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Abstract—Software systems operating in open-ended and
unpredictable environments have to become autonomic, i.e.,
capable of dynamically adapting their behavior in response to
changing situations. To this end, key research issues include:
(i) framing the schemes that can facilitate components (or
ensembles of) to exhibit self-adaptive behaviors; (ii) identifying
mechanisms to enable components or ensembles to self-express
the most suitable adaptation scheme; and (iii) acquiring the
proper degree of self-awareness to enable putting in action self-
adaptation and self-expression schemes. In this position paper,
with the help of a representative case study, we frame and
discuss the above issues, survey the state of the art in the area,
and sketch the main research challenges that will be faced in
the ASCENS project towards the definition of a fully-fledged
framework for autonomic services.

I. I

Current and emerging ICT scenarios increasingly rely
on complex distributed software systems for their proper
functioning, and they are called to operate in open-ended and
unpredictable environments. Accordingly, software systems
have to become autonomic in their behavior [1], i.e., capable
of dynamically adapt their behavior without human super-
vision, to respond to changing situations without suffering
malfunctioning or degrading quality of service.

The overall ultimate goal of the EU-funded project
ASCENS (“Autonomic Service Component Ensembles”,
www.ascens-ist.eu) is to define an innovative framework
for the engineering of complex software-intensive service
systems, i.e., of all those complex systems that serve some
purpose and are operated by software. In particular, in
ASCENS, the idea is to define formal models, languages,
and software engineering tools, to support the modeling and
development of software systems that are at the same time
predictable capable of adaptation. This calls for investigat-
ing models and mechanisms by which both the individual
components and ensembles of components can become self-
adaptive – i.e., able to properly react on need by self-tuning
their internal behavior and/or structure in an autonomic way
– and self-aware – i.e., able to recognize the situations
of their current operational context requiring self-adaptive
actions.

Accordingly, one of the specific objectives to be faced by
ASCENS, and the specific focus of this paper, is to study,
analyze, and experiment with various models, schemes, and
mechanisms enabling self-adaptation, at various levels, in
service components and in ensembles. These should even-
tually turn into a sound and uniform set of conceptual and
practical tools to guide developers and engineers in the ex-
ploitation of such mechanisms, at the level of abstract system
modeling, verification, and implementation. In addition, dur-
ing the analysis of such models and mechanisms, it will be
possible to clearly identify the self-awareness requirements
for these kinds of systems, i.e., which kind of knowledge is
required by the identified adaptation mechanisms.

The results of the ASCENS activity in this area, beside
becoming (hopefully) useful tools for designers, will also
have scientific relevance per se. In fact, they can shed new
light into the general issues involved in self-awareness, self-
expression and self-adaptation, and in their impact in soft-
ware development and execution. In particular, a key innova-
tion that will be pursued over the state of the art is related to
weakening the tension between individual (component-level)
and collective (ensemble-level) self-adaptation, as well as
between top-down (engineered by design and/or regulated)
and bottom-up (based on emergence and self-organization)
approaches to self-adaptation.

II. F A D

The understanding of how adaptation can be effectively
enforced in modern service systems, along with the iden-
tification of the associated research challenges, requires
framing the concepts associated.

With this regard, we have identified two primary orthog-
onal dimensions: where adaptation can take place and what
adaptation mechanisms can take place (see Figure 1).

A. Where: Individual vs. Collective Adaptation

In modern software systems, adaptation can take place
both via mechanisms integrated in individual components
as well as in software component ensembles. In particular:
• At the level of individual components adaptation can

take place by having components capable of perceiving



Figure 1. Adaptation Dimensions

the situations around them, and autonomously decide
how to tune/modify their internal behavior (or the state
of their operational environment) so as to ensure that
the component will be able to achieve its objectives (let
them be service-level objectives or long-terms goals);

• At the level of ensembles adaptation can take place by
having components dynamically engage in interactions
protocols, enabling the dynamic change of the control
regime for the ensemble execution.

We are perfectly aware that the study of both individual
and collective adaptation mechanisms has a long history,
e.g., in the area of agent-based and multi-agent systems [2]
and in the area of autonomic systems [1].

