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ABSTRACT
Engineering a decentralized system of autonomous service
components and ensembles having multiple and interact-
ing feedback loops is very challenging. While several works
have expressed feedback loops as first-class entities, very lit-
tle attention has been given to providing actual tool sup-
port. In this paper, we propose a novel approach to archi-
tect and engineer self-adaptive systems based on feedback
loops. We also present the first implementation of Sim-
SOTA, an Eclipse plug-in being developed to support the
modeling, simulating and validating of self-adaptive systems
based on our feedback loop-based approach. We validate our
approach using a case study in cooperative electric vehicles.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
Patterns

General Terms
Design

Keywords
Autonomic systems, self-adaptive architectural patterns, self-
awareness, simulation tools, software engineering

1. INTRODUCTION
Software systems today are becoming increasingly com-

plex and decentralized, and called to operate in open-ended
and dynamic environments. It is therefore challenging and
economically unbearable to develop, deploy and manage these
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systems with the required level of reliability and availabil-
ity. As a consequence, new software engineering methods
and tools are required to make software systems autonomic
[10, 14].

In the ASCENS EU-funded project, we investigate vari-
ous models, schemes and mechanisms where both individual
service components and service-component ensembles can
become self-aware and self-adaptive. In this context, we
have introduced the SOTA (State Of The Affairs) model
[1] as a general goal-oriented framework for analyzing the
self-awareness and self-adaptation requirements of adaptive
systems.

The SOTA model identifies an n-dimensional virtual-state
space in which the execution of a system situates [1]. In the
SOTA space, a system is self-aware if it can autonomously
recognize its current position and direction of movement in
the space, and self-adaptation means that the system is able
to dynamically direct its trajectory. To achieve such capa-
bility, feedback loops are required inside the system. That is,
they detect the current trajectory of the executing system,
and then correct it so that specific regions of the space can
be reached which correspond to specific application goals.
SOTA defines many self-adaptive patterns in which feedback
loops are organized [4]. However, there is a need to build
solid engineering tools to support this design process.

Engineering a decentralized system of autonomous service
components and ensembles is very challenging for software
architects. This is because there are a number of service
components and managers that close multiple, interacting
feedback loops. To better understand this complex setup,
solid software engineering methods and tool support are
highly desirable. Although several existing works (e.g. [12,
8, 16, 13, 18, 11, 15]) have addressed the need to make feed-
back loops explicit or first-class entities, very little attention
has been given to providing actual tool support for the ex-
plicit modeling of these feedback loops, their simulation and
validation.

In this paper, we present a novel approach to architect and
engineer self-adaptive systems based on feedback loops. Our
work integrates both decentralized and centralized feedback
loop techniques in order to exploit their benefits. We also
present the first implementation of SimSOTA, an Eclipse
plug-in that is being developed to support the modeling,
simulating and validating of self-adaptive systems based on
our feedback loop-based approach. The preliminary results
of the approach for a single pattern were provided in [3].
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This paper presents the completed first implementation of
the plug-in for two key patterns, integrating the decentral-
ized and centralized feedback loop techniques. The goals of
the SimSOTA plug-in are to support the modeling of the
SOTA patterns’ structural and behavioral information us-
ing UML 2.2 diagrams; visual animation of the pattern be-
havior to expose run-time information; animating the com-
posite structure of the patterns; run-time prompting during
the pattern simulation; and model-level debugging with de-
tailed control of execution of the patterns. We validate our
approach using a case study in cooperative electric vehicles
(e-mobility) [9].
The rest of the paper is organized as follows. Section 2

introduces the SOTA model and self-adaptation patterns.
Section 3 presents our approach for engineering feedback
loops. The case study is described in Section 4, and Section
5 discusses an example of the simulation to the case study.
A discussion and evaluation of our approach is provided in
Section 6, and Section 7 highlights key related work. Section
8 concludes the paper.

2. SOTA CONCEPTUAL MODEL
The SOTA conceptual model conceives a self-adaptive soft-

ware system as a dynamic system immersed in a virtual
n-dimensional phase space, with each dimension associated
with an internal or environmental parameter of interest for
the execution of the system [1]. The execution of the sys-
tem can then be modeled in terms of movements in such
space. The dimensions of the SOTA space identify what the
system should be aware of. A system is self-aware if it can
autonomously recognize its current position and direction of
movement in the SOTA space. A self-aware system using
proper feedback loops can direct its own movements in the
SOTA space. Self-adaptation is associated with the capa-
bility of the system to rejoin proper trajectories when the
system tries to deviate from them, so goals are eventually
achieved.
The SOTA model assumes that the systems under study

