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ABSTRACT

Pattern recognition is becoming a key application in body-
area networks. This paper presents a framework promoting
unsupervised training for multi-modal, multi-sensor classi-
fication systems. Specifically, it enables sensors provided
with patter-recognition capabilities to autonomously super-
vise the learning process of other sensors. The approach
is discussed using a case study combining a smart camera
and a body-worn accelerometer. The body-worn accelerom-
eter sensor is trained to recognize four user activities pairing
accelerometer data with labels coming from the camera. Ex-
perimental results illustrate the applicability of the approach
in different conditions.

Categories and Subject Descriptors

1.5 [Computing Methodologies]: Pattern Recognition;
1.2.3 [Artificial Intelligence|: Probabilistic Reasoning

General Terms

Algorithms, Design, Experimentation, Human Factors, Mea-
surement, Performance.

Keywords

Body-Area Networks, Body-Worn Accelerometers, Smart Cam-

eras, Activity Recognition.

1. INTRODUCTION

The automatic and unobtrusive identification of user’s ac-
tivities from sensor data is one of the key and most chal-
lenging goals of context-aware and wearable computing [10].
Several opportunities can arise from the availability of such
an information. For example, a service would be able to
flexibly adapt its behavior to different circumstances (e.g.,
a smart phone application could turn silent, once recogniz-
ing that the user is in a theater watching a movie). As
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another example, the simple description of user’s activities
could automatically produce entries in blogs, diaries and so-
cial network sites [2].

While advances in hardware technologies (e.g., smart phones
and body-worn sensors [2, 10]) are making feasible to col-
lect a vast amount of information about the user in an un-
obtrusive way, it is still difficult to organize and aggregate
all the collected information in a coherent, expressive and
semantically-rich representation. In other words there is a
gap between low-level sensor readings and their high-level
context description [15].

A possible solution to overcome these challenges is to de-
velop multi-modal classification systems combining body-
worn and environmental sensors. This kind of systems would
present two main advantages. On the one hand it has been
proven that multi-modal sensor fusion can greatly enhance
the performance of the system by looking at the problem
from different and complementary perspectives [20, 12]. Ac-
cordingly, multi-modal, multi-sensor classifiers could be able
to discriminate situations otherwise difficult to be identified.
On the other hand, such flexible classifiers could work with
dynamically varying kind of sensors, adapting to different
circumstances.

There are two mainstream approaches to build such kind
of multi-modal distributed classification systems:

e Classification fusion. This approach to multi-modal,
multi-sensor classification consists of combining the
classification outputs of different sensors. In more de-
tail, given that each sensor provides ordered or weighted
class labels, the final outcome can be obtained as a
combination of the class labels according to some met-
rics [20].

e Distributed classification. This approach consists of
organizing sensors in a network of inference. The out-
put of some sensors is used as input to other sensors
to conduct higher-level classification tasks [14, 17].

Despite the advantages of these two approaches, in this
paper we focus on a third alternative. We propose a gen-
eral approach to create a self-training sensors’ ecosystem.
This approach (that can be used in combination with the
former two) lets sensors cooperate to create a model to clas-
sify the signal. For example, a “trained sensor” (one having
already a classification model) can provide ground truth in-
formation to an “untrained sensor” (one able to produce raw
data only) to enable it running a learning algorithm on its
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Figure 1: A multi-sensor installation. A camera sen-
sors automatically train an acceleration sensor to
detect user activities.

data and become a “trained sensor” itself. The core idea is
to use labels coming from on sensor type to train another
sensor type. In particular, we focus on a scenario in which
a body-worn accelerometer sensor learns to recognize user
activities on the basis of the labels provided by a camera
sensor (see Figure 1). This combination of body-worn sen-
sors and cameras is novel and can facilitate the deployment
of large pervasive environments comprising both body-area
sensor networks and sensors deployed in the environment.

The rest of this paper will be structured as follows: Sec-
tion 2 will present related works in the area. Section 3
presents the system architecture. Section 4 presents an im-
plemented use case illustrating our approach and highlights
the statistical approach used to run learning and classifica-
tion algorithms. Section 5 shows experiments and results
conducted on our test-bed. Finally Section 6 concludes and
outlines future work in the area.

