
Dealing with Adaptive Multi-Agent Organizations
in the Gaia Methodology

Luca Cernuzzi1,2 and Franco Zambonelli1

1Università di Modena e Reggio Emilia, DISMI
Via Allegri 13, Reggio Emilia, Italia

{franco.zambonelli, cernuzzi.luca}@unimore.it
2Universidad Católica “Nuestra Señora de la Asunción”, DEI

Campus Universitario, Asunción, Paraguay

Abstract. Changes and adaptations are always necessary after the deployment of
a multiagent system (MAS), as well as of any other type of software systems.
Some of these changes may be simply perfective and have local impact only.
However, adaptive changes to meet changed situations in the operational
environment of the MAS may have global impact on the overall design. In this
paper, we analyze the issue of continuous design change/adaptation in a MAS
organization, and the specific problem of how to properly model/design a MAS
so as to make it ready to adaptation. Following, the paper focuses on the Gaia
methodology and analyzes – also with the help of an illustrative example – its
suitability in supporting and facilitating adaptive changes in MASs organizations,
and its advantages and limitations with this regard over a number of different
agent-oriented methodologies.

Keywords: Agent Oriented Methodologies, Design for Change, Adaptive
Organizations, Methodologies Evaluation

1 Introduction and Motivation

A great deal of efforts in the Agent-oriented Software Engineering (AOSE) area
focuses on the definition of methodologies to guide the process of engineering
complex software systems based on the multiagent systems (MAS) paradigm [6],
[20]. AOSE methodologies, as they have been proposed so far, mainly try to suggest a
clean and disciplined approach to analyze, design and develop MASs, using specific
methods and techniques.

However, very few of the AOSE methodologies proposed so far explicitly take
into account the maintenance phase of the MAS, that is, all those engineering work
that has to be performed on the MAS after its deployment. In general, maintenance of
a software system is required for several reasons. Corrective maintenance aims at
fixing those errors that unavoidably will show up after the deployment of the system
itself, independently on how extensively it was tested. Perfective maintenance is
required to improve the functionalities and the performances of the system, and also
to better fulfill the original requirements. Adaptive maintenance aims at tuning the

software systems accordingly to changes in either the requirements or in the
environment (operational or social) in which the system operates. While corrective
and perfective maintenance typically have local impact only (i.e., in the case of
MASs, on the internal structure of agents and on the structure of some communication
protocols), adaptive maintenance may have global impact on the overall design of
systems (i.e., on the overall architecture/organization of MASs).

Information systems studies outline that the phase of maintenance costs almost the
60% [1], [10] of the entire cost of systems over their lifecycle. Although there are no
specific studies of this kind already available for MASs, it is reasonable to assume
that MASs too will experience a similar trend, and possibly even more exacerbated as
far as adaptive maintenance is concerned. While agents and MASs are often claimed
as a promising approach to deal with the dynamism of modern scenarios, i.e., to deal
with dynamic and open interactions and to interact in a dynamic environment, current
AOSE methodologies typically promote the definition of static architecture design for
the overall organization of a MAS (i.e., for the roles to be played by the agents of a
system and for the relations among these roles), and are not conceived to be ready for
changes in the MAS organization after its deployment.

From now to the moment in which we will be able to design and deploy – in a
trustworthy and reliable way – fully autonomous and self-adaptive software systems,
capable of re-organizing themselves to answer to changed conditions without any
human intervention, we will probably have to wait several years. In the meantime, we
may nevertheless need to better understand which the right directions to achieve this
are, and we must provide engineers with suitable conceptual and practical tools to
facilitate the adaptive maintenance of MASs. In other words, an AOSE methodology
should not only facilitate the effective development of a MAS answering to specific
requirements, but should also accompany designers through the entire software
lifecycle and should facilitate developers work whenever adaptive software
maintenance requires structural changes in the overall organization of a MAS.

In this paper, we focus on the design for change issue and on the issue of
continuous design change/adaptation. We analyze, also with the help of a simple yet
representative application example, how a MAS may require frequent and unexpected
re-structuring of its global organization to adapt to changed situations. In particular,
the aim of the analysis is also to outline the characteristics that an AOSE
methodologies should exhibit to support the modeling and the development of
adaptive MASs. The presence of such characteristics can notably reduce maintenance
costs and, in the future, can facilitate the integration of self-adaptive features in
MASs.