comprise service components (SC), which are intended as
goal-oriented computational/software nodes to serve in open
and non-deterministic environments. The SCs are possibly
grouped into service-component ensembles (SCE), a group
of SCs that share a set of common goals.
In SOTA, a goal by definition is the achievement of a given

state of the affairs. Therefore, in general terms, a goal Gi for
the entity e (an individual SC or SCE) can be represented
as a specific point, or more generally an area in the virtual
space S. More specifically, a goal Gi of an entity e may
not necessarily be active all the time. In such instance, it is
useful to characterize a goal in terms of a precondition Gpre

i

and a postcondition Gpost
i to express when the goal has to

activate and what its achievement implies (see Fig. 1).
As goals represent the eventual state of the affairs that

a system or component has to achieve, they can be consid-
ered functional requirements. However, in many cases, a
system should try to reach its goals by adhering to specific
constraints on how such goals can be reached. We call these
types of constraints on the trajectory or execution path that
a system should try to respect utilities U (see Fig. 1), and
these correspond to non-functional requirements.
The SOTA modeling approach is key to understanding

and modeling self-awareness and adaptation, and for check-
ing the correctness of the specification [1, 2]. However,

Figure 1: The trajectory of an entity in the SOTA
space [1].

when a designer considers the actual architectural design
of the system, it is important to identify which architectural
schemes need to be chosen for the individual SCs and SCEs.
SOTA helps to identify which scheme a feedback loop needs
to be structured to enable self-adaptation. To this end, in
[4] and [1] we defined a catalogue of architectural patterns
for adaptive SCs and SCEs.

3. ENGINEERING FEEDBACK LOOPS FOR
SELF-ADAPTIVE SYSTEMS

This section discusses the notion of feedback loops ex-
plored in SOTA to express self-awareness and self-adaptation,
and the conceptual view of our approach for two key SOTA
patterns.

3.1 Notion of Feedback Loops in SOTA
A feedback loop provides a generic architectural mecha-

nism for adaptation where it provides means for inspecting
and analyzing the system at the SC or SCE level and for
reacting accordingly, so goals can eventually be achieved [3].
The notion of feedback loops explored in SOTA [3] extends
the well-established IBM’s MAPE-K adaptation model [10]
(i.e. monitor, analyze, plan, execute over a knowledge base)
with multiple, interacting loops.

Advanced software systems that are often highly decen-
tralized require the modeling of multiple interacting con-
trol loops. Multiple feedback loops can coordinate and sup-
port adaptation using two basic mechanisms: inter-loop and
intra-loop coordination [16]. Intra-loop coordination is pro-
vided by multiple sub-loops within a single feedback loop,
which allows the various phases of MAPE-K in a loop to
coordinate with one another. In contrast, inter-loop coordi-
nation supports the coordination of adaptation across multi-
ple control loops. These inter-loops can interact using three
basic mechanisms: hierarchy, stigmergy and direct interac-
tion [13]. In stigmergy, loops act on a shared subsystem
where a manager makes changes to the shared subsystem
that can be sensed by another manager. In hierarchy, a
loop directly controls another loop, which typically occurs
inside a single feedback structure where an outer loop con-
trols an inner loop. In direct interaction, managers act as
peers communicating with each other, and this typically oc-
curs when they are controlling a common resource. Also,
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two types of feedback loops can be identified depending on
the nature of feedback, that is, positive and negative [5].
Both decentralized and centralized feedback loop approaches

have been suggested to facilitate autonomic behavior in adap-
tive systems [7]. We integrate these approaches in order
to exploit the benefits of both. Although centralized ap-
proaches allow global behavior control, they contain a single
point of failure and suffer from scalability issues [19]. Con-
versely, decentralized approaches do not require any a priori
knowledge, nor do they contain a single point of failure.
SOTA identifies and classifies patterns based on the above

described dimensions, and defines a taxonomy that is help-
ful for the engineering of multiple and possibly interacting
feedback loops, in particular for choosing among a variety
of feedback loop compositions.

3.2 Conceptual View of the Approach for Key
SOTA Patterns

To clarify the ideas behind our approach, we present the
conceptual view of our approach for two key SOTA architec-
tural patterns at the SC and SCE levels: the Decentralized
SC pattern and the Centralized SCE pattern.
The Decentralized SC pattern is characterized by the pres-

ence of an explicit, external feedback loop to direct the be-
havior of the managed element (see Fig. 2). The managed
element has sensors, effectors and a representation of SOTA
goals. The SOTA utilities are enforced in the managers.
An autonomic manager (AM) handles the adaptation of
the managed element. Several AMs can be associated with
the managed element, each closing a feedback loop devoted
to controlling a specific adaptation aspect of the system.
Adding different levels of AMs increases the autonomicity,
and these extra AMs work in parallel to manage the adap-
tation of the managed element. For instance, let us consider
that we have two feedback loops with an AM in each loop
to handle adaptation in two SOTA dimensions (see Fig. 2).
These loops can interact with each other using hierarchy,
stigmergy or direct interaction, and here we can identify an
inter-loop coordination where MAPE-K computations of the
loops coordinate with each other. An intra-loop can be iden-
tified between the Analyze and Knowledge components of an
AM to allow the coordination of adaptation between these
two phases. Depending on the nature of the feedback, the
feedback loops can be either positive or negative.
The Centralized SCE pattern is characterized by a global