2. RELATED WORKS

The work described in [20] presents a multi-modal, multi-
sensor classification system using body-worn microphones
and accelerometers. Sensors’ outputs are independently clas-
sified and their values are merged together using different
kinds of fusion techniques. Besides different sensors have
been used, our work is different in that we combine sensors
also in the learning phase. Furthermore, our system also
allows individual sensors to work in isolation.

Another interesting work in the same area is presented in
[12]. This work combines accelerometer-based classification
with data coming from a RFID-glove reporting information
about the RFID-enabled objects touched by the user.

A system to perform multi-sensor motion recognition is
described in [13]. In this work, data collected by 5 body-
worn accelerometers are used to classify user activities. Fea-
ture extraction and classification techniques are similar to
our approach. However, it is based on supervised learning
while our approach is unsupervised.

The analysis of human movements has been a very active
research area in the computer vision community. Gavrila in
[8] surveyed the existing approaches to whole-body or hand
motion analysis. Most of the reported approaches focus on

specific human motions and are heavily based on a model
used for the system training. For instance, Yam et al. [21]
proposed a system for people identification based on the
analysis of their gait. The system extracts leg motion by
temporal template matching in which the periodic motion
of leg is used as a model. Fourier analysis is employed to
analyze the periodicity of the leg motion. However, this ap-
proach can only work on pure lateral views and is basically
capable to distinguish only between walking and running.
Cutler and Davis [5] made a similar assumption and aimed
at detecting periodic motion by using Short Term Fourier
Transform (STFT) for time-frequency analysis. Their sys-
tem is able to work also with moving cameras, but is limited
to periodic human motion patterns.

Urtasun and Fua [19] exploited a more general model and
used temporal motion models based on PCA to formulate
the human body tracking problem as one of minimizing dif-
ferentiable objective functions. Moreover, a multi-activity
database is accessed to compare extracted features with a
theoretically infinite set of human motion models.

Finally, recent advances in statistical pattern recognition
and computer vision techniques contribute to a new era of
research on human motion understanding, as demonstrated
by the quite recent special issue on Computer Vision and
Image Understanding journal [11]. As an example among
the many existing proposals, Robertson and Reid [18] model
human behaviors as a stochastic sequence of actions and
evaluate the likelihood by using HMM. The observations
come from position, velocity and motion descriptors, and
matching is performed against a labeled database of actions.

3. DESCRIPTION OF THE SYSTEM

The proposed framework comprises three classes of com-
ponents: trained sensors, untrained sensors and tuple spaces.
They are illustrated in Figure 2 and described below.

Trained sensors are able to sample environmental data
and produce labels based on the classification of their inputs.
Labels are pushed towards a shared tuple space (described
below). Trained sensors can be divided in two categories:
(i) sensors that successfully completed the training stage of
their classification algorithm or (i) sensors with hard-coded
classification algorithms that do not require training.

Untrained sensors did not successfully completed the train-
ing stage of their classification algorith. They sample envi-
ronmental data and store them in a circular buffer. Each
entry of this buffer is composed by two elements. The first
one is an environmental sample (i.e., a feature vector), while
the second one is a classification label. The training process
ends when a sufficient number of entries are properly filled
with a feature vector and the corresponding label. At this
stage, the sensor can start classifying and publishing labels
autonomously (i.e., becoming a trained sensor).

Trained and untrained sensor share the same internal ar-
chitecture and are composed by three functional modules:
(i) a data acquisition module dedicated to environmental
data sampling, (i) a learning module that pairs collected
data with external labels to build a classification model, and
(ii1) a classification module that uses the classification model
to classify new data (see Figure 2a).

Tuple spaces [9] receive labels from trained sensors and



Tuple Space
A

v

‘ Learning ‘ Classification‘}‘ .{ Learning »‘Classiﬂcation
Module Module Module | Module

Data Acquisition

“ Data Acquisition ‘ ‘
Module

Module

Trained Sensor Untrained Sensor

a)

> Tuple Space

P
t
= P
Learning Module ,[w » Learning Module [ [
Classification Module [ l

i
v

@ | Classification Module
| Data Acquisition Module | Data Acquisition Module @

Trained Camera Sensor Untrained Accelerometer Sensor

Figure 2: Representation of the functional components of the system (a), and their distribution on different

computational devices (b).

forward them to untrained sensor. To avoid broadcast com-
munication while keeping the system simple, tuple space
access is arbitrated by a publish-subscribe mechanism [7].
Trained sensors publish their labels. Untrained sensors sub-
scribe a template to specify which type of labels they need to
receive. This allows engineers to realize complex pervasive
environments populated by a large number of sensors mon-
itoring different aspects. For example, this approach allows
multiple trained sensors to jointly train multiple untrained
sensors.