Individual adaptation is a very important thread of re-
search since the early years of intelligent agents [2] and
of reflective computing [3], and several architectures and
mechanisms to enable adaptation have been proposed so
far. Most recently, the autonomic computing approach has
adopted a similar vision [1], which reflects in a number of
proposal for self-adaptive (and self-aware) components ca-
pable of adapting their internal behavior, an approach which
is to most extent also shared by autonomic communications
researches [4]. For instance, the ACE component model
proposed in the context of the CASCADAS project defines
a very clean architecture enabling service components to
dynamically adapt their behavior based on their context [5].
Yet, the large amount of different mechanisms that are being
proposed is a clear proof that the research still needs further
progresses, to come assessing a limited set of versatile and
widely accepted models and mechanisms.

For collective adaptation, the idea of dynamically adapting
the behavior of a set of interacting software components,
in order to meet new or unexpected requirements or con-
tingencies, is not new [6], [7], and has been a very hot
research topics over the last ten years for several research
communities. Yet, also in this case, it is widely recognized
that the number of open issues in the area is still relevant [8].

On the one hand, adaptive negotiation mechanisms and
market-oriented mechanisms have been extensively stud-
ied [2]. With this regard, we consider of particular relevance
the lessons of normative multi-agent systems, since the
proper functioning and adaptation of a complex system made

up of autonomous components may require – in whatever
area – the existence of “norms” that collectively regulate
the activities of the components [6], [9], possibly enacted
via specific components of the ensemble [10]. However, the
definition of proper tools and mechanisms to engineer and
control such kind of systems is still missing.

On the other hand, in the past few years, a large number
of proposals for algorithms that can achieve adaptation in a
distributed systems via decentralized self-organization have
been proposed (see [11] for an in-depth survey). However,
most of these solutions apply to specific problem instances,
and do not propose themselves as general-purpose solutions.
Despite the existence of some proposal aiming at more
generality (e.g., the TOTA middleware [12]), the issue of
systematically exploiting self-organization as a mechanism
for achieving adaptation in large-scale heterogeneous soft-
ware systems is still to be faced.

In summary, for both individual and collective adaptation,
what we think is still missing are uniform models and
tools supporting the design of complex adaptive systems.
In particular, a key research challenge is to devise means
by which to understand, for a given system and for its
specific objectives/goals, how to properly balance individual
and collective adaptation. That is, whether to encode goals
and adaptation mechanisms at the level of individual compo-
nents, at the level of collectives, or at both level. And, in the
latter case, evaluating how to properly balance in a system
the trade-off between individual and collective adaptation,
and possibly to smooth the tension between the two.

B. What: Self-Adaptation vs. Self-Expression

Adaptation actions imply activating some mechanisms to
modify “something” in the behavior of a component or
ensemble. What mechanisms a component or ensemble can
put in action is very important to understand the extent of
their adaptation capabilities. With this regard, we distinguish
between two main classes of mechanisms (that are sometime
referred to in the literature as mechanisms of weak and
strong adaptation, respectively [13]):
• Self-adaptation mechanisms concern the possibility of

modifying parameters of components or ensembles, or
at selecting, among the available ones, the most proper
set of actions/behaviors (for components) or interaction
protocols (for ensembles). In other words, components
and ensembles react to those contingencies that require
adaptation by exploiting their current abilities.

• Self-expression mechanisms concern the possibility of
radically modifying at run-time the structure of com-
ponents and ensembles. For components, this could
imply internalizing capabilities previously unavailable
to them (e.g., a new function or new sensors) as well
as changing their internal architecture (e.g., switching
from being reactive entities to goal-oriented ones). For
ensembles, this could imply a re-structuring in terms



of topology (e.g., switching from a hierarchy to a
collective of peers) or of control regime for interactions
(e.g., switching from being a collective decision-making
ensemble to a competitive market-based one).

While self-adaptation mechanisms have been the subject
of a large body of research work, self-expression mecha-
nisms are far from being fully understood, and so it is the
issue of providing useful guidelines for developers to express
(and let software self-express at run-time) among the most
suitable mechanisms.

Self-expression has been a key issue in the area of
programming languages, related to defining languages ca-
pable of self-expressing at the most appropriate paradigm
(procedural vs. declarative) depending on the needs that have
arisen, thus smoothing the tension between procedural and
declarative programming paradigms.

In the context of individual components for self-adaptive
systems, such tension translates in the dichotomy between
architectures of simple reactive components (i.e., obeying
in a reactive way with simple rule-action mechanisms, typ-
ically based on declarative knowledge, to external stimuli)
and inherently self-adaptive components (i.e., goal-oriented
components capable of procedurally digesting knowledge).
Enabling a component to chose at run-time which struc-
ture to adopt is definitely challenging, and definitely very
important for smoothing the tension between goal-oriented
and reactive components. Again, the issue so far is mostly
under-investigated.

