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Abstract—Clinical research and practice are rapidly chang-
ing mostly due to Information and Communication Technology,
especially, as Machine Learning (ML) offers great potential for
predictive and personalised medicine. Nevertheless, barriers
are still existing for widespread adoption of ML tools, as
highlighted by studies from the European Union. In this paper,
we propose an architecture for a Decision Support System
assisting clinicians in assessing health risk of patients by deliv-
ering “Risk Prediction as a Service”. By leveraging standard
web technologies as well as the PMML and PFA formats for
exchange of trained models, we achieve ubiquitous access to
predictions, ease of deployment, and seamless interoperability,
while promoting collaboration.

Keywords-risk prediction; PMML; PFA; machine learning;
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I. INTRODUCTION

The landscape of both clinical research and clinical prac-
tice is rapidly and substantially changing mostly due to the
fundamental role played by Information and Communication
Technology (ICT) in (a) facilitating access to and exploita-
tion of an enormous amount of patient-related information,
and (b) providing increasingly reliable and precise compu-
tational and Machine Learning (ML) algorithms for predic-
tive modelling [1]-[3]. Indeed, in this novel scenario, the
paradigm shift towards predictive and personalised medicine
is triggering a whole new set of computational requirements
in terms of predictive modelling for decision making.

The need for advancing computational tools, supporting
for instance risk assessment for screening and stratification,
arises when recognising that, while rule-based systems for
clinical management are accepted in the current clinical
practice, exploitation of predictive modelling tools for clin-
ical decision support is still far from reaching maturity.

This work has been supported by the CONNECARE (Personalised
Connected Care for Complex Chronic Patients) project (EU H2020-RIA)
under contract no. 689802.

In fact, a European Union study on Big Data in Public
Health, Telemedicine, and Healthcare [4] highlighted many
opportunities as well as barriers for improving current
clinical practice. Among the many, the following areas
of improvement are those explicitly targeted by the work
presented in this paper:

« Standards and protocols. As we adopt the Predictive
Model Markup Language and the Portable Format for
Analytics [5] standard formats specifically conceived
for seamless exchange of ML models—ultimately en-
abling collaboration.

« Technological development. As we leverage state-
of-art “Machine Learning as a Service” approaches
grounded in the most modern technological stacks
and best practices stemming from the work in
service-oriented architectures—to enable ubiquitous ac-
cess and systems interoperability.

« Data analytics. As we promote collaboration between
data scientists regardless of the programming language
and ML software framework preferred, and among data
scientists and clinicians—ultimately enabling separa-
tion of concerns in integrated care practice.

Accordingly, in the context of the CONNECARE! European
project for personalised integrated care, we designed a
Decision Support System (DSS) for health risk prediction
whose main goal is to provide ubiquitous access to and
seamless deployment of prediction models, as well as to
promote collaboration and interoperability between data
science teams and, possibly, clinicians.

II. BACKGROUND

Health risk assessment is a relevant component in the
strategic adoption of integrated care because of its impact

Uhttp://www.connecare.eu/
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on the design of healthcare services (“population-based”
health risk assessment), as well as for enhanced clinical
management (“patient-based” health risk assessment). Pa-
tient management exclusively based on clinical criteria (pro-
fessional training, knowledge, instinct, and experience) or
combined with rule-based clinical management (thresholds
for certain parameters defining pre-established decision cri-
teria) constitute most of current practice. In contrast, the use
of predictive modelling tools for clinical decision support
(predictive modelling establishing relationships between sets
of variables and outcomes generated using statistical or ML
tools) is still in its infancy, despite seemingly a natural step
towards personalisation of care.

In CONNECARE, one of the objectives is to develop
ICT tools enabling creation, exchange, and deployment of
predictive risk models that can help, for instance, in service
selection of home hospitalisation for complex chronic pa-
tients. In particular, current focus is on validating predictive
modelling for Home Hospitalisation (HH) / Early Discharge
(ED)—as summarised in Figure 1:

e during HH / ED (t0), to identify (a) risk of early
readmission after hospital discharge and (») mortality,
to stratify patients in order to optimise care (Risk
Models 1-3)

o after HH / ED (tl), to identify risk of (a) early
readmission after hospital discharge and (») mortality,
to stratify patients for transitional care purposes (Risk
Models 4-6)

The models built in such a way should be made available
for inspection and usage across clinical sites, and regardless
of the technological stack exploited for their creation.

A. MLaaS

In the healthcare domain there is growing momentum
around the “X-as-a-Service” paradigm, especially in the
form of “Machine Learning as a Service” (MLaaS) [6],
already applied, for instance, to readmission score predic-

Development of predictive modelling within CONNECARE (“ER” stands for “Emergency cases” [of early readmission]).

tion [7]. Nevertheless, MLaaS as is may be unsuitable to
unravel its full potential, mostly due to healthcare peculiar
restrictions regarding data disclosure: even data anonymised
in compliance with regulations is not completely immune to
malicious attacks [8].