feedback loop, which manages a higher-level adaptation of
behavior of multiple autonomic components (see feedback
loop for SC1 and SC2 in Fig. 3). The adaptation in the
Centralized SCE pattern is handled by a super AM, and like
an AM it has the MAPE-K adaptation model (e.g. Super
AM1). This is while the single SCs (SC1 and SC2, Fig. 3)
are able to self-adapt their individual behavior using their
own external feedback loops (AM1 and AM2 for SC1, and
AM 3 for SC2). Alternatively, the Centralized SCE pat-
tern can contain a super AM which is a high-level manager
(closing an outer loop) that interacts and manages another
AM or several AMs (closing inner loops), thus dealing with
multiple awareness dimensions (Super AM2 managing AM1
and AM2). As in the Decentralized SC pattern, the feedback
loops in this pattern can interact using hierarchy, stigmergy
or direct interaction, and the loops can be either positive or
negative type.
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Figure 2: Decentralized SC pattern.
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Figure 3: Centralized SCE pattern.

4. E-MOBILITY CASE STUDY PROBLEM
AND AUTOMATION WITH SOTA

This section addresses the e-mobility case study problem
using the SOTA model’s self-awareness and self-adaptation
mechanisms.

The e-mobility case study is used to explore and validate
our simulation. The scenario concerns individual planning
and mobility for a single user and a privately owned vehicle.
Let us consider a situation where a user intends to travel to
an appointment at a particular destination [9]. Fig. 4 (top
portion) illustrates the temporal sequence of the mobility
events related to a single appointment. First, the user drives
the electric vehicle (e-vehicle) to the car park, then parks the
car and walks to the meeting location. During the walking
and meeting times, the e-vehicle can be recharged.

Here, the main SCs are the user or driver, the e-vehicle,
and the parking lots and charging stations (infrastructure).
The main SCEs are (1) the temporal orchestration of the
user, the e-vehicle, a parking lot and a charging station as-
signed at trip start (User-E-Vehicle-Assigned-Infrastructure
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Figure 4: SOTA patterns applied to the e-mobility scenario.

SCE); (2) a collection of available parking lots (Parking Lots
SCE); and (3) a collection of available charging stations
(Charging Stations SCE) (see Fig. 4).
The e-mobility case study problem is well suited to be

solved using appropriate self-awareness and self-adaptation
mechanisms (e.g. the SOTA model) for the following rea-
sons:

• The case study problem involves a significant number
of SCs. Therefore, relying only on centralized solu-
tions becomes unfeasible and providing for decentral-
ized solutions to handle localized decision making is
important.

• This problem deals with several awareness dimensions
that need to be handled by the complex SCs, e.g. e-
vehicle SC: time, energy, location; user SC: user prefer-
ences (climate comfort, driving style), time, cost; park-
ing lots and charging stations SCs: availability.

• Each SC has access only to partial information or par-
tial view of the environment (e.g. during the trip,
the e-vehicle is not aware of the availability of its as-
signed parking lot). Therefore, the individual SCs need
strategies to adapt at run-time as more information
becomes available to them.

• Each SC and SCE is involved in significant levels of
uncertainty or contingency situations (system or en-
vironmental changes) requiring self-adaptive actions.
These can be (1) e-vehicle SC: the unavailability of a
parking lot; the planned event deadline is missed (the
e-vehicle could not reach the destination at the time re-
quired or with the energy planned); the user overrides

the plan; (2) user SC: the shifting of an appointment;
and (3) parking lot and charging station SCs: the e-
vehicle does not arrive at the booked time or it leaves
earlier or later; charging is not initiated at the foreseen
time and draws unforeseen amounts of power.