Coming to the specific context of component ensembles, a
very challenging issue that will have to be faced in enabling
dynamic self-expression is that of promoting and supporting
the possibility of dynamically switching between top-down
and bottom-up regimes of control. As we have already
stated, a part of the recent researches on self-adaptation
in software systems has looked for inspiration in the area
of natural and biological self-organizing systems, with the
aim of reproducing the emergent adaptation capabilities of
such systems [11]. At the same time, another research thread
has focused on integrating adaptation in software systems
according to the most assessed approaches of software
engineering, that is, by explicitly encoding adaptation in
system design [8].

It is very challenging to smooth the tension between the
two approaches, and to devise means by which to make
possible to dynamically self-express the most appropriate
regime of control. Working towards such goal also requires
understanding the implications at the global level for a sys-
tem whose components and ensembles dynamically change
their structure and behavior. In particular, it requires models
and methods to deal with unpredictability and emergent
behaviors, i.e., methods to engineer and control emergence.

The issue of engineering and control emergence is def-
initely under-investigated in the ICT arena. Researches on
complex systems already recognize that, beside understand-

ing complex behaviors, the next challenge is to find meth-
ods and tools to dominate and control them [14]. A few
researches in software engineering and distributed systems
explicitly address this issue, and mostly at the level of
simple simulations for multi-agent systems [15] or cellular
automata [16]. Yet, a general understanding of how to
identify and control emergent behaviors in complex software
systems is still to be reached, and we think that the work
on regulated norm-based multi-agent systems [9] can be an
effective starting point.

III. A C S

Let’s sketch a simple example to clarify the concepts
presented and to show the need of proper conceptual and
practical tools to tackle the challenges we have identified.

Consider a group of autonomous robots – each to be con-
sidered as a service component – devoted to collaboratively
explore and map an unknown environment. Here, adaptivity
implies the capability of going on with the exploration
and mapping regardless the contingencies occurring in the
environment or in the robots themselves.

A fist key issue suddenly arises: exploring the environ-
ment has to be a shared goal for all individual robots and
for the collective of robots. So, from the designer viewpoint,
it is possible to chose among many apparently functionally-
equivalent, solutions. Let us just detail three of them:

• Leader: Let elect one of the robot as leader of the group,
and have it be a goal-oriented component embedding
the global exploration goal, while keeping the other
robots as simple reactive components. The leader, to
accomplish its goal, will direct (via proper signals) the
activities of the reactive robots to coordinate the overall
activities of the group in a centralized way.

• Peers: As for the individual robots, let have each robot
be a goal-oriented one, embedding, in its goal-oriented
activities, the capability of perceiving the status of the
environment and of adaptively selecting the best plan of
actions/behavior to enable it reach its goal. As for the
collective, let have robots directly exchange information
about the explored environment and coordinate with
each other, in order to avoiding exploring areas already
visited by other robots.

• Swarm: Let have all the robots in the group (as so-
phisticated as they can be) acting as simple reactive
components, e.g., as a swarm of simple bees that ran-
domly explore the environment. The only coordination
occurring between robots is in the form of simple
exchange of local signals (e.g., virtual pheromones):
robots, while exploring, deposit pheromone trails, and
their random movements have a preferred direction
that tends to move them away from existing trails. It
has been shown that such mechanisms can lead to an
effective exploration and mapping [11].



Beside mere considerations related to computational and
communication efficiency, the designer has to chose one of
the above three solutions taking into consideration the adap-
tation capabilities that the solution can express in response
to expected contingencies.

The Leader solution appears very effective. In fact, the
leader holds complete information about what the others
are doing and have discovered so far, and so it can effec-
tively plan alternate actions in the presence of unexpected
situations occurring in the environment (e.g., a corridor
becoming obstructed by a robot that has ran out of batteries).
However, as any centralized solution, it is very fragile, and
exploration suddenly stops if the leader for any reason gets
broken. Also, when adopting the Leader solution, one should
also evaluate whether, instead of having the non-leaders be
simple reactive robots, it can be better to leave them with
some limited goal-oriented capabilities, in order to discharge
the leader from having to handle very specific individual
adaptation needs (e.g., what sensors and engines should a
robot activate to effectively pass across a specific portion
of the environment?). That is (see Section II.A), there is
the need of finding the proper trade-off between local vs.
global goals and between individual vs. collective adaptation
actions. Or, which is the same, there is need for models,
tools, and guidelines, to support such decision.