Many well established platforms for MLaaS are available
as provided by big players such as IBM, Google, Microsoft,
and Amazon, and they are extensively exploited by both
the industry and the academia for good reasons—among
the many: performance, reliability, comprehensiveness of
ML models supported. Nevertheless, as all Cloud-based
approaches they may suffer of issues related to privacy and
disclosure of data, particularly relevant for the healthcare
domain. Here, in fact, clinicians and data scientists may be
less keen to share sensible training data with third-parties,
even if they are well recognised and worth of trust. Also, not
every data science team nor clinic can afford them, either
from a cost perspective or due to shortage of the required
technical skills—working with RStudio is quite different
than interacting with a Cloud-hosted MLaaS platform.

Besides training, MLaaS can also be used for effective
deployment of models to production environments once they
have been trained, although this is a relatively less explored
practice that only recently started getting attention—see,
for instance, IBM MAX [9]. Here, many conceptual and
technical issues do not have a widely acknowledged solution,
yet. For instance, models versioning, fault-tolerance and
availability, heterogeneity of languages and ML frameworks
used, and diversity of skillsets and goals between data
scientists, clinicians, and managers are just a few to mention.

B. PMML and PFA

The Predictive Model Markup Language (PMML) and
Portable Format for Analytics (PFA) standards have been
precisely conceived with the goal of promoting seamless
exchange and deployment of ML models (a) without bring-
ing along the burden of computationally expensive training
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sessions and data access, (b) without breaking the data
pipeline (see Figure 2), and (c) across ML / statistical
frameworks and languages: models are built once, and then
“run” everywhere.

Both PMML and PFA are standard representation formats,
the former based on XML, the latter on JSON, meant to
support an operational and machine-readable description of
any kind of (already trained) prediction model, such as
regression models, classifiers, clustering methods, etc.

The idea behind these standards is hence perfectly aligned
with the goals defined in the introduction:

« enable independent development / deployment of pre-
dictive models

o ensure flexibility of the production environment to
easily integrate novel models

o allow for the development of models in different pro-
gramming languages and frameworks, such as caret
for R and scikit-learn for Python, regardless of
the language used in the production environment—for
instance, as in our case, Java

PMML and PFA are currently implemented in a handful of
open source software packages readily available for usage
in the most common programming languages. For instance:

o jpmml-r is a Java library for converting models saved
in R native format to PMML

o Aurelius is a R package for converting models saved
in R native format to PFA

o jpmml-sklearn is a Java library for converting models
saved in Python native format to PMML

« Titus is a Python package for converting models saved
in Python native format to PFA

o jpmml-evaluator is a Java library for executing PMML
models

o Hadrian is a Java library for executing PFA models

Nevertheless, any ML framework usually includes program-
ming constructs to create brand new models, not only to re-
use existing, state-of-art ones, thus there will always be the
possibility that a given model is not (yet) supported by the
aforementioned libraries and packages: for instance, jpmml-r
is limited to the R packages listed in its homepage [10].

III. THE CONNECARE SOLUTION

Within the CONNECARE project three are the clinical
sites to consider for deployment of ICT solutions supporting
and promoting integrated care, hence, the relevance of
providing a flexible DSS architecture allowing for seamless
integration with and greater interoperability across hetero-
geneous technological environments is well recognised.

Accordingly, our “Risk prediction as a Service” solution
has been conceived and designed with three precise moti-
vating use cases in mind—depicted in Figure 3.

Use case A: A handful of data science teams want to
join efforts for advancing the state of art in creating ML
models for clinical risk assessment and prediction. They
are geographically distributed, hence collaboration should
happen remotely, over the network. They belong to different
organisations, thus sharing data for training models would
require a lot of paperwork and may even be forbidden by
respective administrations. They also have different technical
preferences and skills about the programming language
and ML framework of choice: for instance, some prefer
working with Python and its scikit-learn package, while
others are well trained with the R environment and its
caret package. Under these premises, their only hope is
to locally build prediction models, then share them in a
technology-agnostic format allowing seamless integration
and deployment with whatever technological environment,
while retaining descriptive information such as performance
measures and input (training) data schema.

Use case B: The clinical staff of a healthcare organisation
wants to experiment with predictive risk assessment for its
first time, as a feasibility analysis whose success may pave
the way towards rolling out a local trial. As such, on the
one hand it lacks the necessary technical resources and
skills, while on the other would like to avoid investments
in new staff or MLaaS solutions without a guaranteed
successful outcome. A solution could be to collaborate with
another organisation developing prediction models so as to
to get those already trained models and apply them to the
data available locally. Once a suitable model with desired
performance is found, further investments can be considered.