In the SOTA model, the SCs are conceptually modeled
as entities (e) moving and executing in the space (S), and
these entities can have goals (G) and utilities (U) that de-
scribe how such goals can be achieved at an individual or
a global level. Each SC and SCE of the mobility scenario
can be described using the SOTA goals and utilities, the
awareness being monitored for each managed element, and
the self-adaptive behavior using SOTA feedback loops as a
response to any contingencies that may occur. For exam-
ple, let us consider the e-vehicle SC, which is the central
SC within the mobility scenario. It interfaces with both the
user and the infrastructure SCs during driving, and with
the infrastructure SCs only during parking or walking. The
goal (Gi) of the e-vehicle is to reach the destination with
the planned energy and at the planned time. A utility (Ui)
can be the constraint that the battery charge should not
reach ‘low’ until the e-vehicle reaches its destination. The
monitored awareness dimensions (S) are, among others, the
state of the battery charge, temperature (for climate com-
fort requirements of the user), acceleration and velocity (for
driving style requirements), and the vehicle’s current loca-
tion. Examples of self-adaptive actions to handle contin-
gency situations are changing the booking, route or driving
style. Based on this modelization, we can derive a charac-
terization of feedback loops.

As shown in Fig. 4, in order to handle the adaptation of
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a managed element, we can provide separate AMs for each
SOTA awareness dimension. The e-vehicle SC has three
AMs defined to handle the adaptation of the battery state
of charge (SoC), climate comfort and driving style require-
ments of the user. Any self-adaptive behavior on routing
needs to be handled at the SCE level, as these actions are
applicable to both the user and the e-vehicle SCs. Thus,
a super AM has been defined to handle the adaptation of
routing. Also, a super AM has been specified to handle the
adaptation of user preferences, which manages multiple AMs
and awareness dimensions (i.e. AMs on climate comfort and
driving style). The parking lot SCs and charging station SCs
need to be aware of their availability. To handle possible
contingency situations, two separate AMs can be defined to
manage the availability of the two assigned infrastructure
SCs, and a super AM can be provided to handle the adap-
tation of both SCs. Meanwhile, the Parking Lots SCE and
the Charging Stations SCE (see Fig. 4) can contain AMs
to manage the availability at the individual SC level, and
two super AMs to handle the adaptation of the collections
of parking lot and charging station SCs, respectively.
As seen here, it is clear that there are a number of SCs,

SCEs, AMs and super AMs closing multiple, interacting
feedback loops. These feedback loops, which SOTA uses
as mechanisms to express self-awareness and self-adaptation,
can be organized using several architectural patterns. There-
fore, the aim of our work is to provide engineering support
to the software engineer in order to easily grasp this complex
setup.

5. SIMSOTA ECLIPSE PLUG-IN
In this section, we present the key rationale underlying

the SimSOTA plug-in and describe how we have applied it
to the e-mobility case study. This is to clarify how the plug-
in works and its usage. The plug-in is developed using the
IBM Rational Software Architect Simulation Toolkit 8.0.4.
The key objectives of the SimSOTA plug-in are:

• Modeling: The modeling of the key SOTA patterns us-
ing UML 2.2 where the patterns’ structural and behav-
ioral information are modeled using activity, sequence
and composite structure diagrams.

• Simulation: The simulation of the key SOTA pat-
terns to better understand their complex and dynamic
model behavior. We aim to visually animate the SOTA
patterns’ behavior during execution to expose the run-
time view of the simulated model, such as next element
to execute, executed element, active states and tokens.
We further aim to animate composite structures of the
SOTA patterns, for example, interaction messages and
execution history information of the simulation. Ad-
ditionally, run-time prompting allows the engineer to
interact with the simulation during its model execu-
tion.

• Validation: The validation of the feedback loop models
and their interplay to detect errors early and to check
whether the specified behavior works as intended. This
is done by using model-level debugging with detailed
control of execution, such as breakpoints, stepping,
suspending, resuming and terminating.

The general goal of SimSOTA is to facilitate the engineering
of complex self-adaptive systems based on feedback loops.

The developers are enabled to effectively build models of
the complex systems of feedback loops. As of now, the
SimSOTA models have been implemented with regard to
a limited number of key SOTA self-adaptive patterns, and
for the specific case study of e-mobility. However, the idea
of SimSOTA is to make templates and models available
for all the key patterns, and to facilitate general-purpose
and application-independent instantiation of simulations for
complex systems based on feedback loops.

5.1 Modeling and Simulating of SOTA Feed-
back Loops

We have used UML 2.2 activity models as the primary
notation to model the behavior of feedback loops. A feed-
back loop is essentially the interplay between flow (control
or data) and actions on the flows. In a feedback loop, the
actions are not necessarily performed sequentially. An iter-
ative process allows the revision of certain decisions if re-
quired, and therefore activity diagrams are effective to de-
sign the feedback loops. The SimSOTA plug-in also facili-
tates the simulation of feedback loops in other UML 2.2 di-
agrams, such as composite structure and sequence diagram
models.

We now describe the models realized in SimSOTA to sim-
ulate a number of feedback loop structures in the User-E-
Vehicle-Assigned-Infrastructure SCE of the e-mobility sce-
nario (Fig. 4). Note that due to space considerations, the
activity model provided in Fig. 5 is a subset of the User-
E-Vehicle-Assigned-Infrastructure SCE, while the composite
structure model provided in Fig. 6 corresponds to the entire
SCE.