To ground the discussion, a specific attention is posed on the Gaia methodology
[19], which exhibits some of the specific characteristics that make it somewhat more
suitable than other methodologies to deal with adaptive changes. In particular, we
show that Gaia facilitates engineers to face the likely changes that will appear in a
MAS after its deployment, limiting the efforts required to re-model the evolving
systems.

The following of this paper is organized as follows. Section 2 explores the need
for adaptive MAS organization. Section 3 discusses the aspects of the Gaia
methodology that can promote a design for change perspective. Section 4 compares
with other AOSE methodologies. Section 5 concludes.

2 On the Need for Adaptive MAS

MASs, as well as the great majority of modern software systems, are likely to be
subject to a large number of adaptive changes during their life-cycle, some of which
may affect the very structure of the system.

In traditional software engineering discipline, special efforts have been devoted to
the design for change issue, trying to anticipate the likely changes and adaptations
that are frequently required to almost all software products after their deployments.
However, those efforts have normally pointed out the anticipation of predictable
changes that do not mainly influence the global design of the system under
construction. Thus, it is yet an open issue how to undertake continuous design
change/adaptation during the whole lifecycle of a system that may imply re-
structuring its global organization. And such an issue is expected to be particularly
critical for MASs, which are often conceived to operate in very dynamic operational
environments.

Following in this section, we present the conference management system example
(paradigmatic of a larger class of applications), illustrating how unexpected changes
in the real-world organization forces important changes in the MAS organization, and
discusses the requirements for an AOSE methodology to support adaptive MASs and
the design-for-change perspective.

2.1 The Conference Management System Example

Let us consider an agent-based system for supporting the process of producing the
technical program for an international conference. We assume the readers of this
paper are mostly knowledgeable with this, but let us summarize in any case the key
characteristics of this process.

The process may be subdivided into three phases:
- The submission phase: the program committee chair (PC Chair) and the organizer

distribute the call for papers. The authors submit their papers. The papers are
classified (according to specific criteria), a submission number is assigned to
each paper and the authors are notified about that.

- The review phase: the PC Chair distributes the papers among the PC Members
which are in charge of providing reviews for those papers. The PC Chair collects
back reviews, decides upon the acceptance/rejection of papers, and eventually
notifies authors of the decision. Considering all the accepted papers, the PC Chair
prepares the conference program.

- The publishing phase: the authors of the accepted papers have to produce a
revised version of their papers. The publisher has to collect these final versions
and compose the proceedings.

The process clearly involves three loosely interacting phases, each involving
different actors, and naturally leads to conceiving one MAS for supporting the
activities of each phases. There, personal agents will be naturally associated to the
actors involved in the process (authors, PC Chair, PC Members, reviewers) to support
their work. It is also natural that the roles played by each agent reflect the ones played
by the associated actor in the conference organization. This may require agents to
interact both directly with each other (according to patterns that will reflect the

patterns of interactions in the real-world organizations), and indirectly (via exchanges
of papers and review forms).

This said, the process of designing a MAS to support the organization of a
conference may at appear very simple and intuitive, as critical design choices (the
types and roles of agents involved, the structure of the organizations and of inter-
agent interactions) naturally derive from the structure of the real-world organization.

 2.2 Unexpected Changes: a Real-World Example

What the above discussion of the conference management example misses in
identifying is that, for a conference, the overall structure of the real-world
organization may dramatically vary from year to year. First, since the organizers
involved change from year to year, some changes in the organization may be directly
induced by them based on personal attitudes and opinions. Second, factor such as the
hotness of the conference topics and the effectiveness of the conference advertising
may dramatically affect the number of submitted papers. Thus, the need of changing
the structure of the management process may be forced by the need of keeping it
manageable. This is particularly true for the reviewing phase, which involves a large
number of actors, with different duties and variously interacting with each other.

To mention a real-world example, we can consider the biyearly ISAS/SCI
conference series (ISAS Multiconference on Systemics Cybernetics and Informatics).
ISAS/SCI started as a single mono-track conference in 1995 with 55 presented papers
(the number of submitted papers being directly proportional to this). Then, the
conference grew up very fast, to become a huge multi-conference and, in 2001, to
reach a number of 1859 presented papers. As it can be seen from Table 1, such a
pronounced growth has not occurred on a large time, and a dramatic growing is
exhibited for any two consecutive editions. Personal acquaintances of the first author
have confirmed that, although a continuous growth was indeed expected, no one in
the organization would have expected such a dramatic trend of growth.

