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ABSTRACT
Innovative frameworks have to be identified for the
deployment and execution of pervasive service sys-
tems. These systems, composed by a massive num-
ber of components, should be able to exhibit proper-
ties of self-organization and self-adaptability, and of
long-lasting evolvability. In this context, this paper
discusses how such frameworks should get inspira-
tion from natural systems. In particular, we focus
on ecological systems that model and deploy services
as autonomous individuals (i.e., agents), spatially-
situated in an ecosystem of other services, data sources,
and pervasive devices, all of which acting, interact-
ing, and evolving according to a limited set of “laws
of nature”. The key characteristics of the proposed
ecological approach are detailed with the help of a
representative case study. Also, an extensive set of
simulation experiments are reported to outline the
peculiarities of its dynamic behavior and to show
the potential effectiveness of the approach.
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1. INTRODUCTION
Pervasive and mobile computing devices increasingly pop-

ulate our environments [9], and will eventually define a global-
scale and very dense, decentralized computing and com-
munication infrastructure for the provisioning of general-
purpose pervasive services.

However, the effective development and execution of per-
vasive services calls for a deep rethinking of current service
models and of service frameworks, in order to: (i) Naturally
match the spatially-situated nature of the environment and
of the services within, and rely on mostly localized spatial
interaction to provide support for massive scalability [4, 26].
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(ii) Inherently exhibit properties of self-organization, self-
adaptation and self-management that are required in highly-
decentralized and highly-dynamic scenarios [8]. (iii) Flexi-
bly tolerate evolutions of structure and usage over time to
incorporate innovations and changes [27].

To reach these goals, we should no longer conceive ser-
vices and their interactions as in usual service-oriented ar-
chitectures [5, 15], where services are simply functional en-
tities statically orchestrated with the help of specific mid-
dleware services. Nor one can rely on one-of architectural
solutions to achieve specific self-* features in existing sys-
tems, resulting in an increase of complexity [16]. Rather,
the most promising direction is that of taking inspiration
from natural systems [3, 18], where spatial concepts, self-
organization, self-management, and long-lasting evolvability
are inherently there because of the basic “rules of the game”.

Nature-inspired solutions have already been exploited in
the area of distributed computing for the implementation
of specific middleware solutions [3, 18]. Similarly, natural
and ecological metaphors have been adopted to character-
ize the complexity of modern ICT and service systems [24].
Here we go further and argue that natural metaphors can
act as reference architectural model to conceive, model, and
develop a fully-fledged pervasive service framework and all
the components within.

Although one can think at different classes of natural
systems and from different perspectives (e.g., physical [19],
chemical [25], biological [3], or social/ecological [1]) one can
always recognize the following characteristics: above a spa-
tial environmental substrate, autonomous individuals (i.e.,
agents) of different kinds interact, compete, and combine
with each other in respect of the basic laws of nature. Ac-
cordingly, in our scenario, the shared pervasive infrastruc-
ture substrate will have to be conceived as the space in which
bringing to life an ecosystem of service agents, intended as
individuals whose computational activities are subject to
some basic laws of the ecosystem, and for which the dy-
namics of the ecosystem (as determined by the enactment
of its laws) will provide for naturally enforcing features of
self-organization, self-management, and evolvability.

In this context, the paper provides the following contribu-
tions:

• We detail the ecological approach that we have started
investigating. The approach, earlier presented in [?],
abstracts the components of the ecosystem as sorts of
goal-oriented organisms that, driven by laws of sur-
vival, interact with each other and self-organize their
activities according to dynamic food-web relations (Sec-



tion 2).

• We introduce a representative case study in the area
of displays ecosystems [11] to clarify the concepts ex-
pressed (Section 3).

• We present a number of simulation experiments that
we have performed to assess the effectiveness of our
approach (Section 4). The experiments, simulating a
spatial scenario of displays ecosystem, shows that our
approach is capable of effectively exhibiting express-
ing interesting self-organization features in a variety
of different situations.

• We briefly discuss other nature-inspired approaches
(Section 5).

Eventually, in Section 6, we conclude and outline open
research directions.

2. THE ECOLOGICAL APPROACH
In this section, we go into more details about the key

architecture of the proposed ecological metaphor and of its
components.

2.1 The overall architecture
The overall architecture of our ecological approach is as

follow (see Figure 1).
At the lowest level is the physical ground on which the

ecosystem will be deployed, i.e., a very dense and widely
populated infrastructure (ideally, a world-wide pervasive con-
tinuum) of networked computing devices (e.g., PDAs, tags)
and information sources (Web 2.0 fragments). At the high-
est level, service developers, producers and consumers of
services and data, access the open service framework for
using/consuming data or services, as well as for produc-
ing/deploying in the framework new services and new data
components. Between these levels, we find the components
of our ecological architecture.