5.1.1 SCs and Managers
There are several managed elements or SCs: the e-vehicle

(SC_EVehicle; Fig. 5, top-center), the user (SC_User; Fig.
5, top) and the assigned parking lot (SC_ParkingLotAssigned;
Fig. 5, middle-right).

The AMs - AM_EV_ClimateComfort and AM_EV_SoC - close
separate, decentralized feedback loops to handle the adap-
tation of climate comfort and battery charge level in the
e-vehicle, respectively. Similarly, AM_PL_Availability pro-
vides a decentralized feedback loop to handle the adapta-
tion of availability for the assigned parking lot. Also, there
are two super AMs that close separate, centralized feedback
loops. As stated in Section 3.2, a super AM can manage the
adaptation of multiple SCs, or it can be a high-level manager
managing one or several AMs. Here, SAM_EVUser_Routing
handles the adaptation of routing for the e-vehicle and the
user SCs, and SAM_User_UserPreferences handles user pref-
erences by managing AMs on climate comfort and driving
style.

5.1.2 SOTA Goals and Utilities
Each managed element (e.g. SC_EVehicle) has an activity-

based UML model to represent SOTA goals. We can con-
sider a goal (Gi) called reach destination for the SC_EVehicle,
and this can be characterized in terms of a precondition and
a postcondition (Fig. 5, top-center). The preconditions and
postconditions of the SOTA goals are modeled using UML
Action Language and guard conditions. Here, the precondi-
tion (Gpre

i ) checks whether the assigned parking lot is avail-
able, and the postcondition (Gpost

i ) is the actual reaching of
the destination within the state of battery charge and time.
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Figure 5: Patterns simulated as an activity model for an e-mobility scenario.
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The utilities (U) for SC_EVehicle are constraints on the
state of the battery charge, climate comfort, driving style
(acceleration and velocity), and routing requirements un-
til the e-vehicle reaches its destination, which is its goal.
They have been modeled in the managers, and to this end,
the Analyze phase of a MAPE-K loop can contain decision
nodes with guard conditions to check and enforce the re-
quired constraints. For instance, see guard conditions de-
fined in AM_EV_SoC (Fig. 5, top-right) to check whether the
level of the battery charge is low or not.
The SimSOTA plug-in integrates both decentralized and

centralized feedback control loop techniques using the SOTA
patterns - decentralized SC and centralized SCE - to handle
the adaptation of the managed elements. The loops interact
with each other using stigmergy, hierarchy or direct interac-
tion (inter-loop coordination). In this example, as the feed-
back loops deal with counteracting perturbation situations,
they are of the negative feedback type.

5.1.3 Decentralized Feedback Loops and Interactions
The Sensor components in SC_EVehicle form concurrent

activities for measuring the battery charge, temperature (for
climate comfort), location (for routing), acceleration and ve-
locity (for driving style) inside the e-vehicle, respectively (see
Fig. 5, top-center). These concurrent activities close several
decentralized feedback loops in the AMs which interact us-
ing stigmergy and act on its shared subsystem (see also Fig.
6, top).
For example, the Monitor component in AM_EV_SoC (Fig.

5, top-right) collects the battery charge data from the Sen-

sors and filters the accumulated data. The events signals
of the state of battery charge are then stored in the Knowl-

edge component. Knowledge also stores an abstract rep-
resentation of the SOTA goals and utilities. The Analyze

component gathers the temperature signals and the adap-
tation goals and interprets battery charge data against the
patterns. Here we can identify an intra-loop to coordinate
the adaptation between the Analyze and Knowledge compo-
nents. A decision node exists to check whether the battery
charge level is within the limit or not, and then the battery
level symptoms result is stored in Knowledge. The Plan

component obtains battery level symptoms and interprets
them. If the battery charge level is low then it triggers and
devises a plan to execute battery level change. To achieve
this, the Execute component notifies the SoC effector in the
SC_EVehicle, which accordingly notifies the user about the
battery charge level inside the e-vehicle.