4. IMPLEMENTED CASE STUDY

To assess the feasibility of the approach, we implemented
a case study. We trained a body-worn accelerometer sensor
to recognize user activities using labels provided by a cam-
era sensor. Specifically, we have used an analog camera, a
couple of Crossbow MicaZ mote equipped with MTS310 sen-
sor boards (http://www.xbow.com), and a dedicated server.
Considering the resource constraints of the body-worn sen-
sors we mapped the functional blocks described in Figure 2a
to several devices according to Figure 2b. In particular: the
camera is considered as a simple data acquisition module,
while the two coupled motes run both the data acquisition
and classification modules. All the remaining components
run on the dedicated server.

We started by considering the following four activities:
YY1 SRAN14

“walking”, “running”, “standing still” and “falling down”. These

activities can be recognized either by a camera sensor run-
ning a video analysis algorithm [3] or by an accelerometer
sensor analyzing the acceleration patterns [6]. We installed
the camera sensor in our department and configured it to
upload arising labels to the tuple space. Then, we config-
ured the untrained accelerometer sensor to receive from the
tuble space labels produced by the camera.

The accelerometer sensor started receiving the labels from
the camera and pairing them with acceleration samples.
Once a sufficient number of acceleration samples and labels
was collected, the accelerometer sensor started to classify
the four user activities without any external support.

4.1 Accelerometer Sensor

In our implementation the accelerometer sensor is built by
two MicaZ motes with MTS310 sensor board each sampling
data at 100Hz. The MTS310 board is provided with a two-
axis accelerometer with a sensing range of +/- 2g and a
sensibility of +/- 2mg. We used two motes to acquire three-
axis acceleration data (see Figure 3).

Learning Module

Figure 3: Picture of two MicaZ motes (used in our
experiments) with their coordinate reference sys-
tem.

Due to the fact that accelerations were recorder by two
distinct motes, they were not perfectly temporally aligned.
Thus we aligned the four time series (X, Y), (X', Y’) (see
Figure 3) in a way to that two axes (Y, Y’) overlap. To
achieve this type of synchronization on events recorded by
different sensors simultaneously we used a particular event,
a jump, brightly visible in both the time series, similarly to
what has been proposed in [1]. Accelerometer signal is also
aligned with the camera one. Once an event is detected by
the camera, it is notified to all the subscribing sensors with
neglibile communication delays.

After the alignment, the raw input signal T = {a,,ay, a,}
provided by the accelerometer consists of the separate accel-
erations along the three axes z, y and z. To simplify the rep-
resentation and reduce the dimensionality, the magnitude of
the sum vector is obtained:

A= llag +ay +az|| (1)

In addition, processing the non-oriented scalar magnitude
would produce results independent on the actual way the
accelerometer is worn and, thus, its orientation.

As stated in [6], the power spectrum of the magnitude
A can be a good feature to use. First, the time series
AS = {A} provided by the accelerometer is analyzed in
the frequency domain through the FFT (Fast Fourier Trans-
form) transform. To reduce the computational load, a small
64 element window with 32 samples of overlap is used. From
these 64 elements, one 32 element power spectrum (every
0.32 seconds) is produced. Ultimately, the DC component
is canceled since it affects numerical stability (due to its rel-
atively large value). Summarizing, this procedure converts
a time series AS defined in the spatial domain on R to a
time series X defined in the frequency domain on R>'.
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Figure 4: The labelling process of an untrained sen-
sor. During the time slice covered by a feature
vector, multiple and conflicting labels might be re-
ceived. Majority voting is applied to solve the con-
flicts.

Our cooperative learning approach assigns automatically
a label/class to untrained sensor data using the posterior-
based classification provided by the trained sensors. Thus,
data coming from both types of sensors are paired to build
the training set TS = {S1,S2, -+, SNy}, where Nrg is
the total number of samples in the training set and S; =
(Xi, C;) represents the i-th sample and is composed by the
31-dimensional accelerometer observation X and the corre-
sponding label C' provided by the camera with a majority-
voting process described in Figure 4.

