26, 2009.

[11] S. Cheng, V. Poladian, D. Garlan, and B. Schmerl,
“Improving architecture-based self-adaptation through
resource prediction”, Software engineering for Self-
Adaptive Systems, Vol. 5525, pages 71-88, 2009.

[12] Y. Demazeau, “From interactions to collective behavior in
agent-based systems”, 1st European Conference on
Cognitive Science, Saint-Malo, pages 117-132, 1995.

[13] V. Dignum and F. Dignum, “Modelling agent societies:
coordination frameworks and institutions” Progress in
Artificial Intelligence, Vol. 2258, pages 7 -21, 2001.

[14] S. Dobson, S. Denazis, A. Fernández, D. Gaïti, E.
Gelenbe, F. Massacci, P. Nixon, F. Saffre, N. Schmidt,
and F. Zambonelli, “A survey of autonomic
communications”, ACM Trans. Auton. Adapt. Syst., Vol. 1,
No. 2, pages 223–259, 2006.

[15] M. Esteva, J. Rodriguez-Aguilar, C. Sierra, P. Garcia, and
J. Arcos, “On the formal specification of electronic
institutions” Agent mediated electronic commerce, Vol.
1991, pages 126–147, 2001.

[16] P. Faratin, C. Sierra, and N. Jennings, “Negotiation
decision functions for autonomous agents”, Robotics and
Autonomous Systems, Vol . 24, No. 3-4, pages 159–182,
1998.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
DESIGN PATTERNS, Addison Wesley, Reading (MA),
1995.

[18] A. García-Camino, J. A. Rodríguez-Aguilar, C. Sierra,
and W. W. Vasconcelos, “Constraint rule-based
programming of norms for electronic institutions”,
Autonomous Agents and Multi-Agent Systems, Vol. 18,
No.1, pages 186–217, 2009.

[19] M. N. Huhns and M. P. Singh, “Service-oriented
computing: Key concepts and principles”, IEEE Internet
Computing, Vol. 9, No. 1, pages 75–81, 2005.

[20] N. R. Jennings, “An agent-based approach for building
complex software systems” Communications of the ACM,
Vol. 44, No. 4, pages 35–41, 2001.

[21] N. Karacapilidis and D. Papadias, “Hermes: supporting
argumentative discourse in multi-agent decision making”,
Fifteenth national/tenth conference on Artificial
intelligence/Innovative applications of artificial
intelligence American Association for Artificial
Intelligence, Menlo Park (CA) - USA, pages 827-832,
1998.

[22] J. Kephart and D. Chess, “The vision of autonomic
computing”, IEEE Computer, Vol. 36, No. 1, pages 41–50,
2003.

[23] D. Kortenkamp, R. Bonasso, and R. Murphy,
ARTIFICIAL INTELLIGENCE AND MOBILE
ROBOTS: CASE STUDIES OF SUCCESFUL ROBOT
SYSTEMS, MIT Press Cambridge, MA - USA, 1998.

[24] M. Mamei, R. Menezes, R. Tolksdorf, and F. Zambonelli,
“Case studies for self-organization in computer science”,
Journal of Systems Architecture, Vol. 52, No. 8-9, pages
443–460, 2006.

[25] A. Manzalini and F. Zambonelli, “Towards autonomic
and situation-aware communication services: the cascadas
vision”, DIS ’06: IEEE Workshop on Distributed
Intelligent Systems: Collective Intelligence and Its
Applications, Washington DC – USA, pages 383–388,
2006.

[26] R. Martin, “Design principles and design patterns”, Object
Mentor, 2000.

[27] H. Müller, M. Pezzè, and M. Shaw, “Visibility of control
inadaptive systems”, 2nd international workshop on Ultra-
large-scale software-intensive systems, Leipzig - Germany,
pages 23–26, 2008.

[28] P. Noriega, “Agent-mediated Auctions: The Fishmarket
Metaphor”, Ph.D Thesis, Universitat Autonoma de
Barcelona, Barcelona (E), 1997.

[29] E. Ogston and S. Vassiliadis, “A peer-to-peer agent
auction”, First international joint conference on
Autonomous agents and multiagent systems, Bologna -
Italy, pages 151-159, 2002.

[30] P. Snyder, R. Greenstadt, and G. Valetto, “Myconet: a
fungi-inspired model for superpeer-based overlay
topologies”, 3rd International Conference on Self-adaptive
and Self-organizing Systems, San Francisco – California –
USA, pages 40-50, 2009.

[31] S. Parsons and N. Jennings, “Negotiation through
argumentation a preliminary report”, 2nd International
Conference on Multi Agent Systems, Kyoto – Japan,
pages 267–274, 1996.

[32] R. Quitadamo and F. Zambonelli, “Autonomic
communication services: a new challenge for software

agents”, Autonomous Agents and Multi-Agent Systems,
Vol. 17, No. 3, pages 457–475, 2008.

[33] A. Rao and M. Georgeff, “BDI agents: From theory to
practice”, First international conference on multi-agent
systems (ICMAS-95), San Francisco – USA, pages 312–
319, 1995.

[34] P. V. Roy, “Overcoming software fragility with
interacting feedback loops”, BCS International Academic
Conference, London - UK, 2008.

[35] E. Sahin, T. Labella, V. Trianni, J. Deneubourg, P. Rasse,
D. Floreano, L. Gambardella, F. Mondada, S. Nolfi, and
M. Dorigo, “SWARM-BOT: Pattern formation in a swarm
of self-assembling mobile robots”, IEEE International
Conference on Systems, Man and Cybernetics, Vol.4,
2003.

[36] T. Sandholm, “Algorithm for optimal winner
determination in combinatorial auctions”, Artificial
Intelligence, Vol. 135, No. 1-2, pages 1–54, 2002.

[37] R. Smith, “The contract net protocol: High-level
communication and control in a distributed problem
solver”, Computers, IEEE Transactions on, Vol. 100, No.
12, pages 1104–1113, 2006.

[38] N. A. M. Tinnemeier, M. Dastani, and J.-J. C. Meyer,
“Roles and norms for programming agent organizations”,
8th International Conference on Autonomous Agents and
Multiagent Systems, Budapest – Hungary, pages 121–128,
2009.

[39] J. Vázquez-Salceda. The role of Norms and Electronic
Institutions in Multi-Agent Systems applied to complex
domains. The HARMONIA framework. AI
Communications, 16(3):209–212, 2003.

[40] T. Watanabe and A. Yonezawa, “Reflection in an object-
oriented concurrent language”, ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications, San Diego - California - USA pages 306–
315, 1988.

[41] D. Weyns, S. Malek, and J. Andersson, “FORMS: a
formal reference model for self-adaptation”, The 7th
international conference on Autonomic computing,
Washington DC - USA pages 205–214, 2010.

[42] M. Wooldridge, AN INTRODUCTION TO
MULTIAGENT SYSTEMS, Wiley, 2009.

[43] P. Wurman, M. Wellman, and W. Walsh, “The Michigan
Internet AuctionBot: A configurable auction server for
human and software agents”, The second international
conference on Autonomous agents, Minneapolis – MN –
USA, pages 301–308, 1998.

[44] F. Zambonelli, N. R. Jennings, and M. Wooldridge,
“Developing multiagent systems: The Gaia methodology”,
ACM Transactions on Software Engineering and
Methodology, Vol. 12, No. 3, pages 417–470, 2003.