YEAR NUMBER OF PRESENTED PAPERS
1995 55
1997 248
1999 754
2001 1859

Table 1. The Size of the ISAS/SCI Conference

Accordingly, to meet the increasing number of papers to deal with in the review

process (as light as this can be, there is indeed some reviewing for papers in the
conference), the ISAS/SCI conference had always to underwent serious and
unexpected re-thinking of its organization. In 1995 it relied solely on a PC Chair and
a limited group of PC Members for the review process, whose outcome were a single
proceedings volume. In contrast, in 2001, there were a General PC Chair, Vice-Chairs
for a large number of special-tracks (mini-conferences), each with their own PC, and
hosting within a number of special-sessions, and were been published a total of 9
proceedings volumes.

In addition to the above ones, adopted by ISAS/SCI, a number of additional
organizational structures can be though (and are often applied) for different
conferences’ sizes and characteristics. The PC Chair can partition papers among PC
members which have in turn to recruit the necessary number of reviewers for their
papers, or each PC member can be in charge of collecting a single review for papers.
Reviewers can be asked to bid for papers, in a sort of “paper market” or can be
dictated which papers to review. All of which can be organized into multi-level
hierarchies on need.

What we think is most interesting in the example of conference management, is
that information about what the size of the conference will be (and thus about what
the most proper organizational structure to adopt is) is generally available only a few
days before the review process has to begin, that is when submitted papers gets
incoming. This clearly forces a dramatically fast re-structuring in the organization
(unless one wants to stick to an unsuitable organizational structure) and, in the case
the process is supported by a MAS, requires an extremely fast adaptation of the MAS
structure. These problems, to different extents, occur in all those software systems
devoted to support processes in an increasingly dynamic economy.

2.3 Requirements for Adaptive MAS and Design-for-Change

In very general terms, adaptation is the result of a bi-directional relationship
between a system (e.g., a MAS organization) and the environment in which it situates
(e.g., the real-world organization and its operational environment): modifications in
the real-world organization or in the operational environment may imply
modifications in the topological structure of MAS organization and in the control
regime of its interactions.

Different studies exist that analyze the organizational aspects of MASs and their
possible structures [7], some of which paying specific attention to adaptive MASs
structures [13], [9]. However, a few of these studies constructively propose software
engineering solutions to deal with continuously adapting MASs organizations.

Recently, several research efforts are being devoted to promote self-organization
in complex software systems and, specifically, self-adaptive capabilities for
multiagent systems [21]. These studies explore the possibility for complex MASs to
either exploit adaptive self-organization phenomena or to promote self-inspect and
self-reorganization in order to preserve specific functional and non-functional
characteristics despite contingencies in the operational environment. A number of
algorithms and tools are becoming available, but the time for deployment of self-
adaptive software systems and MASs is far to come.

In any case, it is worth outlining that, even if effective mechanisms of self-
adaptation were available, the problem of having a MAS properly capture not only
internal needs of efficiency but also external needs of the stakeholders (e.g., the
conference organizers in our example) is open. How can one MAS inspect and get
feedbacks from the real-world organization to which it belongs to adapt accordingly?
While waiting for self-adaptive MASs to come, an AOSE methodology should
definitely promote a design-for-change perspective, enabling designer and developers
to rapidly re-work the structure of a MAS to have it suit novel needs.

To promote such a design-for-change perspective we need modularity and
separation of concerns. In particular, when dealing with both the design and
development of a MAS, one should clearly separate those aspects of the system that
are intrinsic to the definition of the problem itself from those that, instead, derives
from contingent choices based on the actual characteristics of the operational
environment and/or the real-world organization. For example, in the conference
management example, this means separating those functionalities and inter-
dependencies intrinsic in a process of reviewing (e.g. functionalities of PC Chair and
of reviewers, and protocols for sending back review forms) from those that instead
derives form a specific contingent choice (e.g., separating the role of PC Member
from that of reviewer, and relying on paper bidding for assigning reviews). In that
way, whenever unexpected changes occur, designers and developers are facilitated in
identifying where to focus to restructure the MAS as needed without impacting on the
whole system.

3 Modeling Adaptive MASs with Gaia

As far as we know, none of the currently available AOSE methodologies for MASs
development explicitly accounts for a design-for-change perspective. Nevertheless,
some of them already exhibit specific aspects which can at least promote a design for
change. One of these, focus of this section, is the Gaia methodology [19].