Following a generative model, we first solve the infer-
ence problem of determining the class-conditional densities
p (X|C;) for each class C; individually. Thus, let X be the
set of accelerometer observations in the training set associ-
ated in the labelled data to the class C;. This likelihood can
be modelled with a 31-variate mixture of Gaussians (MoG):

K
p(XC:) = p (XA) = 3wl (X g, =)
k=1

(2)
where A% = {uc",ECi,ﬂ’Ci} is the set of parameters for
for the class Cj, including the mean vector p = {p1,- -+ , ux }
for each of the K components, the covariance matrix 3 and
the weight vector 7. The single 31-variate Gaussian can be
written as:

1 1
(2m)*72 (det ()7

e {3 X - w2 X =) ©)

N X|p, %)

In order to estimate the MoG’s parameters, we employ the
well-known EM algorithm and chose to keep the number of
MoG components K fixed to two. This choice has been val-
idated by a thorough experimentation which demonstrates
that increasing K brings no benefit to the performance.

One important optimization we performed is to force the
MoG 31 x 31 covariance matrices ch" to be diagonal, thus
assuming that the 31 Fourier components are statistically
independent. This notably reduces the size of the parame-
ter set A used to represent the model, making A storage on
the tiny memory of the body-worn sensor possible.

Classification Module

The set A of estimated parameters is stored in the mote
to be used for motion pattern classification during the on-
line testing phase. Since the accelerometer is now trained
the on-line classification of a new sample Xjeq is simply

performed by applying Bayes rule and MAP (Maximum A
Posteriori) framework:

Onew = Cs < § = arg max p(Cr|Xnew7 A) (4)
Vr

where, assuming uniform sample’s priori, the posterior class
probability can be written as:

P (Cr[Xnew, A) < p(Xnew|A, Cr) p (Cr|A) (5)

The first term in the right-side of equation 5 corresponds
to the MoG for a given class C, with parameters A", while
the second term can be simplified as p (C.) since there is no
dependency of the class on the MoG’s parameters. The term
p (Cy) represents the prior of class C and can be computed
as the normalized occurrence of that class in the training
set.

4.2 Camera Sensor

The other modality of our system is provided by a stan-
dard fixed color camera and based on the video data, such
as those shown in Figure 5 which includes both lateral and
longitudinal views. The classical computer vision flow con-
siders first to segment moving objects (segmentation), then
to track them on the field of view of the camera (tracking),
and ultimately to analyze the objects to classify them and
to infer their behavior (object analysis).

Background suppression-based algorithms are the most
common techniques adopted in video surveillance for detect-
ing moving objects. The background model used should be
adaptive with both high responsiveness, avoiding the de-
tection of transient spurious objects, such as cast shadows,
static non-relevant objects or noise, and high selectivity in
order to not include in the background the objects of in-
terest. A robust and efficient approach is to detect visual
objects by means of background suppression with pixel-wise
temporal median statistics, that is, a statistical approach
to decide whether the current pixel value is representative
of the background information is employed. In this way, a
background model for non object pixels is constructed from
the set:

S — {[tylt—At7__. 7Tt—(n—l)At}U Bt,~~ 7Bt (6)
\q},—/
wptimes

The set contains n frames sub-sampled from the origi-
nal sequence of frames I taking one frame every At, and
an adaptive factor that is obtained by including the previ-
ous background model B* w;, times. The new value for the
background model is computed by taking the median of the
set S, for each pixel p:

A .
B! (p) = argmin Y
e€5(p) yES(p

(lze —yel)  (7)

max
)c:R,G,B

The distance between two pixels is computed as the max-
imum absolute distance between the three channels R, G,
B, which has experimentally proved to be more sensitive to
small differences and quite consistent in its detection abil-
ity. Although the median function has been experimentally
tested as a good compromise between efficiency and reactiv-
ity to luminance and background changes, the background
model should not include the interesting moving objects if



Figure 5: An example of appearance-based tracking
showing: the input image (a), the appearance mask
model AMM (b), and the probability mask PM (c).

their motion is low or zero for a short period. Therefore,
precise segmentation should exploit the knowledge of the
type of the object associated with each pixel to selectively
update the reference background model. In order to define
a general-purpose approach, we have defined a framework
where visual objects are classified into three classes: actual
visual objects, shadows, or “ghosts”, i.e. apparent moving
objects typically associated with the “aura” that an object
that begins moving leaves behind itself. Further details can
be found in [3].