Use case C: Two healthcare organisations would like to
asses transferability of the prediction models they built with
the assistance of a data science team each. Nevertheless,
the lack of reciprocal trust hinders data sharing agreements,
and the difference in technical skills is an obstacle for
interoperability and deployment of the models developed in
one site to the other. A solution letting the two organisations
exchange not training data and operational instructions about
how to re-build the ML pipeline, but the already built
prediction models in a data format suitable to be used in
whatever programming language and ML framework would
do the trick.
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Figure 3. Targeted use cases: interoperability between ML frameworks and seamless deployment.

A. Functionalities

The DSS works in two modalities, each with its own set
of functionalities and a few common ones meant to fully
support the aforementioned use cases.

Plugin mode: The DSS is able to absorb already trained
risk prediction models and apply them on new data samples.
In particular, the operations provided to either data scientists
or clinicians are:

o upload model to plug into the DSS service a new risk
prediction model anytime, from anywhere—through a
single operation (file upload), to be quick and easy

o list models to get a list of the currently available models
with information on their purpose (e.g. 30 days mor-
tality risk), health indicators exploited for the predic-
tion (e.g. age, BMI), and possibly metadata regarding
their nature (e.g. random forest) and applicability (e.g.
schema of input data required, prediction target)

e inspect model to observe inner parameters (e.g. equa-
tion of a regression line, precision, recall) and metadata
(date of latest update, provider of the model, reference
publication if available)

o download model to get any of the available models
anytime, from anywhere, in either native format or
PMML / PFA—again, through a single operation

e delete model to remove a model from the DSS. It is
worth noting that safety measures against accidental
or malicious attempts to delete models are in place
(e.g. check if model has been last used long ago, ask
consensus to model provider)

e apply model to apply whichever model available to
whatever data sample compatible, getting as result its
predictions, anytime, from anywhere

Learning mode: The DSS is also able to create its
own risk prediction models as well as to re-train them. In
particular, the operations provided are:

o train / test model to (re)train or test any of the models

supported by the DSS? with data contextually supplied
(through file upload)

e save model to “freeze” a model in time and save it for
later usage. This means that the model will be actually
replicated in two instances: one copy would not be
further trained with (possibly) incoming data streams,
the other one will continue online training (see “set
online learning” common functionality)

o discard model to stop training a model and delete it

Common functionalities: Regardless of the mode of op-
eration, the following settings are available:

o set local / global to restrict or not scope and applica-
bility of a model:

— local models can be trained with and applied to
data coming from the same provider, solely

— global models can be trained with any compatible
data, regardless of its provenance

o set online to restrict or not its learning capabilities:

— online models continues to be trained on the data
samples subject of predictions

— offline models are “frozen” as soon as the training
process terminates

B. Non-functional properties

The leading contribution we intend to deliver is not as
much in the functionalities described above, which although
comprehensive are rather standard, as in the set of non-
functional properties that the DSS promotes.

Trust: The DSS promotes trust in the prediction models it
makes available by two means: (a) models are transparently
available for inspection (see “inspection” functionality in
previous section), hence crucial information such as provider
organisation, schema of data used for training, and perfor-
mance measures are made observable by anyone, anytime,

2See “Learning Service” in section “Architecture”.



from anywhere; (b) the plugin operation mode actually
promotes a workflow in which data scientists build a model,
clinicians (locally) validate them, and then — hence, only
when they are trusted — upload it to the DSS system which
makes it available at a large scale.

Language / framework orthogonality: The DSS seam-
lessly operates with models built in any language and with
any ML / statistical framework. Many of the most widely
established software frameworks represent prediction models
in a custom format, often different also from framework to
framework even if the programming language is the same.
To enable technical interoperability and collaboration among
data science teams, the DSS automatically translates models
to/from PMML / PFA, as described in next section.

Technical interoperability: The DSS follows technical
standards to be seamlessly available to any software client
as RESTful web service, regardless of its implementation
language. For instance, XML / JSON data formats and REST
APIs guarantee interoperability with the vast majority of
programming languages.

Accessibility: The DSS functionalities are meant to be
accessible from clinicians’ workstations, and seamlessly in-
tegrated with the case management systems there available—
through the service-oriented RESTful layer. It is worth
emphasising that the DSS is meant to be a “behind the
scenes” service accessible (visible) through the user interface
of the system that users are used to work with.

Transferability: Factors such as (a) license binding con-
straints, (b) proprietary software; (c) lack of availability for
inspection, and (d) rigidity of computational algorithms are
limiting factors for transferability of most of the existing
population-based risk assessment tools. The DSS relies on
open-source software with adequate licensing (a,b), is open
to run-time inspection of working parameters (c), and is
flexible enough to allow for both design-time (extensibility)
and run-time (configurability) modification (d).