3.1 Gaia in a Nutshell

Gaia focuses on the use of organizational abstractions to drive the analysis and design
of MASs. Gaia models both the macro (social) aspect and the micro (agent internals)
aspect of a MAS, and devotes a specific effort to model the organizational structure
and the organizational rules that govern the global behavior of the agents in the
organization. What makes Gaia somewhat suitable for a design-for-change
perspective is its clear separation between the analysis and the architectural design
phases.

The goal of the analysis phase in Gaia, covering the requirements in term of
functions and activities, is to firstly identify which loosely couple sub-organizations
possibly compose the whole systems and then, for each of these, produce four basic
abstract models: (i) the environmental model, to capture the characteristics of the
MAS operational environment; (ii) a preliminary roles model, to capture the key task-
oriented activities to be played in the MAS; (iii) a preliminary interactions model, to
capture basic inter-dependencies between roles; and (iv) a set of organizational rules,
expressing global constraints/directives that must underlie the MAS functioning.

The above analysis models are used as input to the architectural design phase. In
particular, the architectural design phase is in charge of defining the most proper
organizational structure for the MAS, i.e., the topology of interactions in the MAS
and the control regime of these interactions, which most effectively enables to fulfill
the MAS goals. The definition of the organizational structure has to account for a
variety of factors, including the need of somewhat reflecting the structure of the real-
world organization in the MAS structure, the characteristics of the environment and of

the patterns of access to it, the need of simplifying the enactment of the organizational
rules, the need to respect any identified non-functional requirement, as well as the
obvious need to keep the design as simple as possible. Once the most appropriate
organizational structure is defined, the roles and interactions models identified in the
analysis phase (which were preliminary, in that they were not situated in any actual
organizational structure) can be finalized, to account for all newly identified
interactions and possibly for newly identified roles.

Past the architectural design phase, the detailed design involves identifying: (i) an
agent model, i.e., the set of agent classes in the MAS, implementing the identified
roles, and the specific instances of these classes; and (ii) a services model, expressing
services and interaction protocols to be provided within agent classes. The result of
the design phase is assumed to be something that could be implemented in a
technology neutral way.

3.2 Factors Facilitating Adaptivity in Gaia

As from the short description above, Gaia prescribes to clearly separate the analysis
phase, in which the basic characteristics of the system-to-be are captured and
organized, from the architectural design phase, where all the results of the analysis are
put at work to identify the most suitable organizational structure. The above clear
separation, together with the specific structuring of the analysis phase and of its
models, are important factors to facilitate adaptive changes, according to what
specified in Subsection 2.3.

The result of the analysis phase in Gaia is very modular, clearly separating basic
characteristics/functionalities of the systems, (i.e., the preliminary roles and
interactions models) from characteristics of the operational environment (i.e., the
environmental model) and from any additional constraints that the MAS will have to
respect (i.e., the organizational rules). This implies that whenever contingencies calls
for a re-thinking of some of the MAS specifications, the clear separation of concerns
of the Gaia analysis models is likely to avoid global re-thinking of the whole analysis
and, depending on the types of contingencies, promote a local tuning of a limited set
of models. For instance, some functional changes in “how” a sub-task is expected to
be achieved will impact on the preliminary role model only; some changes in the
global constraints the MAS has to respect implies changes in the organizational rules
only.

The prescription to delay the identification of the organizational structure to the
architectural design phase is also of paramount importance. In fact, more than the
outcome of the analysis, it is the choice of a specific organizational structure that is
more likely to be affected by contingencies. Besides properly structuring the
functional requirements of the analysis phase, the choice of a specific organizational
structure has to take into account and is affected by a number of non-functional
requirements and by various characteristics of the operational environment and of the
real-world organization. Thus, whenever contingencies call for adaptive changes in
the MAS, it is very likely that these contingencies will call for a new organizational
structure, which in Gaia can be selected without globally affecting the design.

In fact, the analysis outcome of Gaia is a set of preliminary roles and interactions
models that exhibit no dependencies on a specific organizational structure. In the
architectural design phase, after having chosen a specific organizational structure, the

roles and interaction models can be finalized. Consequently, it is possible in the final
roles and interaction models to clearly identify those roles and interactions which are
intrinsic of the systems (i.e., those already identified from the analysis) from those
that, instead, derives from the adoption of a specific organizational structure.
Accordingly, whenever contingencies call for a new organizational structure, the
designer is clearly facilitated in determining what parts of the system requires some
sort of re-design and what parts, instead, can be left unchanged.