5.1.4 Centralized Feedback Loops and Interactions
The two super AMs defined for managing the adapta-

tion of routing (SAM_EVUser_Routing; Fig. 5, middle-center)
and user preferences (SAM_User_UserPreferences; Fig. 5,
middle-left) close separate, centralized (global) feedback loops.
The SAM_EVUser_Routing deals with contingency situa-

tions if the e-vehicle misses its deadline. It has activities
for monitoring and analyzing location data of the e-vehicle
against goals, and if the loop’s Plan phase interprets the
e-vehicle missing the deadline, it devises a plan to execute
change. In response, the Execute component replans the
route and notifies the new route to the e-vehicle.
The SAM_EVUser_Routing also reacts to interactions with

other AMs. The Plan component in AM_PL_Availability

(Fig. 5, bottom-right) interprets availability symptoms and

acts according to the interpreted symptoms. For instance,
if it interprets that the booking for the assigned parking lot
has been canceled or the parking lot is unavailable now,
it triggers and devises a plan to execute change. Then
the Execute phase of the loop searches for other available
parking lots close by, and notifies the SAM_EVUser_Routing

to rebook and replan the route for the e-vehicle. Here,
we can identify a direct interaction between the two man-
agers, AM_PL_Availability and SAM_EVUser_Routing (see
also Fig. 6, bottom-left). In response, the SAM_EVUser_Routing
updates the parking lot bookings in the e-vehicle, and re-
plans the route and notifies it to the e-vehicle.

An example of the hierarchy interaction can be identi-
fied between the managers - SAM_User_UserPreferences,
AM_EV_ClimateComfort and AM_EV_DrivingStyle. Here, the
managers form a feedback structure where the outer loop
provided by the super AM directly acts and controls the
inner loops managing climate comfort and driving style.
This is because the user preferences are derived using val-
ues sensed for climate comfort and driving style (see Fig. 6,
middle-right).

5.2 Visual Animation and Validation of SOTA
Feedback Loops

The SimSOTA plug-in supports the visual animation of
the SOTA patterns’ behavior during execution to expose
run-time information, such as the next element to execute
(highlights the next element to be executed in the patterns
simulation), the executed element (the current element be-
ing executed), active states, and tokens (the elements in the
model that are ready to execute) (see Fig. 5, bottom-center).
The run-time prompting feature allows the engineer to in-
teract with the simulation when an informal construct of the
activity model is encountered. For example, a dialog box ap-
pears in AM_EV_SoC to check whether the battery level is low,
and the option the engineer selects decides which outgoing
activity edge of the model gets executed next.

The simulation facilitates the animation of feedback loops
in other UML 2.2 diagrams as well, such as composite struc-
ture and sequence diagram models. The composite structure
model (Fig. 6) simulates the behavior of feedback loops
between SCs and managers of an SCE, collaborating over
communication links. This is simulated according to the
interaction messages that occur between components in a
corresponding activity diagram model or sequence diagram
model for the same system. The execution history informa-
tion of the feedback loop in the SCE is animated by means of
colored arrows, which show how interaction messages occur
between the components. The number in a flow indicates the
order in which the flow or interaction occurred at run-time.

As for validation, the simulation can be used to detect
modeling errors early and to check whether the specified
feedback loop behavior works as intended. It allows us to
find and fix any problems that may occur in the complex
interactions between the SCs and managers. To achieve
this, the plug-in facilitates model-level debugging and the
detailed control of execution of patterns with breakpoints
and other commands, such as stepping (step through the
execution of behavior element at a time), suspending (break
the execution of the simulation), resuming (run the sim-
ulation until it completes its execution or meets a break-
point), terminating (stop the current simulation session) and
restarting. For instance, breakpoints can be created in the
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Figure 6: Patterns simulated as a composite structure model.

complex super AM, SAM_EVUser_Routing, and we can exe-
cute the simulation until it meets the breakpoints (Fig. 5,
bottom-center). Then, we can move through the activities
step by step, examining and validating the complex interac-
tions that associate with this super AM, such as the direct
interactions with AM_PL_Availability.

5.3 Deployment as an Eclipse Plug-in
We have deployed our first implementation of the simula-

tion, which is composed of activity, sequence and composite
structure models for a limited number of key SOTA patterns
and for the e-mobility case study, as an Eclipse plug-in [6].
The goal is eventually to allow our tool to be leveraged by
other interested researchers. First, using the IBM Rational
development environment, the simulation was converted to
a plug-in project, adding the plug-in development environ-
ment capability. Second, the plug-in was packaged in such
a way that an engineer can install it in their environment.
The plug-in can be exported to a directory, an archive file,
or in a runnable format installed into the currently running
Eclipse host. The installed Eclipse plug-in was tested us-
ing the self-hosting mechanism, which is a powerful debug-
ging and testing tool. To this end, the Eclipse application
launcher was used to create a second running instance of
Eclipse that runs the SimSOTA simulation.

6. DISCUSSION AND LESSONS LEARNT
In this section, we discuss some characteristics of our ap-

proach and the SimSOTA plug-in, and present the main
lessons learnt from this research experience.