The Peers solution is a bit more complex. It requires
spreading knowledge about the global goal across all robots,
and to enable local adaptation capabilities in each robot
to achieve their goals in autonomy, other than adaptive
coordination capabilities to coordinate their actions. Yet, it
ensures that the exploration goal can be achieved even when
a relevant number of robots die. However, if the environment
is larger than expected, or in the presence of a large number
of robots, it can become difficult (other than costly) for the
group of robots to collectively converge to a shared plan
of actions towards the global goal. Also, any time some
contingencies occur (e.g., a corridor obstructed or some
robot do no longer respond), there is need of re-planning
in a collective way. Again, the possibility of finding a trade-
off between local goal-oriented adaptivity in each robot and
global distributed decision making arises.

The Swarm solution, to be effective, requires a large
number of robots, but in this case it can represent a very
simple solutions, and also a highly adaptable one. The
Swarm approach, in fact, can effectively tolerate the death
of several robots without the exploration capabilities being
undermined. Also, the capabilities of effectively completing
the exploration are not affected by changes and contingen-
cies that can occur in the environment during the exploration
itself.

So, let us now assume that the designer knows there
will be the possibility of having a very large and dense
group of robots. Then, it can decide to adopt the Swarm
solution without doubts. However, because of very peculiar

conditions that the robots find in the environment (e.g. holes
in which they get trapped, or wild animals that destroy
them), it can happen that the swarm becomes sparsely
populated. At this point, while the few remaining robots
in the swarm could in theory continue with the exploration,
this becomes highly ineffective.

In such case, there are no simple adaptation mechanisms
that the swarm can put at work to improve the situation.
Rather, the remaining robots in the swarm have to dy-
namically self-express a totally different working regime.
For instance, they could decide to switch to the Leader
regime: one of the robots in the swarms takes the role of
coordinator to orchestrate the activities of the group, while
the other follows the directives of the leader. Beside devising
mechanisms by which such switch can be made possible,
we emphasize that such a change of collective behavior
also implies individual robots to dynamically self-express
a change: the leader, in particular, from a simple reactive
components, should become a goal-oriented autonomous
components, also should internalizing the necessary behav-
iors and knowledge to control its behavior, and a control loop
in which to more properly analyze and digest the information
on its surroundings. That is, as discussed in Section II.B,
self-expression at the level of individual components and at
the level of ensembles can hardly be tackled independently.

IV. S- I

So far, we have not discussed in detail the issue of self-
awareness. Yet, for any adaptation action to take place, the
component or ensemble must become aware of the existence
of situations (inside them or in the environment around
them) requiring it.

In our opinion, the key issues in awareness are not related
to information availability: in whatever software system, you
can easily get access to whatever sensor to get any informa-
tion you need. Nor, from the perspective of our analysis, it
is an issue that of properly inferring the necessary high-level
knowledge from the available sensors and modeling it, since
there are specific threads of research in ASCENS tacking
this problem [17]. Rather, from our perspective on engi-
neering self-adaptation and self-expression, and assuming
that proper solutions for knowledge inference and modeling
will be made available somehow, the key issues relate to:

• Understanding what minimal amount of information
is to be made available, at the level of individual
components, for enabling their adaptation capabilities;

• Understanding how knowledge must be shared at the
level of ensemble for enabling proper self-adaptation
and self-expression actions;

• Understanding the mechanisms by which, upon self-
expressing specific adaptation patterns, components and
ensembles can correspondingly modify the amount of
information that they have to digest.



Let us exemplify why each of these issues is challenging
with reference to the robotics case study.
• In the Leader solution, understanding what local goal-

oriented capabilities to delegate to robots implies nec-
essarily identifying what knowledge they should made
available to reach the goal. Yet, depending on the
goal locally delegated to each robot, the amount of
knowledge to be digested by each of them can dra-
matically change: from short-term memory of the local
shape of the environment to long-term memory of the
global shape of the environment; from very simple
information related to simple movements in the envi-
ronment (according to the directives of the leader) to
more sophisticated environmental knowledge to plan an
itinerary of movements.