The “Species” level is the one in which physical and vir-
tual devices of the pervasive system, persistent and tempo-
rary knowledge/data, contextual information and of course
software service components, are all abstracted as “living in-
dividuals” (or agents) of the system. Although such individ-
uals are expected to be modeled in a uniform way, they will
have specific characteristics very different from each other,
i.e., they will be of different “species”. The dense population
of devices and actors involved at the highest and lowest lev-
els, together with their dynamics, reflect in the presence of a
very massive and dynamically varying number of individuals
and species.

The “Space” level provides the spatial fabric supporting
individuals, their spatial activities and interactions, as well
as their life-cycle. From a conceptual viewpoint, the “Space”
level gives shape to and defines the structure of the virtual
world in which individual lives. From a practical viewpoint,
the spatial structure of the ecosystem will be implemented
by means of some minimal middleware substrate supporting
the execution and life cycle of individuals, and will enforce
concepts of locality, local interactions, and mobility, coher-
ently to a specific structure of the space.

The way in which individuals live and interact (which may
include how they produce and diffuse information, how they
move in the environment or aggregate with each others, and
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Figure 1: A reference architecture for pervasive ser-
vice ecosystems.

how they decay or die) is determined by the set of fundamen-
tal “Laws” regulating the eternal service ecosystems model.
Such laws, or “eco-laws”, are expected to act on the basis of
spatial locality principles, as in real laws of nature (which is
also what makes real ecosystems scalable): the enactment of
the laws on individuals will typically affect and be affected
by the local space around them and by the other individuals
on.

2.2 Key components
The components of the ecosystem are sort of goal-oriented

animals (i.e., agents) belonging to a specific species (i.e.,
agent classes), that are in search of “food” resources to sur-
vive and prosper (e.g., specific resources or other compo-
nents matching specific criteria). That is, individuals have
the ego-centric goal of surviving by finding the appropriate
food and resources.

The laws of the ecosystem thus determine how the result-
ing “food web” should be realized and ruled, that is, they de-
termine how and in which conditions animals are allowed to
search food, eat, and possibly produce and reproduce, thus
influencing and ruling the overall dynamics of the ecosystem
and the interaction among individuals of different species.

As far real food-webs are concerned, we can consider the
following key classes (Figure 1). Passive life forms (i.e., the
flora system) do not actively look for food, although their
existence and survival must be supported by nutrients that
are in the space. Primary consumers (i.e., herbivores) need
to eat vegetables to survive and prosper. Secondary con-
sumers (i.e., carnivores) typically need to eat other animals
to survive, though this does not exclude that can also act as
primary consumers (eating vegetables too). The result of the
metabolization of food by both primary and secondary con-
sumers ends up in feeding lower-level “digesters” life forms
(e.g., bacteria), densely spread in space, and that in their
turn produce and diffuse resources and nutrients for the
flora.

Translating the above concepts in computational terms,
we can consider the individuals of the ecosystem as belong-
ing to specific subclasses derived from four key abstract
classes. Passive life forms represent the data sources and



the computational/memory/communication resources of the
ecosystem, which are not to be considered proactive and
autonomous computational entities (i.e., they are not ex-
pected to act). Primary consumers represent those services
that require to digest information to be of any use (i.e., to
reach their goals), and that are computationally autonomous
in pursuing such goals. Secondary consumers, instead, are
those services that, to reach their goals, need the support of
other computational services/agents, other than possibly of
information sources. Digesters components can be generally
assimilated to all those background computational services
that are devoted to monitor the overall activities of the sys-
tem, and either produce new information about or influence
the existing information and resources.

From Figure 1, it is clear that the existence of such a
food-web chain (or, in computational terms, of such inter-
dependencies in the activities of agents) provides for pro-
ducing a close food-web loop. The existence of such loops is
indeed a known basic regulatory ingredient to enable adap-
tation and self-organization in both natural and computa-
tional systems [18]. However, unlike in more structured ap-
proaches which consider the existence of a single (or of a
limited set) of regulatory loops [16], the ecological approach
can make a number of related loops co-exist, depending on
the number of different classes of individuals and on their
specific trophic relations.

As for the spatiality of the approach, the ecosystem space
can be typically organized around a set of localities, i.e.,
of ecological niches (think at a set of local pervasive com-
puting environments), yet enabling interactions and diffu-
sion of species across niches. Each locality will determine
how the different species organize to live, will describe how
individuals of each species respond to the distribution of
resources and other species, and how they alter these fac-
tors. Clearly, such way of organizing spatiality around open
ecological niches provides for the existence of spatially dis-
tributed regulatory loops that ensure adaptation and self-
organization at the global level, rather than at the level of
individual niches.