Supporting Application-Independent Simulations.
As mentioned earlier, at present the SimSOTA models

have been created for a limited number of key SOTA self-
adaptive patterns applied to e-mobility. However, the gen-
eral idea is to build templates and models for all the key
SOTA patterns of the catalogue, and to facilitate general-
purpose and application-independent instantiation of simu-
lations for complex systems based on feedback loops. This
could be performed by introducing an abstract UML model
or template (custom UML profile applied) for each key SOTA
pattern, which could then be deployed with the SimSOTA
plug-in to support the modeling of the patterns.

A custom UML profile introduces a set of stereotypes that
extends the existing meta-model of UML to a specific area
of application. Here, a custom UML profile can be created
to specify the required semantics of the SOTA decentral-
ized SC pattern and the centralized SCE pattern discussed
in this paper. This profile can contain a set of stereotypes
applying the different elements of the two patterns, such as
an AM, a super AM, the MAPE-K phases, an SC or SCE,
the SOTA goals, the sensors and effectors. It can also con-
tain stereotypes for the different dependency relationships
of the patterns, such as stigmergy, hierarchy and direct in-
teraction. Applying this profile, two abstract UML models
or templates can be created. These templates can contain
(1) architecturally significant, reusable UML model elements
that are unique to the pattern; and (2) any textual advice
to the engineer on applying the profile and deriving domain-
specific models in a consistent manner. Thus, the Sim-
SOTA plug-in can support the modeling of the key SOTA
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self-adaptation patterns for the engineer in an application-
independent manner.

SOTA Self-Adaptation Patterns and Model-Driven De-
velopment.
The application of model-driven development offers new

opportunities in the development of self-adaptive software
systems [5]. An important and added benefit of creating
UML profiles-applied templates for the patterns is that it al-
lows one to apply model-driven development techniques such
as model transformations. That is, such profiles and tem-
plates can not only be used to automate the modeling of pat-
terns for the engineer in an application-independent manner
as discussed earlier, but also to automate the generation of
platform-specific implementation code. This could be per-
formed by creating a set of transformations (model-to-model
and model-to-text), which recognize and transform the pat-
tern elements with stereotypes modeled at the platform-
independent level. Accordingly, we can support the engi-
neering and development of patterns in different phases of
the software life-cycle.

Additional Considerations.
Feedback loops are mechanisms in the architecture that

SOTA uses for expressing self-awareness and self-adaptation.
Our work applies an explicit modeling approach, that is, in-
stead of modeling adaptation behavior that realizes a feed-
back loop as a black box component, we model each step in
detail. For instance, the activity models of feedback loops
have a series of activities created for monitoring, analyz-
ing, planning and executing over a knowledge base (Fig. 5).
Also, as the adaptation is specified at a higher level of ab-
straction (i.e. the software architectural level using UML
2.2), it ensures an easy integration into model-based devel-
opment approaches. Furthermore, our approach removes the
need to build actual implementation models of sensors and
effectors to monitor and control adaptation, which can be
costly. This is because our executing simulation models of
the feedback loops serve as abstract representations of their
actual implementations. By contrast, code-based solutions
require significant effort to build the necessary sensors and
effectors [19].

7. RELATED WORK
In 2001, IBM introduced the notion of autonomic comput-

ing and provided a reference model for autonomic control
loops known as MAPE-K loops [10]. Later, a formal refer-
ence model was introduced in [17] to describe self-adaptive
systems, based on the MAPE-K model and other key adap-
tation models.
Several authors (e.g. [12, 8, 16, 13, 18, 11, 15]) have em-

phasized the need to make feedback loops first-class entities
in self-adaptive systems. Muller, Pezze and Shaw [12] dis-
cuss an approach to increase the visibility of control loops to
support their continuous evolution. They highlight the need
for multiple control loops in an adaptive ultra large-scale
system, and stress the need for refining the loops into refer-
ence models and design patterns. Although these ideas have
been discussed at the conceptual level, no implementation or
validation of the work using techniques such as simulations
has been reported [12].
Vromant et al. [16] describe an implementation framework

that extends IBM’s MAPE-K model with support for two
types of adaptation coordination: intra-loop and inter-loop.
While their work is comprehensive in coordinating and inte-
grating multiple control loops, the MAPE-K loops used do
not support an integration of decentralized and centralized
adaptation coordination as provided in our work.

To manage the complexity of internet applications, the
authors in [13] propose a set of weakly interacting (i.e. stig-
mergy, hierarchy and direct interaction) feedback structures
where each structure consists of a set of feedback loops to
maintain one system property. As in our work, in [18] a
feedback loop has been represented as a flow of information
and actions, and UML activity diagrams have been used as
notation. However, unlike our approach, both [13] and [18]
have not provided detailed individual steps of the adaptation
process nor have they provided tool support for modeling,
simulation and validation of the feedback loop models.