Thus, even if Gaia does not yet define any specific guidelines for adaptive
maintenance, its structuring of the development process somewhat facilitates adaptive
changes, and also enables an effective re-use of previous experiences and models. In
fact, an expert designer can easily apply known organizational structures – possibly
being supported by the availability of catalogues of organizational patterns – in the
context of a particular system, so as to more easily chose and specify a specific
organizational structure for a MAS-to-be, and – if this is the case – so as to easily re-
shape the organizational structure of an existing system that requires some adaptation.

3.3 The Conference Management System in Gaia

To better ground the discussion and exemplify, we now try to put these concepts
at work in the conference management system example. So, we orderly describe the
various phase of the process of analysis and design of such system in Gaia,

Possible sub-organizations
As already stated, in the conference management example, three loosely coupled sub-
organizations can be clearly identified, independently of the conference size. The first
is the organization responsible for the submission process, the second is the
organization responsible for the review process, and the third is the organization
responsible for the publication of the proceedings. There are agents/roles (with
specific competences) that participate in some organizations and not in others, while
others like the PC Chair are likely to participate in all sub-organizations. Therefore,
these three processes can dealt with by analyzing them as three separated MASs. For
space reasons, hereinafter we focus on the review process only, and discuss the
impact of the conference size on the actual design and on design changes.

Environmental Model
In the review process application, the environmental model simply reduces to a virtual
computational environment of PDF papers (possibly enriched with XML semantic
descriptions) and txt review forms. Agents can use some kind of shared database to
manage the submitted papers, the reviewers information and the reviewers forms.

Preliminary Roles model
The analysis phase can clearly identify the tasks and the structure of the roles,
independently of any contingent choice for the organizational structure, but based on
the functional specifications only. Therefore, in the organization of the review process
there exists a few clearly identifiable functional roles: the role in charge of selecting
reviewers and assigning papers to them (ReviewCatcher), the role of filling review
forms for assigned papers (Reviewer), the role in charge of collecting and ranking the
reviews (ReviewCollector) and the role of finalizing the technical program

(DoProgram). An example of role schema for the ReviewCatcher role is presented in
Figure 1.

Clearly, depending on the actual organizational structures chosen to fit the
conference size, different actors (e.g., the PC Chair, the PC Members or External
Reviewers) may be called to play such roles.

Role Schema: ReviewCatcher

Description:
This role is in charge of selecting reviewers and distributing papers among them.
Protocol and Activities:
CheckPaperTopic, CheckRefereeExpertise,
CheckRefereeConstraints, AssignPaperReferee,
ReceiveRefereeRefuse, UpdateDBSubmission, UpdateDBReferee

Permissions:
Reads paper_submitted // in order to check the topic and authors
 referee-data // in order to check the expertise and constraint (i.e. the referee
 is one of the authors, or belong to the same organization
Changes DB Submission // assigning a referee to the paper
 DB Referee // assigning the paper to the referee incrementing the number
 of assigned papers

Responsibilities:
Liveness:
 ReviewCatcher = (CheckPaperTopic.CheckRefereeExpertise.
 CheckRefereeConstraints.AssignPaperReferee.
 [ReceiveRefereeRefuse] | UpdateDBSubmission.
 UpdateDBReferee)

n

Safety:

• AssignPaperReferee =>Referee ≠ authors ^ Referee_organization ≠ authors_
organizations

• ∀ paper: number_of_referees = 3

Fig. 1. The ReviewCatcher functional role schema

Preliminary Protocols Model
As for the preliminary roles model, some preliminary interaction protocols may be
identified to apply whatever the conference size (e.g., a protocol involving
ReviewCatcher roles and Reviewers roles for assigning papers to review). However,
until the organizational structure is defined, some of the protocols may remain
dangling (i.e., without clearly identified roles involved) or fully unidentified.

Organizational Rules
Organizational rules in the conference management systems may dictate constraints
on who can review what papers (i.e., to one to review his/her own papers), and on
how the review process should proceed (i.e., by having at least three reviews by three
different reviewer for each paper). Some examples of organizational rules related to
the review process have been presented in [19]. Again, such rules typically express

constraints that are mostly independent from any specific internal definition of roles
and that abstract from any specific organizational structure, i.e., the above rules must
apply both for a small and for a large conference.

Choice of the Organizational Structure
Here comes the deal. The organizational structure is the aspect of the system that is
more likely to be affected by the conference size (as already discussed in Subsection
2.2).

Let us firstly assume that the conference organizers expect a limited number of
submissions, and then decide to organize the review process around a simple
hierarchy (see Figure 2).