The ecological metaphor promises to be very suitable for
local forms of spatial self-organization (think at equilibria in
ecological niches), and are particularly suited for modeling
and tolerating evolution over time (think at how biodiver-
sity has increased over the course of evolution, without ever
mining the health existence of life in each and every place on
earth). In fact, while the basic infrastructure and its laws
do not require re-engineering, the actual service and data
species can dynamically change, naturally inducing new dy-
namics for the interactions between individuals and for the
ecosystem as a whole.

2.3 Modeling of individuals
Let us now detail a bit further the modeling of the com-

putational elements that populate the ecosystem (i.e., the
ecosystem individuals) and of the mechanisms underlying
their interactions (i.e., forming the basis of the eco-laws).

In our perspective, the key components of an individual
include:

• A public semantic description of its own characteris-
tics;

• A set of “needs” expressing which other individuals it
needs to interact (i.e., “eat”) with;

• A “happiness” status acting as a main drive for the
individual activities (i.e., as a sort of utility function
for the individuals);

• An internal logic for the maximization of its happiness,
based on its needs and it happiness status, and relying
on a set of allowed actions.

Active individuals typically express all the above com-
ponents, passive ones (i.e., pure data items and resources)
typically express only a public semantic description.

We recall that, in our model, each active individual needs
food and resources to survive. That is, it needs other com-
ponents to “eat” (i.e., to interact with), whether passive or
active ones. These needs are specific for each specific individ-
ual/species. Generalizing upon dynamic models of semantic
service matching [2], the idea of our approach is that each
individuals express its own characteristics in a public seman-
tic description. At the same time, each individual needs to
eat some others, expresses its own needs in a sort of seman-
tic “templates”, describing the characteristics of the needed
resources or individuals.

Then, based on the needs of an individual, and on the
semantic descriptions of the individuals around it, a discov-
ery process based on semantic matching takes place. Such
process of matching typically occur within a niche, though
without excluding the possibility for one description to dif-
fuse in spatially close niches and enabler cross-niches match-
ing. The existence of a match of one individual with another
needing it establishes a session of interaction between the
two components, which we metaphorically abstract as an
“eating” action by the individual that has found the right
food. Pragmatically, we can think at a service component
that has found the data/resources it needed or at a compos-
ite service that has found the needed computational partners
required to fulfill its promises.

More formally, given the semantic description inda of an
individual a and the needs indbneeds of another individual
b, the process assumes the existence of a matching function

match(inda, indbneed)

that returns some value expressing the degree of match
between individual. The eco-laws of the ecosystem have the
duty of automatically triggering possible matches in a niche
(or across close niches) and of establishing a connection be-
tween matching individuals.

We do not go into details here on the specifics of such se-
mantic representations and of the matching function. What
we want to emphasize here is that both the semantic descrip-
tions of individuals and their expressed needs are dynamic
entities that can change over time depending on the current
state and context of individuals. For instance, an individual
that has already fully satisfied some of its needs, will have
to change its expressed needs to avoid keep on searching for
something it does no longer need.

Upon occurrence of a match, the involved individuals can,
according to their own specific behaviors, start interacting
with each other (e.g. a primary consumer having found
matching information, can decide to absorb or consume it).
The specific capability (i.e., the set of actions allowed) within
individuals will determine the course of such interactions.
In general, though, the internal actions of an individual are
mostly driven by the need to maximize its happiness.



The happiness value of an individual expresses the satis-
faction degree of each individual, in other words it expresses
how well an individual satisfies himself. The happiness value
of an individual is generally a function of time, and it is af-
fected by the previous happiness value and by the current
state of the individual.

The happiness increases when the individual finds the
proper resources to eat (i.e., a lot of matching individuals),
because this implies it is effectively achieving the goals its
has been conceived for. However, the happiness of an indi-
vidual can also be affected by different situations in its niche
(or in close niches), and specifically by the happiness of the
other individuals in the niche.