Privacy and security: Issues related to privacy, security
of data transfer, as well as risks associated with decisions
are traditionally brought along by the very essence of the
healthcare domain. It is thus of foremost importance that any
DSS is developed with the necessary privacy-preserving and
security-compliant methodologies and technologies. With
respect to this, it is worth to highlight that, once again, the
plugin operation mode actually promotes privacy and secu-
rity by, for instance, allowing data scientists to not disclose
the datasets used for training, hence avoiding altogether the
top privacy and security concern®.

C. Architecture

The architecture of the DSS (depicted in Figure 4) features
five logical modules interacting to deliver the functionalities
and non-functional properties described above.

3Nevertheless, it is worth to remark that even models should be carefully
exposed to prevent data leakage [8].
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Figure 4. The DSS architecture.

Web API: Provides the RESTful endpoints to contact for
exploiting the DSS functionalities. The module relies on
third-party libraries providing all the building blocks for
implementing secure, reliable, interoperable, and efficient
RESTful web services—namely Jersey [11] and Jackson
[12]. The module can:

« receive requests for upload, download, etc. of prediction
models and training / testing data by the data scientists,
possibly triggering the Translation Service and the
Shared Storage layer

« receive requests for delivering predictions from the
clinician, which are dispatched to the right Prediction
Service, in turn interacting with the Shared Storage
layer to retrieve models and (possibly) with the Learn-
ing Service for (re)training models

Translation Service: Provides translations between repre-
sentation formats of prediction models. For instance, it is in
charge of the automatic translation to PMML and PFA of
models uploaded in R or Python formats. The module can:

« receive requests for translation between models repre-
sentation format by the Web API module

« fetch models from the Shared Storage layer

« write translated models back to the Shared Storage
The model exploits jpmml-r for conversion from R to
PMML, Aurelius for conversion from R to PFA, jpmml-
sklearn for conversion from Python to PMML, and Titus for
conversion from Python to PFA.

Prediction Service: Computes predictions based on the
models fed with the supplied input data. The module can
receive requests for making predictions from the Web API
module, which triggers fetching the chosen model from the
Shared Storage layer and (possibly) interacting with the
Learning Service for (re)training models. The module ex-
ploits jpmml-evaluator and Hadrian for, respectively, making
predictions out of PMML and PFA models.



Learning Service: This module is responsible for online
learning, thus, for enabling the DSS to build its own risk pre-
diction models. Based on the DSS configuration, this module
may get feedback from the Prediction Service module (e.g.
using predictions for training) or not. The model can:

¢ receive requests to perform training / testing by the Web
API module, triggered by the data scientists

« receive requests to perform (re)training by the Predic-
tion Service, which in turn may require access to the
Shared Storage layer

The module relies on the Smile Java library for statistical
analysis and ML, hence supports any of the algorithms and
techniques there available.

Shared Storage: Stores and provision all the data and
meta-data required for supporting DSS execution, there ex-
cluded the patient data—which is used for training, testing,
or prediction, and then discarded. Also, the module pro-
vides fault-tolerance by persisting data and by automatically
backing data up. As such, it can interact with any other
module—as already described. The module relies on the
Redis database system.

IV. CONCLUSION

In this paper, we proposed a reference architecture for a
Decision Support System enabling and promoting interop-
erability amongst technological environments, and collabo-
ration between teams of data scientists and amongst clinical
staff. In particular, we have taken as a reference the “Risk
prediction as a Service” instantiation of the more general
MLaaS paradigm, steadily gaining momentum in clinical
practice. In this context, we motivated how leveraging
state of art web technologies — such as service-orientation
and RESTful architecture — and emerging standards for
machine learning models representation and exchange —
namely, PMML and PFA — could support practical use cases
demanding interoperability and collaboration.

The proposed architecture is actually implemented in
a ICT solution used within the CONNECARE European
project, where it delivers predictions about hospitalisations,
emergency re-admissions, and mortality, both during home
hospitalisation and after discharge (30-90 days). The models
currently used have been created by a partner with locally
available data regarding 6000+ patients with 5+ years of
follow-ups, which could not be disclosed to other partners.
Hence, the DSS has been a precious asset to let clinical
partners both (a) use and validate each other models and
(b) join locally available datasets to cooperatively build
prediction models, without the need for data sharing. Those
models started generating predictions on new data samples
(new patients enrolled in clinical trials) at the beginning of
2019, hence data collection for validation and evaluation
purpose is still in place. Trials are set to end after summer,
then assessment of the generated models will begin.

The project is set to end at the end of 2019, then, the
DSS system here described will be released as open-source
software free to use and modify by any interested developer,
data scientist, clinical practitioner.
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