Figure 2. The paper review organization structure for a small conference

The PC Chair plays the ReviewCatcher role and distributes the papers among the

PC Members, which simply acts playing the role of Reviewers. The PC-Members,
eventually send back reviews to the PC Chair, which thus plays also the
ReviewCollector role. Based on this, the preliminary roles identified in the analysis
already suffice, and they can be simply organized (via properly completing the
interactions model) into a hierarchy.

Completion of Preliminary Roles and Protocols Models
Once identified the organizational structure, the roles and protocol models can be
finalized, by binding dangling references.

Adoption of a Different Organizational Structure
Now let us assume that the number of submissions is much higher than expected. At
this point, the conference organizers may decide to adopt a different structure, i.e., a
multilevel hierarchy, implying some change also in the underlying MAS supporting
the process.

The multilevel hierarchy could be organized as follows. The PC Chair will have
to play a new – previously not identified – role of ReviewPartitioner (see Figure 3), to
partition papers “by areas” and distribute each partition to specifically appointed Vice
Chairs, each in charge of handling papers in his/her area of competence. These Vice
Chairs than have to act as ReviewCatcher for their assigned partitions, recruiting PC
Members as Reviewers. Vice Chairs also play as ReviewCollector for their partition,
and the same do the PC Chair for the whole set of reviews.

Now, what should a designer do if forced to switch from the “small conference”
design to the “large conference” design? Well, due to the modularity of Gaia models

PC-Chair

PC-Member1 PC-Member2

PC-MemberN

and the clear separation from analysis and architectural design phase, the designer can
easily re-use all previously identified models of the analysis, re-applying them in the
sub-hierarchies of Vice Chairs and PC Members, and introducing the new role of
“ReviewPartitioner” to define the upper level of the hierarchy.

Role Schema: ReviewPartitioner

Description:
This role is in charge of distributing papers among Vice-Chairs according to the area of
competence.
Protocol and Activities:
CheckPaperTopic, CheckViceChairArea, AssignPaperViceChair,
UpdateDBSubmission

Permissions:
Reads paper_submitted // in order to check the topic and authors
 Vice-Chair-data // in order to check the area
Changes DB Submission // assigning the paper to a Vice-Chair area

Responsibilities:
Liveness:
 ReviewPartitioner = (CheckPaperTopic.CheckViceChairArea.
 AssignPaperViceChair.UpdateDBSubmission)

w

Safety:

• ∀ paper assigned to a ViceChairArea

Fig. 3. The new ReviewPartitioner role schema

Figure 4. The paper review organization structure for a large conference

Detailed Design

Clearly, the detailed design of agents and services is not particularly affected by
the specific organizational structure, as far as the “intrinsic” roles and interactions are
concerned (Figure 5 shows the Agent model related to the reviewing process for a

Vice-Chair1

PC-Member1 PC-MemberN PC-MemberZ

Vice-ChairN

PC-MemberX

PC Chair

multilevel hierarchy organization). As far as the additional roles and interactions
introduced because of a specific organizational structure are involved (e.g., the
ReviewPartitioner role), these are very likely to be roles and interactions that recur
over and over in the design of MAS organizations, thus making it possibly for
designers to re-use from past experience of from catalogue of MAS organizational
patters.

Fig. 5. The Agent model for a large conference

4 Other AOSE Methodologies

The issue of continuous design change/adaptation in MASs organizations has been
the subject of several studies [9], [13]. For instance, the approach proposed in [14] is
concerned with the agents generation at run-time in response to changes in
requirements or in the environment. However, the specific problem of how to
properly analyze, design, and develop a MAS so as to make it ready to adaptation is
definitely under-studied.

Unlike Gaia, several other AOSE methodologies proposed in the literature simply
miss in identifying a clear separation of the intrinsic aspects of a MAS (as identified
in Gaia analysis) from the architectural aspects (i.e., the organizational structure in
Gaia). For instance, methodologies such as Roadmap [15], Prometheus [17], MaSE
[8], AOR [18], and DESIRE [2], simply consider the organizational structure to
derive in an implicit way from the identification of roles/agents and of their
interactions, without promoting any modularity and separation of concerns.
Accordingly, even if these methodologies can “win” over Gaia for other aspects (cfr.
[4]), they inherently introduce more problems in dealing with adaptive MAS.

More recently proposed AOSE methodologies explicitly face the problem of
structuring the organization of the MAS, in ways different from that of Gaia, but
nevertheless somewhat enforcing some degree of modularity separation of concerns
that make them more suitable for adaptive change.