Thus, we can distinguish between the instantaneous hap-
piness of an individual, which is merely a function of the
current matchings, i.e., for an individual i in a niche with n
individuals:

Hinst
i (t) = f(match(indj , indineed), j = 1, ..., n). (1)

and the overall happiness of an individual, which is a func-
tion of the current happiness of the individual, of the pre-
vious happiness, and of the overall happiness of the other
individuals in the niche, i.e., for an individual i:

Hoverall
i (t) = f(Hinst

i (t), Hoverall
i (t− 1),

Hoverall
j (t− 1)), j = 1, ..., n). (2)

The set of allowed actions (usually aimed at egoistically in-
crease the happiness of the individual) are the final elements
that define an individual. Beside specific internal computa-
tional actions and beside interactions with other individuals,
additional action capabilities of an individual can include re-
producing itself, moving and/or replicating across niches, or
even dying. For example, an individual that does not find
suitable matches in the current niche can decide to move
to another niche to search for matches that can increase its
happiness.

3. A CASE STUDY
Let us introduce a representative case study in the area

of adaptive display systems [11, 12].
Consider a scenario with different kinds of pervasive de-

vices spread on it, like a thematic park densely pervaded
with digital wall-mounted screens where to display informa-
tion for visitors, movies, advertisements, or whatever. We
can consider each of these screens (i.e., the computational
resources associated with each of them) as a spatially con-
fined ecological niche. In the niches we find visitors looking
for information, advertisers that want to display commer-
cials on the screens, and the displays themselves, that have
the goal of maximizing their own exploitation.

Visitors will watch these screens to look for different in-
formation. Thus, we can think at sort of “user agents” exe-
cuting on the users’ PDAs that, once in the proximity of a
screen (i.e., while finding themselves into that specific eco-
logical niche) start looking for specific information to eat
(i.e., to have it displayed). User agents would thus act as
primary consumers with the goal to find the information
required by users and maximizing users’ happiness.

Concurrently, we can think at “advertising agents” that,
acting on behalf of some advertising company, roam from
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Figure 2: Food web for the ecosystem of displays
case study.

screen to screen in search of specific classes of user agents
(i.e., those interested in specific types of information), with
the ultimate goal of displaying advertisements where they
could be more effective. Advertising agents would then act
as secondary consumers.

Background monitoring agents, executing on each ecolog-
ical niche, can contribute replicating and spreading informa-
tion where it appears to be more appreciated, and can also
contribute in supporting the spatial roaming of advertiser
agents by directing them where they could find more satis-
faction. Thus, they would act as digesters associated to each
display. Specifically, here we can conceive the existence of
one “display agent” associated to each display.

In addition, we can think at several “information agents”
in charge of controlling the spreading and diffusion of in-
formation across displays. We emphasize that, although
we conceptually prefer to think at information as some-
thing passive that is externally managed by sorts of digestor
agents, for the sake of modeling it is also possible to think
at information as something “active”, that has its own “in-
formation agents” associated and with the goal of properly
spreading information around.

The resulting patterns of interactions among agents can
be defined according to the food web that we have already
introduced in Figure 1, instantiated for the introduced case
study as from Figure 2. Information (or, which is the same,
information agents) feed user agents, and these feed the ad-
vertiser agents. Display agents close the feedback loop in
the system (between information agents and user agents;
and user agents and advertiser agents) by affecting how the
other agents move(and there included how information is
spread by information agents). This is necessary for the
ecosystem to self-regulate (as a whole). It is expected that
the system continuously evolve in time as a result of the
interactions and actions occurring along such food web.

As for the specific actions of agents, we can think at user
agents moving from place to place and thus being in the
view range of different displays (and thus looking specific
information on them and being exposed to different adver-
tisement), at advertising agents moving and replicating over
the spatially distributed displays so as to capture the more
suitable target audience, at display agents that provide to
update the display, and at information agents that distribute
and replicate information on need.

Let us now detail the happiness functions for each class of
the case study.

Users are happy when they see what they are interested in.
The displays near to an user can satisfy (or not) his interests
and consequently influence his happiness in a positive or a
negative way. In other words, if the users watch what they



want/need in the displays around, they will feel happy. The
function that gives us the instantaneous happiness of an user
agent is defined by the following:

Hinst
user(t) =

1

n

nX
k=0

match(dTk(t), user). (3)

Where Hinst
user(t0) = 0.

n is defined as the number of displays that are around
the user in a specific time t. The match function expresses
the degree of satisfaction of the user when he watches the
display k in a given time t. A match takes place when what
it is displayed (dT - displayed task) it is in agreement with
the interests of the user.

The overall happiness for one user agent is:

Hoverall
user (t) = Hinst

user(t) +

t−1X
k=0

Hoverall
user (k)−4. (4)

Where Hoverall
user (t0) = 0.