Vogel and Giese [15] establish a domain-specific model-
ing language for run-time models called megamodels and
an interpreter to execute them. Using the modeling lan-
guage, single and multiple feedback loops and their inter-
play can be explicitly specified in the megamodels. Like
our approach, their work has considered detailed individual
adaptation steps like monitoring, analysis, planning and exe-
cution. Also, their modeling language is similar to the UML
activities used in our work with respect to modeling flows of
actions or operations. However, the authors have not con-
sidered any validation of the simulated feedback loop models
in [15].

Compared to previous approaches to the engineering of
self-adaptive systems using feedback loops, to the best of
our knowledge, there has been no implementation or tool
support to address the needs of software architects. The
present work aims to contribute towards this end.

8. CONCLUSIONS AND FUTURE WORK
Engineering a decentralized system of autonomous SCs

and SCEs is very challenging for software architects. To
better understand this complex setup, solid software engi-
neering methods and tool support are highly desirable. The
main contributions of this paper are: (1) a novel approach to
architect and engineer multiple, interacting feedback loops,
which SOTA uses as mechanisms to express self-awareness
and self-adaptation. Our model uses an integration of decen-
tralized and centralized feedback loop approaches; and (2)
the first implementation of SimSOTA, an Eclipse plug-in be-
ing developed for the explicit modeling, simulating and val-
idating of self-adaptive systems based on our feedback loop-
based approach. Furthermore, this paper has addressed the
electric vehicles case study problem using the SOTA model’s
self-awareness and self-adaptation mechanisms.

The future work planned is twofold. First, we will be ex-
ploiting the results of our simulation experiences to produce
effective software engineering guidelines and possibly some
requirements for the associated tools. This is to aid the
design and development of self-adaptive systems. Second,
we will be extending the first implementation of SimSOTA
to support application-independent simulations for complex
systems. This in turn will help us extend the simulation
models at the architectural level to the Java-based imple-
mentation level. To this end, we will apply transformations
to automate the translation of key SOTA self-adaptation
patterns modeled in UML 2.2 into textual Java. Then, the
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SOTA patterns in Java will be integrated with the Java-
based framework of the e-mobility system for validation.
The e-mobility framework will utilize realistic data by a traf-
fic simulator, and later through actual Web services.

9. ACKNOWLEDGMENTS
This work is supported by the ASCENS project (EU FP7-

FET, Contract No. 257414).

10. REFERENCES
[1] D. B. Abeywickrama, N. Bicocchi, and F. Zambonelli.

SOTA: Towards a general model for self-adaptive
systems. In Proc. of the IEEE 21st International
WETICE Conference, pages 48–53. IEEE, June 2012.

[2] D. B. Abeywickrama and F. Zambonelli. Model
checking goal-oriented requirements for self-adaptive
systems. In Proc. of the 19th Annual ECBS’12
Conference, pages 33–42. IEEE, Apr. 2012.

[3] D. B. Abeywickrama, F. Zambonelli, and N. Hoch.
Towards simulating architectural patterns for
self-aware and self-adaptive systems. In Proc. of the
2nd Awareness Workshop co-located with the SASO’12
Conference, pages 133–138. IEEE, Sept. 2012.

[4] G. Cabri, M. Puviani, and F. Zambonelli. Towards a
taxonomy of adaptive agent-based collaboration
patterns for autonomic service ensembles. In Proc. of
the International Conference on Collaboration
Technologies and Systems, pages 508–515. IEEE, 2011.

[5] B. Cheng, R. de Lemos, H. Giese, P. Inverardi,
J. Magee, et al. Software engineering for self-adaptive
systems: A research roadmap. In Software Engineering
for Self-Adaptive Systems, volume 5525 of LNCS,
pages 1–26. Springer-Verlag, 2009.

[6] E. Clayberg and D. Rubel. Eclipse Plug-ins.
Addison-Wesley Professional, 3 edition, 2008.

[7] T. Haupt. Towards mediation-based self-healing of
data-driven business processes. In Proc. of the 7th
International SEAMS Symposium, pages 139–144.
IEEE/ACM, june 2012.

[8] R. Hebig, H. Giese, and B. Becker. Making control
loops explicit when architecting self-adaptive systems.
In Proc. of the 2nd International Workshop on
Self-Organizing Architectures, pages 21–28. ACM,
2010.

[9] N. Hoch, K. Zemmer, B. Werther, and R. Y. Siegwart.
Electric vehicle travel optimization—customer
satisfaction despite resource constraints. In Proc. of
the 4th Intelligent Vehicles Symposium, pages
172–177. IEEE, 2012.

[10] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. IEEE Computer, 36(1):41–50,
2003.

[11] M. Luckey, B. Nagel, C. Gerth, and G. Engels. Adapt
cases: extending use cases for adaptive systems. In
Proc. of the 6th International SEAMS Symposium,
pages 30–39. ACM, 2011.
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