MASSIVE [16] focuses on organizational structures in terms of the society views
and interaction views. The society view sees the MAS as a collection of agents
structured according a particular organizational model. The interaction view is seen as
a generalized form of conflict resolution, considering several generic form of
interaction not limited to the traditional form of communication. The explicit
definition of these views goes in the suggested directions of making the
organizational aspects explicit, and can facilitate adaptive organizational changes.

To capture the organizational perspective, Tropos [3], [12] includes actors
diagrams for describing the network of social dependency relationships among actors
(modeling an agent, a role or a set of roles), and rationale diagrams for analyzing and
trying to fulfill the specified goals of the actors. Also in the architectural design

Chair Agent Reviewer Agent

Vice Chair PC Member

1..N

General Chair

1 +

phase, more systems actors are introduced and goals and tasks assigned to the systems
are deeper specified in term of sub-goals and sub-tasks. As already stated, this clear
focus of Tropos on the definition of the organizational structure is a key requirement
for promoting adaptive organizational changes.

Ingenias [12] proposes an approach which is nearest to that of Gaia in considering
the organizational perspective. Moreover, it has the advantage of doing so according
to a refinement approach. In the analysis-inception phase, organization models are
produced to sketch how the MAS looks like (the MAS architecture). This result is
refined in the analysis-elaboration phase to identify common goals of the agents and
relevant tasks to be performed by each agents. In the design-elaboration phase
workflows among the different agents are added to improve the organization model,
and finally, in the design-construction phase social relationships of dependency (that
clarify organization behavior) are defined. Again, we consider the Ingenias approach
somewhat suitable in a design-for-change perspective.

The Agent Modeling Language - AML approach devotes special attention to the
social/organizational aspects [5] introducing different diagrams to capture the social
structure, the social behavior and the social attitudes. However, AML more than a
complete methodology is a modeling language: one of its main contributions is its
powerful notation being specified as a conservative extension of UML 2.0.

It is also important to highlight that most the methodologies (including Gaia) are
concerned with the analysis and design processes only [4]; few are trying to cover the
development and deployment of the system; less yet are concerned with the
maintenance stage of the system. Thus, even when a methodology is more suitable for
a design-for-change perspective, a specific attention to the maintenance process and
the definition of proper guidelines for change and adaptation are lacking, which is a
great limitation for modern methodologies.

As a final point, it is also worth outlining that the dynamism of modern scenarios
and need of nearly continuous adaptive changes makes the traditional “waterfall”
software process model, upon which most methodologies (including Gaia) explicitly
or implicitly rely, very unsuitable [4]. Evolutionary process models and, more
specifically, agile extreme process models may better facilitate engineers in the
adaptive design maintenance of a MAS system. However, current agile and extreme
software process models focus on small- to medium-size projects, and are not yet
ready to tackle the complexity of developing large-scale adaptive MAS.

5 Conclusions and Future Work

In this paper, we have discussed the issue of continuous design change/adaptation that
may affect a MAS during its lifetime. We used the conference management system as
a representative example of adaptive MAS, to show how changes may require re-
structuring the global organization of a MAS. Then, also with the help of the case
study example, we have discusses how Gaia (i.e., the way in which Gaia models and
organizes the identification of the organizational structure and of the rules governing
the general behavior of the MAS) can to some extent facilitate engineers in tackling
the likely changes that will appear in a MAS after its deployment. A comparison with
other AOSE methodologies shows that other methodologies other than Gaia exhibit
similar characteristics and are quite supportive of a design-for-change perspective.

Our current research work is focused on proposing more specific guidelines and
conceptual tools to support engineers with in the adaptive maintenance of a MAS
system, as well as, for the same purposes, in integrating in Gaia a more iterative and
agile software process [4]. An additional issue that we consider very important to
study relates to adaptation at the implementation level, i.e., how does changes in the
design reflect in the implementation and what different problems may arise at this
level that we have still not identified? The final long-term goal of these is to
eventually reach a point in which we will be able to develop and deploy MASs that
are able to autonomously self-adapt their behavior and to re-structure their internal
organization in response to contingencies.