The function is the result of the sum of the whole val-
ues that the overall happiness had (

Pt−1
k=0 Hoverall

user (k)), and

also the instantaneous/current happiness (Hinst
user(t)). 4 is a

constant value that stand for the unhappiness degree of the
user, it makes his happiness value decrease over time. This
models the fact that the longer a user does not see some-
thing interesting, the more he gets unhappy. Eventually, if
the user never sees something interesting, it happiness will
return to 0.

Advertiser agents are happy when they display their clips
in an environment with many of happy users interested in
their advertisements. The idea here is that a commercial clip
is well received by users that are interested in it and that
are “happy”, i.e., that have not being bored by uninteresting
clips so far. The function that evaluates the instantaneous
happiness of advertiser agents is thus given by:

Hinst
adv (t) =

1

n

nX
k=0

match(dTk(t), adv) 
1

m

mX
k=0

Hoverall
user (t− 1)

!
. (5)

Where Hinst
adv (t0) = 0.

In this function n and m are defined as the number of
displays and users respectively, which are in the near en-
vironment of the advertiser agent in a specific moment t
and then, influencing in his happiness value. This happi-
ness is influenced by what the displays around show and
by the average of the overall happiness of the users around
( 1

m

Pm
k=0 Hoverall

user (t− 1)). The happiness of users influences
in the happiness of advertisers by the definition of the fi-
nal goal of the last: to show their advertisements to happy
and interested users. From this goal we can deduce that:
what increase user happiness also increase advertiser happi-
ness. By other hand, the match function returns the degree
of happiness when the advertiser agent watches the display
k. A match takes place when what it is displayed (dT -
displayed task) it is in agreement with the interests of the
users around and of the advertiser agent, which can be: his
own advertisement or an interested information for users.
In a practical example: if the display k shows information

(but this information keeps users happy), then the match
function returns a positive value.

The overall happiness for one advertiser agent is given by:

Hoverall
adv (t) = Hinst

adv (t) +

t−1X
k=0

Hoverall
adv (k)−4. (6)

Where Hoverall
adv (t0) = 0.

Similar to the overall happiness of users, this function in-
cludes the values of the overall happiness already happened
(
Pt−1

k=0 Hoverall
adv (k)) and the current/instantaneous one (Hadv(t)).

4 is the constant value that decreases the overall happiness
of advertisers over time, expressing the degree of unhappi-
ness.

The happiness of information agents is very simple. In-
formation agent just want that the displays around them be
interested in their information and thus, show them. The
instantaneous happiness for an information agent is similar
to the others instantaneous happiness described before and
is given by:

Hinst
inf (t) =

1

n

nX
k=0

match(dTk(t), inf). (7)

Where Hinst
inf (t0) = 0.

n is defined as the number of displays around the informa-
tion agent, i.e., the number of displays that the information
agent can see in a given instant t. The match function re-
turns the degree of happiness of information agents when
they see a display showing the task dTk(t) in a given time t.

The overall happiness for one information agent is ob-
tained as the overall happiness described before, and is given
by:

Hoverall
inf (t) = Hinst

inf (t) +

t−1X
k=0

Hoverall
inf (k)−4. (8)

Where Hoverall
inf (t0) = 0.

The final goal of display agents is to show advertisements
because they pay for advertise on it. Consequently, their
happiness is proportional to the number of advertisements
showed and the degree of advertisers’ happiness, since dis-
plays want to keep happy their advertiser clients.

The function that evaluates the happiness of the displays
is thus given by:

Hinst
dis (t) =

1

n

nX
k=0

Hoverall
adv (k). (9)

Where Hinst
dis (t0) = 0.

n is defined as the number of advertisers that are around
the display. The display’s happiness is given by the average
of the overall happiness of the advertiser agents that are in
the niche.

The overall happiness for one display is given by:

Hoverall
dis (t) = Hinst

dis (t) +

t−1X
k=0

Hoverall
dis (k)−4. (10)

Where Hoverall
dis (t0) = 0.

This function is defined as the that previous overall hap-
piness.



4. SIMULATION RESULTS
In this section, we describe the simulation environment

that we have realized to evaluate the effectiveness of the
proposed approach in the introduced case study, and then
present several results from the simulation experiments as-
sessing the approach in terms of dynamic behaviour, stabil-
ity and scalability.

4.1 The simulation environment
The simulation environment has been realized above the

REPAST Toolkit (Repast), to simulate an environment as
the one of our case study. In particular, it considers a 2D
space (i.e., the area of a thematic park) populated with dis-
plays. There, a number of spatially situated agents belong-
ing to different classes (users, advertisers, display, and in-
formation agents) act, interact and evolve according to a
simple set of eco-laws (driving their matchings and interac-
tions) and each with the egocentric goal of maximizing their
individual happiness.