Once that moving objects/people have been segmented,
they need to be tracked along time in order to analyze
the scene (counting the number of people present in there)
and analyze their behavior (analyzing the paths or the hu-
man motion patterns). In people tracking, in order to cope
with non-rigid body motion, frequent shape changes and
self-occlusions, probabilistic and appearance-based tracking
techniques are commonly proposed [4].

In this paper, we describe an approach of appearance-
based probabilistic tracking, specifically conceived for han-
dling all occlusions. The algorithm uses a classical predict-
update approach. It takes into account not only the status
vector containing position and speed, but also the Appear-
ance Memory Model AM M and the Probabilistic Mask PM
of the shape. AMM represents the estimated aspect (in
RGB space) of the object’s points: each value AMM (p)
represents the “memory” of the point’s appearance, as it has
been seen up to now. In the probability mask PM (p) each
value defines the probability that the point p belongs to the
object. An example for “walking”, is reported in Figure 5.

These two features are used both to perform the matching
between the existing tracks and the objects detected in the
current frames, and to detect the presence of occlusions. Oc-
clusions are detected by analyzing a measure of confidence
and likelihood computed on the probability mask PM. Fur-
ther details can be found in [4].

Classification Module
Given the observation I, the algorithm bases its classifica-
tion on the analysis of the tracked person. It is worth noting

that the computer vision algorithm is capable to track mul-
tiple targets but needs to associate that (or those) target(s)
wearing the accelerometers with the corresponding target
ID(s). This association can be obtained with the same syn-
chronization procedure described in Section 4.1, based on
a specific event such as a jump. Thanks to the sophisti-
cated tracking algorithm above mentioned, the distinction
between “standing still” (class ), “walking” (class W) and
“running” (class R) is almost straightforward. Given that
the frame rate is constant, the movement speed can be easily
estimated, even though perspective distortion can strongly
affect the estimation.

Let H' and V* be the height of the bounding box and
the velocity of the tracked person in IY, respectively. The
velocity is estimated through the distance (in pixels) covered
by the person’s centroid between I'™! and I'. By using a
discriminative approach we can infer the posterior class Cj;
probabilities as follows:

ple=min = éa”{%} ©
p(Ci=R|I') = 5 e - (lvt —Tha)) (10)
P(Ci=F|It) = 1 (11)

" 14exp{— (AH —Ths3)}

In other words, a person is classified as standing still if
his/her velocity is almost zero, modeled with a zero-mean
Gaussian (see equation 8) with a small standard deviation
o1 (set to 1 in our tests). The same applies for classifying
walking people (equation 9), but with a Gaussian centred
on a positive value Thy (set to 5) and with a large standard
deviation o2 (set to 3). Moreover, the person is classified as
running if the velocity is greater than a threshold Ths (set to
10 pixels). Thresholding is performed with a logistic sigmoid
function centred on the value Thy (see equation 10). Logistic
sigmoid function provides a smoother transition than the
classical Heaviside function used when thresholding. Finally,
the classification of falling people is performed by looking at
the variation AH = H'*™!'— H* of the height of the bounding
box: if this variation is greater than a threshold Ths (set to
5) this means that the height is changing fast and this is a
cue for a fall.

Given the equations 8-11, a MAP approach provides the
class maximizing the posterior probabilities:

Cj | j=argmax p(Ck|It) (12)
2

5. EXPERIMENTAL RESULTS

To evaluate the performances of our system we did the
following experiment. We recorded with the camera a per-
son moving inside a corridor in our department, acting in
several motion states. At the same time, the same per-
son wore the accelerometer sensors on his belt. In this way
we collected data representing two observations of the same
phenomenon. While the scene was recorded, we manually
collected with a digital chronometer a list of labels to be
used as ground truth. The camera sampled at 30Hz, while
the accelerometers at 100Hz. We upsampled the camera’s
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Figure 6: A snapshot of the multi-sensor training set we used. Camera’s classification labels and ground

truth are superimposed over acceleration data.

| | Fall [ Stand | Walk | Run |
Fall 84.27% | 8.70% 4.76% 2.28%
Stand || 0.00% 86.43% | 13.00% 0.57% (a)
Walk 2.71% 0.48% 94.81% | 2.00%