• In the Peers solution, the collective agreement that must
be shared among robots raises a fundamental question.
Since such agreement should of course rely on a shared
knowledge of the overall situation of the exploration
activity and of the overall status of the group of robots,
where has such shared knowledge to reside? It is
possible to think both at complex interaction protocols
that let each and every robot in the group to eventually
acquire such global knowledge. Or, alternatively, it is
possible to assume that there are means (e.g., a shared
blackboard) by which such global knowledge can be
easily available to each robot.

• In the Swarm solution, components need nearly no local
knowledge about the environment or about themselves
to properly acting in an adaptive way, nor the robots
need to share some global knowledge. However, when
switching from the Swarm solution to the Leader one,
knowledge about the environment and about the state
and position of other robots should be materialized by
the leader. Also, the simple action for a component
or ensemble to self-express a different structure may
require much more than being aware of what it is and
what is around it: it requires knowing that it could
purposefully become something different.

In summary, a key lesson that we have learnt from our
early activity in ASCENS is that considering self-awareness
in a general-way can be a rather useless exercise. In fact,
self-awareness can be expressed at very different degrees,
and different software solutions imply different expressions
of self-awareness and very different awareness levels. Thus,
self-awareness has to be contextualized to specific adaptation
needs, and can require not simply the awareness of “what I
am and what is happening in the world” but also the second-
order awareness of “what I could become and how the world
could change accordingly”.

V. C  N S
In this position paper, we have framed the key concepts

and challenges related to defining models, tools, and guide-

lines, for the engineering of complex autonomic software
systems, as they will be faced in the context of the ASCENS
project. In particular, ASCENS will try to show that a system
can dynamically express diverse classes of self-adaptation
mechanisms without conflicts, and that it can be made able
to self-evaluate whether to switch from top-down forms of
self-adaptation to bottom-up ones.

To reach these goals, the ASCENS research activities
on self-adaptation and self-expression will be organized as
follows.

First, we are currently analyzing the key patterns of self-
adaptation studied so far in the literature. At the level of
individual components, the starting technical points have
been recent research results in the area of autonomic self-
adaptive components [18] and of adaptive goal-oriented
agents [2]. Soft constraint programming [19] will be ex-
plored as a general-purpose tool to assert/retract relevant
facts and rules that can drive individual self-adaptation.
At the level of ensembles, the starting technical points of
this task has been recent research results in the area of
self-adaptive architectures [8] and of self-organizing agent
systems [20]. In addition, recent research results in the area
of adaptive and norm-based multi-agent systems [9], [6]
will be of help as inspiring mechanisms. As for the case
of individual self-adaptation, constraint and soft constraint
logic programming will be most likely adopted as tools, as
they can be well suited to express normative rules driving
the behavior of ensembles and their adaptation constraints.
The key result of this activity will be a catalogue of self-
adaptive patterns, properly supported by the experimentation
of such patterns in various scenarios, and eventually acting
as of methodological guidelines [21].

Second, for each of the studied patterns, we intend to care-
fully analyze the associated requirements of self-awareness.
Each of the patterns will be carefully investigated with this
regard, also with the help of the above mentioned exper-
imental activities and of several application scenarios. The
starting point for this activity will be recent results in the area
of context-modeling for complex adaptive distributed service
systems [22], [23]. The key results of this activity will be
in the identification of a set of guidelines to let designers
understand what amount of information and knowledge
(and, consequently, which sensors and knowledge inference
tools, respectively) has to be made available depending on
the characteristics of the application scenarios and on the
adopted self-adaptation and self-expression mechanisms.

Third, we intend to study how to exploit self-expression,
within a system and depending on needs, to enforce both
bottom-up and top-down approaches to self-adaptation. In
particular, a key goal of this task is to identify the potential
problems of unpredictable behaviors that can emerge in large
ensembles, due to the variously expressed self-adaptation
patterns, classify and categorize them, and eventually iden-
tify methods and tools by which such emergent behav-



iors can be properly controlled and directed. The starting
technical points of this task will be recent research results
related to controlling emergent behavior in complex multi-
agent and robotics systems [15] and in norm-based multi-
agent systems [9]. The key results of this activity will
be in the identification of mechanisms to overcome the
dichotomy between bottom-up and top-down self-adaptation,
in the identification of the potential problems of emergent
behaviors in complex self-adaptive systems, and in the
definition of guidelines and tools to control and direct such
emergent behaviors.

The above ASCENS activities can have a disruptive char-
acter and can contribute collapsing into a single one different
researches that, as of now, are mostly non-overlapping and
non-communicating.
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