Displays (and thus display agents over them) have a fixed
position and each represent a niche. Displays are assumed
to be able both to display information (some data they own
and that can be useful to users) and advertisements (based
on the actions of advertiser agents). Display agents have
indeed the goal of showing information and advertisements,
and their happiness is proportional to the overall happiness
of advertiser agents and user agents that live in their niche,
as from previous section.

Users (i.e., user agents) randomly move in the simulation
space, that is, be moving close to specific displays, they move
from niche to niche. Each user agent is assumed to have an
individual profile, expressing its preferences in terms of in-
formation and advertisements he would like to see. Accord-
ing to these preferences a matching function is defined for
the instantaneous happiness of a user watching a display,
that measures the degree of satisfaction of the user when
watching information and/or advertisements.

The matching function returns a value between 0 and 1,
depending on the degree of match between its preferences
and the information/advertisements currently being shown
in the display in which he is situated. In any case, we em-
phasize that in the simulation user agents do proactively
pursue the goal of increasing their happiness, but are sim-
ply exposed to information and advertisements around.

Advertiser agents reside on niches have the goal – that
they proactively pursue – of showing a specific advertise-
ment to a well-targeted audience. Again, a matching func-
tion varying between 0 and 1 is defined that affect the hap-
piness of advertisers depending on how well the overall audi-
ence (i.e., the users currently in that display niche) matches
the advertisements. Clearly, the currently displayed adver-
tisement is selected as the one best matching the current
audience. Advertiser agents can move to a different display
in the case no suitable matching is found in the current one.

Information agents reside on niches and act manage spe-
cific types of information. That is, by monitoring the overall
situation on one niche, can affect the information stored (and
displayed) on that niche. That is, by increasing in one niche
that information that results being of use to the classes of
users in that niche, and by deleting useless information in-
stead. Also information agents can move form niche to niche
to properly distribute on need the information they hold.

Despite some limitation of the current simulation envi-

ronment (that is: the number of agents is static since agents
cannot die or reproduce; information and advertiser agents
are not capable of dynamically adapting their behaviour and
interacting with each other, but rather follow a set of indi-
vidual static rules), experimenting over it enables to get use-
ful insight on the overall behaviour of our proposed ecosys-
tem approach.

4.2 Overall ecosystem behavior
We primarily use the following simulation scenario: 25

niches, 500 user agents, 100 advertiser agents, 100 informa-
tion agents.

Let us first analyze the overall behavior of the ecosystem
in terms of how the average happiness of the agents involved
evolve over time.

Figure 3 shows the evolution of happiness for the scenario.
After a short transitory period, the overall average happiness
stabilizes to a nearly steady value for all the agents involved.
That is, the ecosystem reaches a sort of global equilibrium in
which its global parameters are stable, independently of the
specific parameters of the simulation. Indeed, such stability
is reached not only in this scenario, but also in other scenar-
ios with different number of agents and niches involved.
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Figure 3: Average happiness of agents for the whole
ecosystem.

In any case, such apparent equilibrium is by no means the
expression of a static situation. Rather, as the simulation
continues executing and the agents in it continue acting and
moving, it is an expression of the capability of the ecosys-
tem as a whole to globally reach in a self-organizing way a
coherent dynamic behavior.

To better analyze these results, let us see what happens at
the level of individual niches, where we will discover many
complex behaviour that are hidden behind the above dis-
cussed global stability.

4.3 Niche-level behavior
Let us see how things evolve in a single niche over time.

Figures 4 and 5 show the evolution of the happiness and of
the number of agents, respectively, in one of the 25 niches of
the scenario (niche 11). However, the patterns of evolution
are very similar for all niches.

What we see here is the high-degree of dynamics inside a
niche, where the average happiness of the various classes of
agents tends to vary with time, along with the number of
agents themselves. Despite this, the stable balance already
discussed at the global level is achieved.

Similar test of agents’ happiness in the others niches were
done. The results show us that the average happiness of
user agents is well balanced in each of the niches. That
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Figure 4: Happiness of agents over time in one niche.
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Figure 5: Number of Agents over time in one niche.

is, the specific dynamics of the ecosystem, as enforced by
the happiness functions of its various agents and by their
interaction, have the effect of trying to make users as happy
as possible, which results in users being nearly equally happy
in every niche. Such balance of user happiness goes at the
price of somehow unbalancing the happiness of the agents
of other classes.

The results concerning the average number of agent in
the others niches show us that the number of advertiser and
information agents notably varies from niche to niche, to
due to the fact that they are forced to be mobile in order to
satisfy their own happiness.