Run 0.43% 9.12% 1.72% 88.73%
Fall Stand Walk Run |
Fall 15.00% | 21.25% 63.75% 0.00%
Stand || 0.00% 77.63% | 22.37% 0.00% (b)
Walk 0.00% 1.96% 97.20% | 0.84%

Run 0.79% 0.79% 10.24% 88.19%

Table 1: Confusion matrix of camera sensor classi-
fication (a), and accelerometer sensor classification

(b).

data to 100Hz and aligned the time series with the ground
truth. To ground the discussion we reported in Figure 6 a
snapshot of the data we collected in this experiment. This
plot shows the three accelerations (on X, Y and Z direc-
tion) with superimposed both the ground-truthed and the
camera-based classifications, in order to show the correspon-
dence of accelerations’ changes with mition variations.

We used these data in two ways. First, we compared
the labels produced by the camera with the ones manually
collected to measure the computer vision algorithm perfor-
mances. Table 1 presents the confusion matrix of this clas-
sification. Looking at the reported confusion matrix of the
camera sensor classification, it is possible to see that the
vision algorithm works pretty well, having a precision of
88.59% and a recall of 88.56%.

As second experiment, we measured the classification per-
formance of the accelerometer, once it has been trained with
the labels coming from the camera. We compared the la-
bels produced by the accelerometer with the ground truth
to obtain the confusion matrix reported in Table 1. Over-
all the classification has a precision of 85.25% and a recall
of 69.50%. The poor performance on detecting falls (that

1 . :
Precision ——
Recall
_ 08
]
(8]
2 \
- 06
]
S 04 S
3
Q
o
0.2
0
0 0.2 0.4 0.6 0.8 1

Groundtruth corruption (%)

Figure 7: Precision and recall of the accelerometer
sensor classification varying the quality of ground
truth labels provided by the camera.

contributes also to decrease the overall recall of the system)
is due to the fact that the falling action is composed of a
transient phase in which the accelerometer values can vary
significantly. A more correct modeling of this action would
be to take the sequence of observations into account, for
instance with a HMM.

Although accelerometer classification performance is quite
good, it is possible to see a reduction of performance with
respect to the vision classification. This is due to two simple
facts: first and most importantly, a belt-worn accelerome-
ter produces a signal that is less descriptive than a full-
fledge video sequence. Accordingly, the features extracted
from the acceleration signal are less capable of discriminat-
ing among high-level behaviors (e.g., falling and walking)
than the video sensor. Second, the accelerometer is trained
with labels coming from the camera sensor and thus it is
affected also by the errors coming from the camera.

To better understand the contribution of this latter source



of errors, we conducted another experiment aimed at eval-
uating the robustness of the approach with respect to the
camera classification errors.

We run a number of learning phases of the accelerometer
data, passing to the accelerometer learning module increas-
ingly corrupted class labels: we corrupted the ground truth
information with errors sampled accordingly to the camera
sensor confusion matrix reported in Table 1. Then, we test
the accelerometer classification performance. The graph in
Figure 7 shows on the x-axis the percentage of errors intro-
duced, varying from 0 to 100 percent. Precision and recall
are reported on the y-axis.

To summarize the discussion about the performances of
the system it is possible to see that: (i) the algorithms
proposed to track moving persons and classify their motion
state are suitable for this application scenario; (ii) the al-
gorithm we choose to classify acceleration data is working
properly; (4ii) our idea of a self-training sensor ecosystem is
feasible and could help to reduce resources needed to deploy
near-coming pervasive infrastructures.

6. CONCLUSION AND FUTURE WORK

In this paper we presented a framework promoting unsu-
pervised training for multi-sensor classification systems de-
ployed in body-area networks. We also grounded the idea
using a case study in which a body-worn accelerometer sen-
sor is automatically trained to recognize four human activ-
ities by a camera sensor. The presented approach might
facilitate the deployment of large distributed sensor system
in that no human intervention is required.

We also have identified three interesting direction to im-
prove this work. First, we will include additional sensors
into the system (e.g., accelerometers in different parts of the
body, acoustic sensors and, body-worn cameras). Second,
we will introduce more accurate classification models to de-
tect a wider spectrum of human activities. Finally, we will
combine sensor data with labels coming form the Internet
to further reduce the need of human interventions [16].
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