References

1. Boehm, B.: Software Engineering Economics, Prentice-Hall, Englewood Cliffs (NJ)
(1981)

2. Brazier, F., Jonker, C., and Treur, J.: Principles of Component-Based Design of Intelligent
Agents. Data and Knowledge Engineering, vol. 41, No. 2, (2002) 1-28

3. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., and Mylopoulos, J.: A Knowledge
Level Software Engineering Methodology for Agent Oriented Programming. In:
Proceedings of the 5th International Conference on Autonomous Agents. ACM Press,
Montreal (Canada), (2001) 648-655

4. Cernuzzi, L., Cossentino, M., Zambonelli, F.: Process Models for Agent-based
Development, Journal of Engineering Applications of Artificial Intelligence, Vol. 18,
No.2, (2005) 205-222.

5. Cervenka, R., Trencansky, I. and Calisti, M.: Modeling Social Aspects of Multi-Agent
Systems: the AML Approach. In this volume.

6. Ciancarini, P. And Wooldridge, M.: Agent-Oriented Software Engineering. Proceedings of
the 1st International Workshop on Agent-Oriented Software Engineering, Springer Verlag,
LNCS, Vol. 1957, (2001) 1-24

7. Colman, A. and Han, J.: Organizational abstractions for adaptive systems, Technical
Report No: SUTIT-TR2004.03/SUT.CeCSES-TR003, School of Information Technology,
Swinburne University of Technology, June (2004)

8. DeLoach, S., Wood, M. and Sparkman, C.: Multiagent Systems Engineering. International
Journal of Software Engineering and Knowledge Engineering, vol. 11, No. 3, (2001) 231-
258

9. Dignum, V., Sonenberg, L., and Dignum, F.: Dynamic Reorganization of Agent Societies,
In Vouros, G. (Ed.), Proceedings of Workshop on Coordination in Emergent Agent
Societies CEAS at ECAI 2004, Valencia, Spain, 22-27 September (2004)

10. Ghezzi, C., Jazayeri, M., and Mandrioli, D.: Fundamentals of Software Engineering.
Prentice Hall International, Upper Saddle River, NJ (USA) (1991)

11. Giunchiglia, F., Mylopoulos, J. and Perini A.: The Tropos Software Development
Methodology: Processes, Models and Diagrams. Proceedings of Agent-Oriented Software
Engineering (AOSE-2002), July 2002, Bologna (Italy), (2002) 63-74

12. Gómez-Sanz, J. and Pavón, J., 2003. Agent Oriented Software Engineering with
INGENIAS. Proceedings of the 3rd Central and Eastern Europe Conference on Multiagent
Systems, Springer Verlag, LNCS 2691, pp. 394-403

13. Horling, B. and Lesser, V.: A Survey of Multi-Agent Organizational Paradigms. The
Knowledge Engineering Review. 2005, to appear.

14. Jayaputera, G., Zaslavsky, A. and Loke, S.: Approach to Dynamically Generated User-
Specified MAS. In this volume.

15. Juan, T., Pearce, A. and Sterling, L.: ROADMAP: Extending the Gaia Methodology for
Complex Open Systems. Proceeding of the First International Conference on Autonomous
Agents and Multi-Agent Systems - AAMAS ’02, July 15-19, 2002, Bologna (Italy),
(2002) 3-10

16. Lind, J., 2001. Iterative Software Engineering for Multiagent Systems, the MASSIVE
Method. Springer Verlag, New York, Secaucus, NJ, USA

17. Padgham, L. and Winikoff, M.: Prometheus: A Methodology for Developing Intelligent
Agents. Proceedings of the First International Conference on Autonomous Agents and
Multi-Agent Systems - AAMAS ’02, Third International Workshop on Agent-Oriented
Software Engineering AOSE-2002, July 15, 2002, Bologna (Italy), (2002) 135-146

18. Wagner, G.: The Agent-Object-Relationship Metamodel: Towards a Unified View of State
and Behavior. Information Systems, Vol. 28, No. 5, July, 2003, Elsevier, (2003) 475-504

19. Zambonelli, F., Wooldridge, M. and Jennings, N. R.: Developing Multiagent Systems: The
Gaia Methodology. ACM Transaction on Software Engineering and Methodology, vol. 12,
No. 3, (2003) 417-470

20. Zambonelli, F. and Omicini, A.: Challenges and Research Directions in Agent-Oriented
Software Engineering. Journal of Autonomous Agents and Multiagent Systems, vol. 9,
No. 3, Kluwer Academic Publishers, (2004) 253-283

21. Zambonelli, F. et al.: Spray Computers: Explorations in Self-organization. Journal of
Pervasive and Mobile Computing, vol. 1, No. 1, (2004) 1-20