4.4 Scalability
To evaluate the capability of the ecosystem to preserve

its behavior in large scenarios, we have evaluated it under
different scenarios with a larger number of users and a larger
number of niches.
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Figure 6: Average happiness of agents with differ-
ent number of users (100 information agents, 100
advertiser agents and 25 niches).

Figure 6 shows the average happiness of agents when in-
creasing the number of users involved. Interestingly, one can
see that there are no substantial changes in the happiness of

the various agent classes involved in the simulation. In other
words, the overall behavior of the system keeps stable even
by changing the number of users, showing that its overall
properties are maintained independently of the actual num-
ber of agents involved in the scenario.

0.10

0.15

0.20

0.25

0.30

0.35

0.40

H
ap

pi
ne

ss
 A
ve
ra
ge

Advertiser User Information

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

25 36 49 64 81 100

H
ap

pi
ne

ss
 A
ve
ra
ge

Number of Niches

Advertiser User Information

Figure 7: Average happiness of agents with differ-
ent number of niches (with 25 niches the number of
user agents is that of 500, and then it is increased
proportionally with the increase in the number of
niches).

Figure 7, on the other hand, shows the average happi-
ness of agents when increasing the number of niches (while
preserving a proportional number of user agents). Specifi-
cally we consider 25, 36, 49, 64, 81 and 100 niches with 500,
720, 980, 1280, 1620 and 2000 of user agents respectively.
Also in this case, no substantial changes can be perceived
as the number of niches (and, thus, the size of the system)
increases. This prove that our ecosystem approach, being
based on local interactions only, is capable of preserving its
properties even in the large.

In summary, the above two figures testify that the pro-
posed ecological approach is suitable for large-scale systems
with a massive number of service components.

4.5 Influence of other parameters
To further assess the robustness of our approach, we have

evaluated how its behavior changes by tuning both the pa-
rameters involved in the matching functions and by varying
the number of tasks that a display can concurrently perform
(i.e., the number of information and advertisements it can
concurrently show).

Varying the parameters of the matching functions implies
modifying the rate of happiness increase (or decrease) in
agents. For example, increasing the average return value
of the matching between users and advertisements implies
making users more tolerant to see advertisement.

Figure 8 shows exactly the effect of increasing the aver-
age return value of the matching function between users and
advertisement. If users are more tolerant to see advertise-
ments, which means that the match function when users see
advertisements will return a higher value, then users and
advertisers happiness increase, since the system shows more
advertisements because. Information happiness decreases
because the times to show its information also decrease (Fig-
ure 8).

From the definition of the happiness of advertisers, we
know that if in a niche the display shows interesting in-
formation that increases the happiness of users, this will
also increase the happiness of advertisers according to their
degree of tolerance on seeing information. In Figure 9 we
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Figure 8: Average happiness for agent classes (up)
and number of showed tasks (bottom) when varying
degree of happiness of users when they see adver-
tisements.
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Figure 9: Average happiness for agent classes (up)
and number of showed tasks (bottom) when vary-
ing degree of happiness of advertisers when they see
information.

increase the degree of happiness when advertisers watch in-
formation. In other words, advertisers are more tolerant to
see information, which means that the match function be-
tween an advertiser and a displayed information will return
a higher value.

As expected, the happiness of agents increases, also the
happiness of advertisers (since their level of tolerance also
increases), even though, the number of advertisers showed
decreases and the number of information showed increases.

As a final test, we modified the simulation by varying the
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Figure 10: Average happiness for agent classes when
varying the number of task that each display can
show simultaneously.
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Figure 11: Percentage of information and advertise-
ment showed by increasing the number of task that
each display can show simultaneously.

number of tasks (information and/or advertisement) that
each display can concurrently show. Figure 10 shows how
the average happiness of agents is proportional to number
of tasks that each display can show simultaneously. This is
simply due the fact that each display can accommodate at
a time the needs of a larger number of users and advertis-
ers. However, this does not change the overall behaviour of
the ecosystem. For instance, Figure 11 shows that the rela-
tive percentage of information and advertisements shown on
the displays does not substantially change. As more infor-
mation and advertisements can be concurrently shown, the
percentage of information tend to grow over advertisement.
However, the overall balance between advertisement and in-
formation is preserved, due to the inherent dynamics of the
regulatory feedback loops which are part of the system.

4.6 Summary
The above presented simulation experiments, although

performed within a single case study and still exhibiting
some limitations, shows very interesting properties. In par-
ticular:

• In the proposed ecological approach, the components
of the system are able to reach stable self-organized
global system behaviours, despite the inherent dynam-
ics of the system itself;

• The approach promises to be scalable to very large-
scale systems with a massive number of agents;

• The approach appears to exhibit very little sensitivity
to variations in the parameters of agents and of the
ecosystems.



5. RELATED APPROACHES
The key difference between our and other possible ap-

proaches that can be undertaken towards the realization
of eco-inspired service frameworks stands in the metaphor
adopted to model the ecosystem and its individuals.

Physical metaphors consider that the species of the ecosys-
tem are sort of computational particles, living in a metric
space of other particles and virtual computational fields,
which act as the basic interaction means. In fact, all ac-
tivities of particles are driven by laws that determine how
fields should diffuse and how particles should be influenced
by the local gradients and shape of some computational field.
Physical metaphors have been proposed to deal with several
specific middleware-level aspects in dynamic network sce-
narios [4, 19] or in the area of amorphous computing [22].
However, they appear not suitable for general adoption in
large-scale pervasive service ecosystems, due to the fact that
they hardly tolerate diversity and evolution: the number of
behaviors and interactions that can be enforced via fields is
limited, unless one wants to sacrifice simplicity by increasing
the number of different fields and the complexity of eco-laws.

Biological metaphors typically focus on biological systems
at the small scale, i.e., at the scale of individual organisms
(e.g., cells and their interactions) or of colonies of simple or-
ganisms (e.g., ant colonies). The species are therefore either
simple cells or very simple (unintelligent) animals, that act
on the basis of very simple reactive behaviors and that are
influenced in their activities by the strength of specific chem-
ical gradients (i.e., pheromones) in their surroundings. Bio-
logical metaphors are very similar to physical ones. Indeed,
they too have been proposed to solve specific algorithmic
problems in distributed network scenarios [3, 23]. However,
the number of patterns that can be enforced by the spread
of chemical gradients and by the reactions of simple individ-
uals seem (as it is in the physical metaphor) quite limited,
and this does not match with the need for time evolution
and adaptation.

Chemical metaphors consider that the species of the ecosys-
tem are sorts of computational atoms/molecules, living in
localized solutions, and with properties described by some
sort of semantic descriptions which are the computational
counterpart of the description of the bonding properties of
physical atoms and molecules. The laws that drive the over-
all behavior of the ecosystem are sort of chemical laws that
dictate how chemical reactions and bonding between compo-
nents take place to realize self-organizing patterns and aggre-
gations of components. Chemical metaphors have been pro-
posed to facilitate dynamic service composition in pervasive
and distributed computing systems [25], and they appear to
well tolerate diversity and evolution (because they can ac-
commodate a large number of different components with the
same simple set of laws). However, a metaphor strictly ad-
hering to the idea of a single chemical solution would hardly
address the aspects of spatial distribution that characterize
large-scale pervasive systems, unless properly coupled with
some bio-inspired aspects, as we have recently proposed in
[25].

Economic and market-based models have been already ex-
tensively studied in recent years [7, 14, 21] and they are well
suited for large-scale Internet scenarios. However, they are
possibly too complex and elaborated for pervasive comput-
ing scenarios, where simplicity of both individuals and inter-
action rules is a primary requirements (due to the presence

of resource constrained computation and communication de-
vices).

As a final note, we emphasize that – as far as the mod-
eling of agents in terms of happiness and actions – similar
proposals have been made in the area of goal-oriented and
utility-oriented agent systems [10, 17, 20]. The peculiarity
of our approach is to couple this into with the overall natu-
ral inspiration applied to pervasive computing scenario and
to exploit a flexible model of dynamic composition.

Ecological models like the one we have presented in this
paper are largely unexplored, e.g., in [1] the adoption of a
trophic-based interaction model is argued but not put at
work.

6. CONCLUSIONS
In this paper, we have elaborated on the idea of modeling

and developing next generation of pervasive service frame-
work by getting inspiration from ecological systems. That is,
by conceiving future pervasive service frameworks as a spa-
tial ecosystem in which services, data items, and resources
are all modeled as autonomous individuals (agents) that lo-
cally act and interact accordint to a simple set of well-defined
“eco-laws”.

Beside the current limitations of our simulation environ-
ment, the presented results suggest that the proposed eco-
logical approach has the potential to act as an effective
general-purpose framework for spatially-situated and adap-
tive pervasive service ecosystems.

Beside the promising results, there are still a lot of open
issues to exploit to turn our idea into a practically usable
one. First, more simulations on a larger set of case studies
are needed. Second, the proposed modeling for individuals
and interactions needs to be better formalized and its prop-
erties more formally analyzed. Third, the security threats of
our approach have to be identified. Finally, of course, there
is need to put the approach at work in a real implementation
and to test it on the field.
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